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Abstract. Cost-sensitive learning is a key technique for addressing many
real world data mining applications. Most existing research has been fo-
cused on classification problems. In this paper we propose a framework
for evaluating regression models in applications with non-uniform costs
and benefits across the domain of the continuous target variable. Namely,
we describe two metrics for asserting the costs and benefits of the pre-
dictions of any model given a set of test cases. We illustrate the use of
our metrics in the context of a specific type of applications where non-
uniform costs are required: the prediction of rare extreme values of a
continuous target variable. Our experiments provide clear evidence of
the utility of the proposed framework for evaluating the merits of any
model in this class of regression domains.

1 Introduction

In many real world applications the costs and benefits of using prediction models
are non-uniform. These observations have motivated the work on cost-sensitive
learning (e.g. [5]) and more generally on utility-based mining [9, 11]. In the con-
text of applying the discovered knowledge under a non-uniform cost setup, most
works have focused on classification tasks (e.g. [3-6]). Still, within numeric pre-
diction problems, also know as regression, similar problems arise. As mentioned
by Crone et. al. [2] most works on regression assume uniform costs and use some
form of average error statistic. In this context, several authors (e.g. [1,2]) have
proposed new cost of error functions that try to address these issues. However,
most of these works only consider one particular type of non-uniform costs of
errors: the difference between under- and over-predictions, i.e. situations where
the predicted values are above or below the true values, respectively.

This paper proposes a framework for evaluating regression models in the con-
text of arbitrarily shaped costs and benefits across the domain of the numeric
target variable of regression tasks. We propose two new evaluation metrics that
incorporate the notions of costs and benefits and thus are able to provide bet-
ter feedback on the merits of regression models in the context of the specific
biases of any numeric prediction task. These metrics use cost and benefit sur-
faces that we also formalize, which can be regarded as continuous versions of the
well-know notion of misclassification cost matrices. We illustrate the use of our



proposed metrics in a particular class of non-uniform costs/benefits application:
the prediction of rare extreme values of a continuous variable.

2 Problem Formulation

Predictive learning tries to obtain an approximation of an unknown function
f i x — 7, based on a training data set D drawn from a distribution with
domain x X 7, where x is the domain of the set of predictor variables and - is
either a discrete domain in the case of classification tasks, or ® in the case of
regression. The obtained approximation, fg, is a model with a set of parameters,
0, that are obtained by optimizing some preference criterion. For classification,
this is usually the error rate, while in the case of regression the most frequent
are the mean squared error, MSE = %Z:L:l (yi — g}i)2, or the mean absolute
deviation, MAD = L3 |y; — g4

Many authors (e.g. [3,5]) have noticed the problems arising from the uni-
form cost assumption of the error rate evaluation criterion, which is unaccept-
able for many real world domains. The cost matrix formulation overcomes these
limitations by allowing the specification of the cost of misclassifying class i by
class j, and leads to the criterion of expected cost minimization, % > C(.y),
where C(3,y) is an entry on the pre-specified cost matrix. Regards regression
few authors have addressed the issue of differentiated costs. Most of the exist-
ing works on having non-uniform costs for regression have been addressing the
issue of differentiating the cost of under-predictions (§ < y), from the cost of
over-predictions (§ > y) (e.g. [1,2]). Although these approaches address sev-
eral important application-specific requirements, they fail to provide a means
to specify a cost function across all domain of the target variable, which was
shown to be of key importance for this type of applications [8]. In this paper we
address this issue by associating to each prediction a cost that is dependent on
an user-defined relevance of both the true and predicted values.

3 Utility-Based Regression

As mentioned by Zadrozny [10], research on cost-sensitive learning has tradi-
tionally been formalized in terms of costs as opposed to benefits or rewards.
However, evaluating a model in terms of benefits is generally preferable because
there is a natural baseline from which to measure all benefits whether positive
(real benefits of a prediction) or negative (that are in effect costs) [5]. Our pro-
posal follows these lines, by measuring the utility of a regression model through
the total balance between the costs and benefits originated by its predictions.

3.1 Relevance Functions

We assume that for some applications the relevance (importance) of the values
of the target variable is not uniform across its domain. This domain-dependent



information shall be provided through the specification of a relevance function,
o(Y) : ® — 0..1, that maps the domain of the target variable into a 0..1 scale of
relevance, where 1 represents maximum relevance. Our proposal is independent
of the shape of the ¢() function. We assume this function is specified by the user
using his/her domain knowledge. The specification of the relevance function is
the step of our proposal that is most challenging for the user. Given the large
range of applications where the relevance of the target variable is non-uniform, it
is virtually impossible to describe reasonable default relevance functions for all
these applications. Still, in many applications relevance is often associated with
rarity (e.g. highly profitable customers; high variations on stock prices; extreme
weather conditions, etc.). For these applications relevance can be defined as a
function that is inversely proportional to the probability density function (pdf)
of the target variable. Although obtaining the functional form of these pdf’s
is generally non trivial, reasonable approximations based on the available data
sample can be obtained with techniques like kernel density approximators. In
Section 4 we propose an even simpler strategy to derive a relevance function for
a class of applications where relevance is associated with rarity: the prediction
of rare extreme values of a numeric variable.

3.2 Cost and Benefit Surfaces

Generally, the cost of a prediction depends not only on the relevance of the test
case value but also on the relevance of the predicted value. In effect, all three
following situations are penalizing in a cost-sensitive application:

1. Predict a relevant value for an irrelevant test case (false alarm);

2. Predict an irrelevant value for a relevant test case (opportunity cost);

3. Predict a relevant but very different value for a relevant test case (the most
serious mistakes: confusing relevant events).

We capture this notion of relevance of the prediction for a given test case by
means of the definition of a bi-variate relevance function, &(Y,Y), that depends
on the relevance of both the true and predicted values,

(Y, Y) = (L—m) ¢(Y)+m-(Y) (1)

This function is a weighted average of the individual relevances of Y and Y.
It is maximum when both are highly relevant and these are the cases where the
cost of the predictions may reach the maximum if they are not accurate enough.
The m parameter (0 < m < 1) differentiates between situations 1 (false alarms)
and 2 (opportunity costs). Setting m > 0.5 makes the latter more important.

The cost of a prediction should also depend on its precision, i.e. how near
are Y and Y from each other. Moreover, it should also be possible for the user
to establish some kind of application-specific measure of cost in whatever units
make sense for the domain. In this context, we define the cost of a prediction as,

(V,Y)=3(Y,Y) X Cax X L(Y,Y) (2)



where Chyax 18 the maximum cost that is only assigned when the relevance of the
prediction is maximum (i.e. #(Y,Y) = 1); and L(Y,Y) is a loss function that
measures the prediction error.

The term @(Y, Y') X Chax can be seen as a kind of case-specific maximum cost
value. This is the maximum penalty we get if Y is the “worst possible” prediction
for the test case under consideration. With respect to the loss function we could
use any metric function, e.g. the absolute deviation |Y —Y|. However, in order
to make the meaning of the value C(Y,Y) more intuitive, we recommend the
use of a percentage-type loss function that ranges from 0 to 1. Such function
will then represent the proportion of the case-specific maximum cost we get due
to our prediction. For maximum error (L(Y,Y) = 1) we get the full penalty of
the particular test case (B(Y,Y) X Cinax), while a perfect prediction (L(Y,Y) =
0) would entail no cost as expected. This means the value of ¢(Y,Y) will be
expressed in the same units as Cyax, Which is provided by the user, and thus
it is more intuitive for him/her. In this context, we propose the following loss
function that ranges from 0 to 1:

L(Y,Y) =| max ¢(i) — min_o(i)] (3)
iev.y iev.y
The use of the maximum and minimum functions is due to the fact that we
want to let the user specify any arbitrarily shaped ¢() function. This means that
we can have two quite different Y values with the same value of ¢(), which would
look like a perfect prediction if we had used the difference of relevances directly.
However, these cases are exactly the most serious mistakes we want to avoid (the
3rd case on the list presented before). With our proposal, if both values have
high relevance but are quite different then surely there will be values in between
with lower relevance and this will result in a higher value of the loss function.
The function ¢() can be seen as a continuous version of cost matrices, i.e. a
cost surface. The total cost of the predictions of a model is defined as,

TC = Z (P> yi) (4)

Our proposal also considers the benefits of the predictions of a model, with
the goal of asserting its ability to accurately predict most of the relevant values
in a test set. In the case of benefits it is only the relevance of the true value that
counts, i.e. we are interested in asserting how well a model predicts the relevant
test cases. In this context, the benefit surface is defined as,

b(Y,Y) = ¢(Y) X Bmax X (1 — L(gi, yi)) (5)

where Bp,.x is a user-defined maximum reward that is measured in the same
units as the Chyax constant; and L() is a loss function as before.

Our definition of benefits associates higher rewards with higher relevance.
The term ¢(Y) X Buax calculates the case-specific benefit, while the last term
is the proportion of this reward we get. The total benefits are given by,



TB:X}@@J (6)

i=1

Finally, we can define the utility of the predictions of a model as the net
balance between its total costs and benefits,

U=TB-TC (7)

4 An Illustrative Application

Modeling extreme data is very important in several application domains, like
finance, meteorology, ecology, etc.. Several of these applications involve predict-
ing a continuous variable. For these domains the extreme (high or low) values of
the target variable are much more important than the others. Moreover, these
extremes are generally quite rare, which turns this into a very hard prediction
problem with very clear non-uniform costs and benefits of predictions. In this
section we illustrate the use of our proposed framework for utility-based regres-
sion, by using it to compare quite diverse modelling techniques on a real world
data set where the prediction of rare extreme values is of primary importance.

The application we use to illustrate our proposal concerns stock market fore-
casting. Namely, the data are about the task of trying to predict the future daily
variation in closing prices of the IBM stock, using information regarding the val-
ues of these variations on the 10 previous market sessions. The data set consists
of information on 8166 daily market sessions (roughly 30 years), each being de-
scribed by 10 predictor variables (the variations on the 10 previous days) and a
target variable (the variation on the next day). This application is a very clear
example of non-uniform costs (and benefits) of predictions. In effect, any model
that is extremely accurate at predicting small price variations (the most com-
mon) is essentially useless for a trader. Profitable trading is based on being able
to capitalize on large price changes. Trades carried out over small price changes
are usually not able to cover the trading costs and thus are non-profitable or
even represent a loss of money. As such, in these applications the accuracy on
the relevant (i.e. extreme high or low) changes of prices is the key criterion.

In order to apply our evaluation method we need to specify a relevance func-
tion for this domain. In this class of applications relevance is strongly associated
with extreme and rare values of the target variable. The distribution of the tar-
get variable has a normal-like shape with very marked tails (the rare extreme
price variations). From the description of the goals of this application it should
be clear that the relevance function should have a shape that is inverse of the pdf
of the price variations. We propose to use a sigmoid-like function for establishing
a smooth relevance function. In order to define this function we use some of the
statistics provided by boxplots that summarize the distribution of the target
variable. With this strategy we are able to obtain a relevance function without
having to deal with computationally complex approximations of the unknown
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Fig. 1. A sigmoid-based relevance function for rare extreme values prediction.

pdf. Figure 1 provides a graphical illustration of the quantities involved in the
derivation of the relevance function we use. This figure shows the box plot of
an arbitrary normal-like distribution and the respective sigmoid-based relevance
function. The relevance function is defined using distribution properties of the
target variable (min(Y), adjz(Y), Y, adjz(Y) and max(Y)) that can be easily
estimated from the available data sample. This approach can be generally ap-
plied on problems where the target variable has a normal-like shape and where

relevance is associated to rare extremes.

The other three parameters necessary to use our U metric are Ciax, Bmax
and m. Given our absence of domain expertise on stock market trading we have
set these parameters using what seemed to us reasonable settings. Namely, we
decided that the maximum benefit should be clearly higher than the maximum
cost to try to reward proactive models. In our experiments we have used Cyax =
10 and Bpax = 20. With respect to the m parameter we have set it to 0.5, i.e.
equal importance to false alarms and opportunity costs.

In order to test our proposed metrics under different experimental setups
we have applied 3 quite different modeling techniques to the IBM data set.
Namely, regression trees, neural networks and support vector regression. For all
3 methods we have used their implementations freely available on the R software
environment [7], more specifically the function rpart() of the package rpart,
the function nnet () of the package nnet and the function svm() of the package
e1071. All 3 methods were used without any extensive parameter tuning as
the goal was not to achieve the best possible accuracy but instead to test an
evaluation metric under different setups.

All models were evaluated using the M AD, U, T'C' and T'B statistics, which
were described in Sections 2 and 3. The M AD statistic was selected as a “rep-
resentative” of a standard evaluation metric. The values of all statistics were
estimated using a 10-fold cross validation process. Statistical significance (95%
level) of the differences when compared to the best ranked model were asserted



by means of the non-parametric Wilcox test and signaled by “*”. The results are

shown on Table 1. For each statistic, we provide the ranking of the models and
indicate the median and inter-quartile value measured over the 10 repetitions.

Table 1. The results/rankings on the IBM data set.

MAD 18 TB TC
dummy dummy svim dummy
0.01205 (0.00038) 108.18427 (37.76051) 278.41357 (27.94408) 134.12127 (17.29376)
cart * rand.forest dummy * cart *
0.01206 (0.00038) 108.18248 (36.24961) 243.10776 (36.9331) 134.12645 (17.29339)
nnet * cart * cart * nnet *
0.01209 (0.00042) 108.1688 (37.75762) 243.09674 (36.92891) 134.12665 (17.29379)
rand.forest * nnet * nnet * rand.forest *
0.01235 (0.00029) 108.1674 (37.75963) 243.09523 (36.93183) 134.14339 (13.72446)
svm * svm * rand.forest * svm *

0.01447 (0.00047) 21.07661 (30.65326) 242.07468 (36.97128) 248.66908 (32.11022)

The goal of these experiments is not to check if the models are good according
to our U metric, as they were obtained optimizing other criteria. Our objective
is to check whether by using a metric tunned for giving more weight to rare
extreme values, we can spot a method that is better at predicting these cases,
particularly if that would not be found by using only standard statistics in the
comparitive study.

The results on Table 1 unveil some interesting information that could not
be observed from looking at the M AD scores. In effect, we can see that the
SVM achieves a much higher score in terms of benefits, clearly indicating that
it is able to capture more extreme values. However, this approach also has led
to a higher value of T'C, resulting of its more risky approach to this prediction
problem. This results in a poor score in terms of net balance (U score). Still,
given the fact that there was no particular tuning of the model parameters, we
can say that the SVM is probably a model where more time should be invested
in the context of this application, so that the signals it is producing get more
precise. This sort of information is only available due to the use of an evaluation
metric that is tunned towards the application goals.

5 Conclusions

This paper has described a new evaluation framework for regression tasks with
non-uniform costs and benefits of the predictions. Our proposal is based on the
specification of a relevance function over the domain of the target continuous
variable. This function is the basis of the definitions of cost and benefit surfaces
that can be regarded as continuous versions of cost/benefit matrices used in
classification tasks. The use of the relevance function relieves the user from the
heavy burden of having to specify a cost (and benefit) for all points in the bi-
dimensional space of the predicted and true target values. The total cost and



benefit of the predictions of a model provide, either individually or aggregated
on an utility measure, important insights on the predictive performance of a
model. Moreover, these insights are related to the application goals in terms of
what is really relevant.

We have illustrated the use of our evaluation framework in the context of a
particular class of applications: the prediction of rare extreme values of a con-
tinuous variable. Namely, we have used a data set from stock market prediction
and have introduced a general relevance function for rare extremes prediction
tasks. The results of our experiments have confirmed that our proposed metric
provides a better insight on the ability of the models to accurately predict the
cases that are more important for this class of applications.
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