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Abstract. Modelling extreme data is very important in several appli-
cation domains, like for instance finance, meteorology, ecology, etc.. This
paper addresses the problem of predicting extreme values of a continu-
ous variable. The main distinguishing feature of our target applications
resides on the fact that these values are rare. Any prediction model is
obtained by some sort of search process guided by a pre-specified evalua-
tion criterion. In this work we argue against the use of standard criteria
for evaluating regression models in the context of our target applica-
tions. We propose a new predictive performance metric for this class of
problems that our experiments show to perform better in distinguishing
models that are more accurate at rare extreme values. This new evalu-
ation metric could be used as the basis for developing better models in
terms of rare extreme values prediction.

1 Introduction

In several applications the main focus of interest is a small proportion of the
available data. These unusual cases have a large importance, and as such, antici-
pating them is a critical task for these domains. An example of such applications
is the prediction of the future returns of a stock. Unusually high (low) returns
are rare, but they are the most interesting values for investors and thus they
should be the target of any financial prediction model.

A related problem has been receiving great attention in the data mining
community: the construction of classification models based on samples with un-
balanced class distributions (e.g. [1]). Predicting extreme values of a continuous
variable can be handled through a classification approach by means of a dis-
cretization process (e.g. [2]) off the continuous target variable. This would have
the advantage of using all work that has been around in the areas of unbal-
anced classification problems and evaluation under differentiated misclassifica-
tion costs. However, this approach would require to establish the number of
classes and, moreover, would lead to an undesirable crisp division between what
is an extreme and what is a “normal” case. These are some of the major draw-
backs of handling regression as a classification problem®.

The problem of predicting rare extreme values is a particular case of multiple
regression where a target continuous variable Y is being modelled using a set

! More details on this argument can be found on [4],an extended version of this work.



of predictor or input variables Xi, X, -+, X,. Any modelling method tries to
find the model parameters that minimise an error function over the training
sample. Standard functions used in regression setups are the Mean Squared
Error, MSE = L5°% | (y; — 4;)?, or the Mean Absolute Deviation, MAD =
LS L lyi — 9il. Both these measures take all errors equally (with the same
cost) and thus can be regarded as less adequate for our target applications,
where errors on extreme values are more important.

One possible method for giving more weight to the errors on extreme values
is to use case weights. Some algorithms allow the user to attach a weight to
each case of the training sample. Model parameters can then be obtained by
minimising a criterion that takes into account these weights. Using case weights
that depend on the respective Y value being an extreme allows us to bias the
obtained model to correctly predict these extreme cases. The main drawback
of this approach is that it only sees one side of the problem, the true values.
In effect, this method does not try to avoid (or penalise) the cases where an
extreme value is predicted by the model, but the truth value is “normal”, i.e.
false positives according to the classification terminology. This drawback stems
from the fact that the weights are dependent solely on the true value of the cases,
1;, instead of being dependent on both y; and g;. Our proposal builds upon this
idea by trying to eliminate this drawback through the use of a weight function
that depends on both y; and ;.

2 Ouwur Proposal

The overall goal of this work is to have an evaluation metric that is biased
towards valuating more the predictions of rare extreme values. Our proposal was
developed with the following requirements in mind: i) the cost of a prediction
error should depend on both the predicted and the true values, i.e. we should
penalise both false positives and false negatives; ii) the cost of the errors should
vary smoothly (no crisp divisions between extremes and non-extremes); iii) the
method should have reasonable default costs (according to the overall goal) for
applications where knowledge about the costs is not available.

We propose an evaluation metric that is basically a weighted average of the
errors. Our key contribution lies on the form of calculating the weights. We use a
weight function that depends on both the true and predicted values. We propose
to use a smooth cost surface, w(Y, )A/'), that can be seen as a continuous version
of cost matrixes used in classification tasks. Summarising, our proposed Rare
Extremes Error metric is defined as,

1 « R X
RExE = n ;w(yiayi) x L(yi, 9i) (1)
1=
where L(y;, §;) can be any loss function, e.g. the squared error.
In order to make the use of smooth cost surfaces practical we need to devise
an easy way of specifying them. Our proposal consists of requiring the specifica-
tion of the cost values at a small set of properly selected points and then using



a function approximation method to interpolate the complete surface. The axes
of the surface are the true, Y, and predicted, f', values of the target variable.
These range from low extreme values (extrr) to high extreme values (extrm).
The points selected for specifying the cost surface should be related to the most
relevant areas of the surface. These are the areas of lower cost (the model accu-
rately predicts and extreme as such), and of the worse performance (the model
predicts an extreme high for a true extreme low, or vice versa).

For applications where no cost information is available but still extremes are
more important, we need to describe means to setup the costs for the key points
used for surface approximation. The critical question is to define what is a rare
extreme value. We use the same definition as in Torgo and Ribeiro [3]. This
means that we set extrr, = adjr and extry = adjg, where adjr(adjp) is the
smallest observation that is greater or equal to the 1st quartile minus 1.5r, with
r being the interquartile range. After having defined these two extreme values
we artificially create n grid points by diving the interval extry — extry in n
equally spaced bins. This means that we will have a (n + 2)x(n + 2) matrix to
fill in with costs. We use an arithmetic progression to setup the costs from the
lowest to the highest cost. Full details and illustrative examples can be found
in [4].

3 An Experimental Evaluation of the Proposal

We have carried out a series of experiments with the goal of checking the validity
of our proposed metric in the task of identifying the models that are better from
the perspective of being more accurate at rare extreme values. With this purpose
we have designed the following experimental setup for each data set:

1. Draw a stratified test sample with 50% of the cases;

2. Randomly generate a set of prediction errors with the same size as the test
sample. The errors are drawn from a normal distribution. We then pick the
n largest errors, where n is the number of extreme values of the distribution
of Y, and increase these errors by a constant k. The overall objective of this
step is to obtain a set of credible prediction errors for a standard model
when making predictions for a problem with some extremes. For this type
of problems we expect (we have confirmed this experimentally using several
modelling techniques and several real world data sets), the models to achieve
a performance of this type: normal-shape distribution of the error with some
extreme errors typically occurring on test cases with extreme values of Y.

3. We then artificially allocate this set of generated errors to each case on
the test set in two different ways, leading to the “artificial performance”
of models A and B. For model A, the smallest errors are allocated to the
extremes in the test set, thus leading to what could be considered to be an
ideal model for our target applications. On the contrary, model B has the
largest errors on the extreme values of the target, in what could be considered
a “normal” behaviour of a model in this type of tasks.



Table 1. The results in terms of percentage difference between Models A and B.

Data Set SigMetric NRExE Data Set SigMetric NRExE
(avgtsd) (avgtsd) (avgtsd) (avgtsd)
algael 52.6+4.8 82.9+1 deltaAilerons 55.24+0.6 5+0.4
algae2 55+4.6 79.3+1.6 ibm 71.94+0.3 7.44+0.4
algae3 71.1+2.4 88.1+1 abalone 70.5+1.1 6.5+0.5
algaed 73.8+14.1 87.3+5.1 cpuSmall 63+1 81.1+0.4
algaeb 56.1+4.6 83.9+1.5 servo 74.4+5.8 85.24+0.9
algae6 84.24+0.8 91.1+0.5 cwDrag 57.4+1.6 2.81+2.6
algae? 52.4+11.1 82.7+2.3 co2Emission 58.4+0.6 17.8+6.5
Boston 65+1.6 21+25.3 availablePower 69.7+1.5 71.5+0.7
machineCpu 76.5+3.4 77.9+1 china 68.9+2.8 71.8+1.4
bank8FM  55.3+0.5 63.6+0.8 add 56.6+0.3 5.5+0.7

A performance metric that is biased towards accurate predictions on ex-
tremes, should clearly indicate that the performance of Model A is better than
the performance of Model B. Notice that, given that the errors of the two mod-
els are exactly the same (only occurring at different test cases), metrics like the
MSE or the MAD will show both models as having exactly the same score.

As we are testing on a large set of domains with a quite different range of
target variable values, we have used a normalised version of our performance
statistic to allow comparisons across domains,

Z?;eln w(yi, §i) - |yz - :gl| (2)

NREzE = - = -
Yt w(y,Y) - |y = Y|

where Y is the sample median.

The goal of our experiments is to assert the score difference between models
A and B, when evaluating them using our proposed metric and an alternative
measure. With this purpose we have measured the percentual difference of scores
for all data sets. Positive values of this difference indicate that our metric is able
to identify Model A as performing better than Model B. We obviously want the
difference to be as high as possible, as Model A has an “ideal” performance. We
have compared our proposed metric, NREzE, against the score obtained by the
most similar alternative, an error measure using case weights as mentioned in
Section 1. For this competitor we have setup the case weights such that more
weight is given to cases with extreme values of the target (details on [4]). Notice
that contrary to our approach the weights of this measure only consider the true
value of the target, thus not taking into account the predictions of the models.

For each data set we have repeated the experiment outlined above 10 times.
The results shown on Table 1 are the average and standard deviation of the
observed percentual differences between Model A and B, when using NREzE
and the metric with sigmoid-based case weights. The best scores for each data set
are indicated in bold. The used datasets are real world problems with a diverse
set of rare extreme values types. For instance, some include both low and high



extremes, while others include only one type of extremes. Due to space reasons
we are not able to present the full characteristics of these problems.

The results reported in Table 1 show the advantages of our proposed metric
for domains where the main objective is to be accurate at rare extreme values.
In effect, in most problems our metric correctly signals model A as being signif-
icantly better than model B, in spite of being compared against a competitor
metric that also take extremes into account. Notice that standard measures, like
MSE, would signal both models as being equal (difference equal to zero).

4 Conclusions

In this paper we have described the particular features of a class of problems
with high practical importance: the prediction of rare extreme values. We claim
that existing metrics for evaluating the performance of different models have
several drawbacks and perform poorly on identifying the best models in terms
of predictive accuracy on the most important cases for these applications. We
have presented a new metric that is particularly suited for these applications.
In a set of experiments using real world data we have shown that this measure
is able to identify the best model in terms of accuracy on the rare extreme values,
even on the most difficult scenario where both models have exactly the same error
distribution and thus have the same score in “standard” metrics like MSE.
One of the main impacts of the results of this work is that our metric can be
used to compare different existing models on tasks where the main goal is the
accuracy on rare extreme values. The use of our metric should provide better in-
formation concerning the merits of alternative models for these important tasks.
Another important side effect of this work is the possibility of using the described
metric in the search process of any modelling technique, so as to develop models
that are built for maximising the predictive performance on extreme values.
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