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ABSTRACT
This paper presents a generalization of Regression Error
Characteristic (REC) curves. REC curves describe the cu-
mulative distribution function of the prediction error of mod-
els and can be seen as a generalization of ROC curves to
regression problems. REC curves provide useful informa-
tion for analyzing the performance of models, particularly
when compared to error statistics like for instance the Mean
Squared Error. In this paper we present Regression Error
Characteristic (REC) surfaces that introduce a further de-
gree of detail by plotting the cumulative distribution func-
tion of the errors across the distribution of the target vari-
able, i.e. the joint cumulative distribution function of the
errors and the target variable. This provides a more de-
tailed analysis of the performance of models when compared
to REC curves. This extra detail is particularly relevant in
applications with non-uniform error costs, where it is impor-
tant to study the performance of models for specific ranges
of the target variable. In this paper we present the notion
of REC surfaces, describe how to use them to compare the
performance of models, and illustrate their use with an im-
portant practical class of applications: the prediction of rare
extreme values.

Categories and Subject Descriptors: D.2.8 [Software
Engineering]: Metrics - performance measures

General Terms: Measurement, Performance

Keywords: Model comparisons, evaluation metrics, regres-
sion problems

1. INTRODUCTION
This paper addresses the issue of comparing the predic-

tive performance of models in regression applications where
the cost of errors varies across the range of the continuous
target variable. We present the notion of Regression Error
Characteristic (REC) surfaces, that are a generalization of
REC curves [1]. REC curves draw the cumulative distribu-
tion of the errors of models. This allows comparing different
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models across their range of errors and thus provides more
information than a statistic of errors, like for instance the
Mean Squared Error (MSE). Any point in a REC curve pro-
vides an estimate of the probability of the error being less
or equal to the respective X-axis value, i.e. P (ε ≤ εi).
These estimates provide useful information on the errors of
a model. However, REC curves do not show how particular
errors are distributed across the range of the true values of
the target variable. This means that we can have two dif-
ferent models with exactly the same estimated probability
of the prediction error being less than ei, but the observed
errors leading to this estimate having occurred for different
true values of the target. This is not a problem in appli-
cations where the cost of any prediction error is uniform,
i.e. independent of the true values of the target. However,
there are applications where this is clearly not the case and
we may thus require further information on how the errors
are distributed across the target variable range. This is the
main goal of the work presented in this paper. We add a new
dimension to REC curves leading to REC surfaces. The new
dimension is the range of the target variable, and thus we
are able to compare the distribution of certain errors across
the range of the target variable.

2. REGRESSION ERROR CHARACTERIS-
TIC (REC) CURVES

Bi and Bennet [1] have presented REC curves. These
curves play a role similar to ROC curves (e.g. [2, 3, 4]) in
classification tasks, but for regression problems. They pro-
vide a graphical description of the cumulative distribution
function of the error of a model, i.e. D(ε) = P (ε ≤ ε). The
authors describe a simple algorithm for plotting these curves
based on estimating the probabilities using the observed fre-
quencies of the errors.

REC curves provide a better description of a model predic-
tive performance when compared to prediction error statis-
tics because they illustrate its performance across the range
of possible errors. It is thus possible to extract more in-
formation by comparing the REC curves of two alternative
models than with the two respective error statistics. More-
over, the interpretation of REC curves is quite appealing
to non-experts and it is possible to obtain the same quan-
titative information given by prediction error statistics by
calculating the Area Over the Curve (AOC), which Bi and
Bennet [1] have proved to be a biased estimate of the ex-
pected error of a model.

Figure 1 shows an example of the REC curves of three
models. This example shows a model (model A) clearly
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Figure 1: An example of the REC curves of three
models.

dominating the others over all range of possible errors. On
the contrary models B and C have performances that are
harder to compare. For smaller errors model C dominates
model B, but as we move towards larger errors we see model
B overcoming model C. The decision on which of these two
is preferable may be domain dependent, provided their area
over the curve (i.e. expected error) is similar.

In spite of the above mentioned advantages there are some
specific domain requirements that are difficult to check us-
ing REC curves. These have to do with domains where the
cost of errors is non-uniform, i.e. where the importance of
an error with an amplitude of say 1.2, can be different de-
pending on the true target variable value. For this type of
applications, it may be important to inspect the distribution
of the errors across the distribution of the target variable.
In effect, it is possible to have two different models with ex-
actly the same REC curves but still one being preferable to
the other just because smaller errors occur for target values
that are more relevant (e.g. have higher cost) for the appli-
cation being studied. Distinguishing these two models and
checking that one behaves more favorably than the other is
not possible with the information provided by REC curves.
This is the objective of our work.

3. REGRESSION ERROR CHARACTERIS-
TIC (REC) SURFACES

In order to analyze how certain type of errors are dis-
tributed across the range of values of the target we propose
extending the idea of REC curves to REC surfaces. The
idea is to study the joint cumulative distribution function,

D(ε, y) = P (ε < ε, Y < y) =

Z ε

0

Z y

−∞
p(ε, y) dε dy (1)

REC curves are a particular case of these surfaces, namely
a REC curve is equivalent to D(ε,∞). This means that
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Figure 2: An example of the REC surface.

each point of a REC curve is “unfolded” into a cumulative
distribution function in a REC surface, showing how the
errors corresponding to that point are distributed across the
range of the target variable.

Figure 2 shows an example of a REC surface obtained
along the lines described above. As mentioned before the
horizontal axes of the plot are the errors (as in REC curves)
and the target variable (Y ) range. Each point in the surface

represents an estimated probability P̂ (ε < εi, Y < yj). The
strong bold line at the end of the “Y-range” axis is the REC
curve of this model, i.e. it corresponds to D(ε,∞).

REC surfaces uncover information that is not present in
REC curves. Namely, there are two types of analysis that
can be very relevant for certain applications, which are pos-
sible by zooming in on particular areas of REC surfaces.
One is to study how a certain range of errors, ε1 < ε < ε2, is
distributed along the domain of the target variable, i.e. on
which Y values are these errors more frequent. This corre-
sponds to a slice of the surface parallel to the Y-range axis,
i.e.

P (ε1 < ε < ε2, Y < y) =

Z ε2

ε1

Z y

−∞
p(ε, y) dε dy (2)

For instance, suppose we are particularly interested in
checking where smaller errors are being obtained for the
model whose errors are shown in Figure 2. We could zoom
in the slice of the surface corresponding to P (0 < ε <
0.015, Y < y), which is shown on Figure 3. This tells us
that smaller errors are mostly concentrated on values of Y
around zero1, given that the surface is completely flat on
the extremes of the Y distribution, though there are samples
with true target value far from zero as it can be confirmed
from checking the complete surface in Figure 2.

The second interesting question that can be analyzed us-

1Please notice the different scale of the Y variable on this
figure when compared to Figure 2.
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Figure 3: An example of the study of a particular
range of errors.

ing REC surfaces is to check what is the distribution of the
errors for a certain range of the target variable, y1 < Y < y2,
i.e. which type of errors are made by the model for this
range. Again this corresponds to a surface slice this time
parallel to the error axis and defined by,

P (ε < ε, y1 < Y < y2) =

Z ε

0

Z y2

y1

p(ε, y) dε dy (3)

We exemplify this type of slices using again the data from
Figure 2. Suppose that in this particular application it is
critical to have good predictions for Y values between 0.01
and 0.02. We could inspect this model performance by plot-
ting P (ε < ε, 0.01 < Y < 0.02), which leads to Figure 4.
This figure shows very few changes, which means that there
are few testing cases in these conditions (the REC curve at
Y = 0.01 is very similar to the REC curve at Y = 0.02).
Still, we may notice that most surface variations occur for
large errors because for smaller errors the cumulative Y dis-
tribution stays almost unchanged. This means that the few
Y cases that fall on this range lead to large errors.

In order to plot a REC surface we use an algorithm with
some similarities to the one presented by Bi and Bennet [1]
for REC curves. Still, given that we are producing a sur-
face we have to choose a grid of points on the Error and Y
axes and then estimate the corresponding probability (Equa-
tion (1)), using the observed errors. We can complete the
surface using these evaluation points in the grid with some
sort of interpolation algorithm (the figures in the paper were
obtained using a linear interpolation algorithm). An imple-
mentation of these ideas in the R language2 [5] can be ob-
tained at the following web site:
http://www.liacc.up.pt/~ltorgo/KDD05/RECsurf.R

2http://www.r-project.org
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Figure 4: An example of the study of a particular
range of Y values.

4. USING REC SURFACES FOR MODEL
COMPARISONS

This section describes some example uses of the infor-
mation provided by REC surfaces, namely in comparing
the performance of models in applications with non-uniform
costs that are the main justification for using these surfaces.

REC surfaces as described in Section 3 do not bring much
advantages when compared to scatter plots of predicted ver-
sus actual values of the target variable. Their advantage
over these plots only arises when comparing multiple mod-
els. The same observation was made by Bi and Bennet [1]
regarding REC curves. Comparing the performance of sev-
eral models by superimposing their scatter plots is confus-
ing, while plotting several REC curves on a graph (like
seen on Figure 1) allows easy and clear comparisons. How-
ever, plotting several surfaces on the same graph leads to
an over-cluttered image that is hard to analyze, unless dif-
ferent colours are used for each model surface. In order to
overcome this difficulty of REC surfaces we propose to use
iso-lines of the surface.

4.1 Partial REC curves
A partial REC curve is a particular case of a REC curve

where we limit the analysis of the error distribution to a
certain Y range. They are a two dimensional representation
of the part of the REC surface defined by P (ε < ε, y1 < Y <
y2). They serve the purpose of enabling an easy comparison
of different surface slices that are of special interest to us.
They only make sense for ranges were the cost of the errors
are similar, otherwise they would be subject to the same
drawbacks as standard REC curves.

Given that, P (ε < ε, y1 < Y < y2) = P (ε < ε, Y < y2) −
P (ε < ε, Y < y1) we can plot a curve using the estimates
of these two probabilities. We call these curves partial REC
curves.

Partial REC curves can be obtained in the same way as
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Figure 5: The partial REC curves of two models.

REC curves by simply estimating the necessary probabilities
over the test cases in the Y range of interest. Alternatively,
they may be obtained directly from the REC surface by
subtracting the values of the two Y iso-lines corresponding
to y2 and y1.

If we want to compare the performance of several models
over the same Y range, we plot their respective partial REC
curves and then proceed with the same analysis as with any
REC curve [1].

Figure 5 shows an example of comparing the performance
of two models on the same data used in previous graphs
over the range −0.01 < Y < 0.01. On this figure we can
see clearly one model dominating the other over this range
of the target variable. It is interesting to observe that if
we consider the range −∞ < Y < −0.03 instead (c.f. Fig-
ure 6), the advantage of the “cart” model is not so clear and
actually the “nnet” makes smaller errors more frequently
on this other range. This type of observations, which are
not possible with standard REC curves, may be of crucial
importance for applications with non-uniform costs, as they
may help in making a more informed model selection.

4.2 Partial Y CDF’s
Similarly to the analysis described in Section 4.1, we can

consider the problem of comparing how a certain range of
errors is distributed across the domain of the target variable.
This can be used, for instance, to check whether they are
particularly concentrated on a certain part of the Y domain.

This can be accomplished through a partial CDF of the
Y variable for the test cases where the prediction error falls
within our range of interest, i.e. P (ε1 < ε < ε2, Y < y).
Plotting these curves involves estimating the CDF using the
subset of the test cases for which the models achieve a pre-
diction error within our target interval.

We illustrate this use of REC surfaces in Figure 7. This
figure shows the distribution of the Y variable for the cases
where two models achieve a small error (0 < ε < 0.005).
We can see that the “cart” model achieves more frequently
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Figure 6: The partial REC curves of the same mod-
els on another Y range.

such small errors, which is reflected in a higher final value
of the CDF curve. This value corresponds to P (0 < ε <
0.005, Y < ∞), which means that in a standard REC curve
“cart” would dominate “nnet” for ε = 0.005. Nevertheless,
we can also observe that these errors are achieved on differ-
ent parts of the Y domain. Namely, for “cart” these errors
are mostly achieved for values of the target variable near
zero, because its CDF is completely flat on the extremes
of the Y range. On the contrary, the small errors of the
“nnet” model are slightly more widespread. In Section 5
we will describe applications where this performance of the
“nnet” model would be considered preferable, which would
be hard to check in a standard REC curve.

5. RARE EXTREME VALUES PREDICTION
This section describes a particular class of applications

where the analysis presented in Section 4 is very useful.
The main goal of this class of problems is to obtain predic-
tive models that are able to accurately predict rare extreme
values of a continuous variable. These problems are quite
difficult because they involve focusing on cases that are rare
(they share several features with unbalanced classification
problems (e.g. [4]) and may even require specific modeling
techniques (e.g. [7]). The typical distribution of the target
variable of these problems is similar to a normal distribu-
tion but with extremely long tails. Examples of this class of
problems include the prediction of catastrophic phenomena
(e.g. harmful algae blooms in rivers [6]), or the prediction
of unusual high (low) returns in financial quote data. We
will use this latter problem to illustrate some applications
of REC surfaces analysis.

Financial trading based on the prediction of the future re-
turns of financial assets involves obtaining models that are
able to anticipate large movements of prices. These high
(or low) returns are rare, but they are the only that are in-
teresting to traders because they allow for highly rewarding
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Figure 7: The partial CDF of the Y variable of two
models.

trades if correctly anticipated. The typical distribution of
the returns of a financial asset is centered around zero with
rare low or high returns. Prediction errors on these extreme
values have a much larger cost (benefit) when compared to
the “normal” small returns.

Given the nature of this problem it is important to have
tools that are able to evaluate the advantages of different
models in terms of what is really relevant for this applica-
tion. Namely, it is important to compare the performance of
different models on extremely low (high) returns observed
in the test cases. It is also very important to understand
where large errors are being made by the alternative models
we may be considering. For instance, suppose a model pre-
dicts that an unusual high return is approaching. This may
lead a trader to invest a huge amount in the asset. If the
true return is small, this could mean a very high cost for the
trader. On the contrary, if the model predicts a small return
but in effect the market shows an unusual movement then
the cost is not so high, in effect it is a lost opportunity to
make money but it is not a loss of money. Both these situa-
tions can be studied using the tools described in Sections 4.1
and 4.2. For instance, we can use partial REC curves to
study the behavior of alternative models on extremely high
and low values of the target variable (the returns of the as-
sets). We can also use partial CDF’s of the Y variable to
study where a certain range of errors are occurring. Let us
see some examples of this analysis.

5.1 Performance on extreme values
In this section we present some graphs illustrating exam-

ple comparisons of several models on the task of predicting
the daily returns of “IBM” stock prices over 10 years. We
focus on the question of which model performs better on the
cases that count, i.e. extreme high and low returns.

Figure 8 shows the partial REC curves of three models on
extreme negative (less than 2%) and positive (higher than
2%) returns.
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Figure 9: The partial CDF of the Y variable of the
three models for small errors.

The results of the three models are quite similar. Still, we
can observe that both the “randomForest” and the “svm”
models are slightly superior to the “nnet” model because
they have a higher percentage of smaller prediction errors
for this range of returns. This means that their predictions
are more accurate on the test cases that really count for this
application.

5.2 Characterization of small errors
We now consider the analysis of the localization of small

errors, i.e. in which parts of the target variable range are
they more frequent. We again consider the prediction of
the daily returns of “IBM” stocks over a period of 10 years.
Plotting the partial Y CDF of the test cases for which the
error was smaller than a given threshold we are able to an-
swer such questions. Figure 9 shows such graph. We can
see that the “nnet” model achieves more frequently these
small errors. However, these good predictions are mostly
concentrated on values of Y around zero, which are irrel-
evant from the perspective of a trader. In effect, outside
a very small band around zero the CDF corresponding to
the “nnet” model is completely horizontal. On the contrary,
both “randomForest” and “svm” are able to achieve small
errors on larger (smaller) returns, which is more interesting
for the investor.

This is a good example of the sort of information that
we cannot get from standard REC curves as described by
Bi and Bennet [1]. In effect, using such curves we would
observe that “nnet” would have a dominance over the other
two models in small errors. However, we would not get
the information that, although less frequently, the other two
models achieve this type of errors on more “useful” test cases
and thus we should prefer them over the “nnet” model.

6. CONCLUSIONS
In this paper we have presented a generalization of REC
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Figure 8: The partial REC curves of three models on extreme daily returns of “IBM” stock prices.

curves with the main goal of providing means to facilitate
the analysis of the predictive performance of regression mod-
els on applications with non-uniform error costs. On this
type of applications it is of key importance to understand
where, in the range of the target variable, certain errors oc-
cur. The methodology we have presented provides this sort
of information. By analyzing the REC surface of a model we
are able to understand and answer several important ques-
tions concerning the performance of the model,

• On which type of values of the target variable are cer-
tain errors (e.g. small errors) more frequent?

• Which type of errors does a model make for a certain
range of the target variable that is particularly impor-
tant in our application?

These questions could not be answered by standard error
statistics or even by looking at the REC curve of a model.

In spite of their advantages, REC surfaces are hard to
analyze when comparing different models. In effect, plotting
several surfaces on the same graph is messy and hard to
understand. In order to overcome this difficulty we have
presented partial REC curves and partial Y CDF’s that are
bi-dimensional representations of parts of the REC surface
of a model. These curves summarize the surface of a model
for a particular region of interest to us. Moreover, they allow
easy comparison of the performance of several models using
the same sort of analysis described by Bi and Bennet [1].

We have illustrated the concepts presented in the paper
through a concrete class of applications: the prediction of
rare extreme values. This is an important class of problems
where it is of key importance to analyze the performance of
models on particular types of values of the target variable.
We have shown how to use partial REC curves and partial
Y CDF’s with this purpose.

We hope that the analysis made possible by the use of
REC surfaces can provide insights on new forms of develop-

ing models that are tunned for a particular class of applica-
tions. In effect, we plan to explore the possibility of feed-
ing back the information resulting from analyzing partial
REC curves and partial Y CDF’s into the model construc-
tion phase, thus developing models that are more useful for
particular applications.

7. ACKNOWLEDGMENTS
This work was partially supported by FCT project MODAL

(POSI/SRI/40949/2001) co-financed by POSI and by the
European fund FEDER, and by the Faculty of Economics
of the University of Porto.

The author would also like to thank Foster Provost for
useful comments and suggestions on early stages of this work
during the author’s stay at Stern School of Business, NYU.

8. REFERENCES
[1] J. Bi and K. P. Bennett. Regression error characteristic curves.

In Proceedings of the 20th International Conference on
Machine Learning, 2003.

[2] J. P. Egan. Signal Detection Theory and ROC Analysis.
Series in Cognition and Perception. Academic Press, 1975.

[3] T. Fawcett. Roc graphs: Notes and practical considerations for
data mining researchers. Technical Report HPL-2003-4,
Hewlett Packard, 2003.

[4] F. Provost, T. Fawcett, and R. Kohavi. The case against
accuracy estimation for comparing induction algorithms. In
Proc. 15th International Conf. on Machine Learning, pages
445–453. Morgan Kaufmann, San Francisco, CA, 1998.

[5] R Development Core Team. R: A language and environment
for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2004. ISBN 3-900051-07-0.

[6] R. Ribeiro and L. Torgo. Predicting harmful algae blooms. In
F. M. Pires and S. Abreu, editors, Proceedings of Portuguese
AI Conference (EPIA’03), number 2902 in LNAI, pages
308–312. Springer, 2003.

[7] L. Torgo and R. Ribeiro. Predicting outliers. In N. Lavrac,
D. Gamberger, L. Todorovski, and H. Blockeel, editors,
Proceedings of Principles of Data Mining and Knowledge
Discovery (PKDD’03), number 2838 in LNAI, pages 447–458.
Springer, 2003.


