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Abstract
Fraud detection is a key activity with serious socio-
economical impact. Inspection activities associ-
ated with this task are usually constrained by lim-
ited available resources. Data analysis methods can
provide help in the task of deciding where to al-
locate these limited resources in order to optimise
the outcome of the inspection activities. This pa-
per presents a multi-strategy learning method to ad-
dress the question of which cases to inspect first.
The proposed methodology is based on the utility
theory and provides a ranking ordered by decreas-
ing expected outcome of inspecting the candidate
cases. This outcome is a function not only of the
probability of the case being fraudulent but also of
the inspection costs and expected payoff if the case
is confirmed as a fraud. The proposed methodol-
ogy is general and can be useful on fraud detection
activities with limited inspection resources. We ex-
perimentally evaluate our proposal on both an arti-
ficial domain and on a real world task.

1 Introduction
Fraud detection is a very important application domain that
has been addressed in several research areas (e.g. [Hand,
2002; Phua et al., 2005; Fawcett and Provost, 1997]). Due
to the intrinsic characteristics of fraudulent events it is highly
related to other research topics like outlier detection, anomaly
detection or change detection. The connecting feature among
these topics is the interest on deviations from “normal” be-
haviour that is more frequently observed. Depending on the
characteristics of the available fraud data different data min-
ing methodologies can be applied. Namely, when the avail-
able data includes information regarding each observation be-
ing (or not) fraudulent, supervised classification techniques
are typically used (e.g. [Ghosh and Reilly, 1994]). On the
contrary, in several domains such classifications do not exist
and thus unsupervised techniques are required (e.g. [Bolton
and Hand, 2001]). Finally, we may have a mix of both types
of data with a few labelled observations (e.g. resulting from
past inspection activities) and a large set of unlabelled cases.
These situations are often handled with semi-supervised ap-
proaches (e.g. [Nigam et al., 2000]).

Fraud detection usually involves two main steps: i) decide
which cases to inspect, and ii) the inspection activity in it-
self. The latter of these steps is frequently constrained by the
available resources, e.g. time, man power or financial. An
information system that is designed to support these activ-
ities should take this important aspect into account. These
systems are typically used in the first step - help in deciding
which observations should be inspected due to high suspi-
cion of fraudulent behaviour. It is in this decision process
that data mining can help by providing some guidance re-
garding the priorities for the posterior inspection activities.
Given a set of observations data mining systems can signal
which ones to inspect using data analysis techniques that de-
tect deviations from normality. Due to the low frequency of
fraudulent cases, this can be cast as an outlier detection task.
Most outlier detection methods produce a “yes/no” answer
for each observation. This type of methods is not adequate
for most fraud detection tasks due to the above-mentioned
limited inspection resources. In effect, such methods can lead
to solutions where there are too many inspection signals for
the available resources. If that occurs the user is left alone in
choosing which ones to address. In this context, we claim that
the methods should produce an outlier ranking instead. With
such result users can easily adjust the solution to their avail-
able inspection resources, with the guarantee that the most
“promising” cases are addressed first.

The way the ranking of the candidates is obtained may have
a strong impact on the optimisation of the inspection results.
Most outlier ranking methods produce ranks according to the
probability of being an outlier of the observations. Cases with
higher probability of being outliers appear on top positions
of the ranks. In this paper we claim that this approach may
lead to sub-optimal results in terms of optimising the inspec-
tion resources. In typical real world fraud detection applica-
tions the costs of inspecting a certain entity may vary from
case to case, and moreover, the payoffs of detecting a fraud-
ulent case may also vary. In other words the utility of the
fraudulent cases is different. Outlier ranking methods that
solely look at the probability of a certain case being or not
an outlier (i.e. being suspiciously different from normality)
do not take these costs and benefits into consideration. This
may lead to situations where case A is ranked above case B,
because it diverges more from normality, and yet case B if
detected would be more rewarding in the sense that it has a



more favourable balance between inspection costs and detec-
tion benefits. The main goal of this paper is to propose a fraud
detection methodology that takes the utility of detection into
account when producing inspection ranks.

The paper main contribution is the proposal of a general
approach to fraud detection in a context of limited inspection
resources. This approach can be seen as a form of multi-
strategy learning as it integrates several learning steps to meet
the application requirements.

2 Utility-based Rankings
The basic assumption behind the ideas described in this pa-
per is that fraudulent cases have different importance, differ-
ent inspection costs and different payoffs. Another obvious
assumption of our work is that inspection resources are lim-
ited. In this context, we claim that the support for the inspec-
tion decisions should be in the form of an utility ranking, i.e.
a ranking where top positions are occupied by cases that if
confirmed fraudulent will bring a higher reward.

Utility theory [von Neumann and Morgenstern, 1944] de-
scribes means for characterising the risk preferences and the
actions taken by a rational decision maker given a certain
probability model. This theory assumes we have knowl-
edge about the wealth associated with each possible decision.
Given this estimated wealth and a probability associated with
each alternative action to be taken, the decision maker uses
an utility function to map the wealth into an utility score. The
action/decision with higher utility is then selected by the de-
cision maker. Different utility functions exist in the literature
that map a wealth value into an utility score (e.g. [Friedman
and Sandow, 2011]).

Our proposal casts the decision of which cases to inspect
in the context of fraud detection into this utility theory frame-
work. In general terms our method is the following. Given a
set of potential candidates for inspection we start by estimat-
ing their probability of being a fraud. This is a “classical” out-
lier detection task. Additionally, for each of these candidates
we calculate their potential wealth as a function of estimates
of their inspection cost and payoff if confirmed fraudulent.
For each case there are two possible outcomes of inspection:
either the case is confirmed as fraudulent or not. We calculate
the wealth of each of these possible outcomes. Using an util-
ity function we can then calculate the utility of both possible
outcomes for each case. Together with the estimated prob-
ability associated to each outcome we finally reach an esti-
mated utility score of the case. Our proposal is to rank the
cases according to the decreasing value of these estimated
utilities and use this ranking to guide the inspection phase.
We thus propose to calculate the expected utility value of a
case as follows:

E[Ui] = P̂i · u(B̂i − Ĉi) + (1− P̂i) · u(−Ĉi) (1)

where P̂i is the estimated probability of i being a fraud, B̂i is
the estimated benefit (payoff) of case i if confirmed fraudu-
lent, Ĉi is the estimated inspection cost of case i, and u(.) is
an utility function.

In order to adapt this general formulation to our target ap-
plications we need to consider how to obtain the several esti-
mates that are mentioned in Equation 1. The estimate of the
probability that a case is a fraud can be obtained by any exist-
ing outlier detection method that is able to attach a probability
of being outlier to its results. In Section 3 we will describe
concrete systems that can be used to obtain these scores for
any set of cases. With respect to the estimated inspection
costs and payoffs (Ĉi and B̂i) the problem is slightly differ-
ent. These values are clearly application dependent. In this
context, we need some user-supervision to obtain these esti-
mates. This can take two forms: either by providing domain
knowledge that allows us to obtain these values, or by provid-
ing examples that we can use to learn a predictive model that
is able to forecast them. The second form is probably more
realistic in the sense that in most real-world fraud detection
tasks we will have access to a historical record of past inspec-
tion activities. These past data can be used as a supervised
data set, where for each inspected case we have information
on both the inspection costs and also on the outcome of the
inspection (either the payoff or the conclusion that it was not a
fraud). Using this training set we can obtain two models: one
that predicts the estimated inspection cost, and the other that
forecasts the expected payoff. Both are supervised regression
tasks. In summary, our proposal includes three learning tasks
that together provide the necessary information to obtain the
utility-based outlier rankings using Equation 1.

Algorithm 1 describes our proposed methodology in gen-
eral terms. Its inputs are (1) the historical data set (HistD)
with information on past inspection activities; and (2) the set
of candidate cases for inspection (InspCand). The practi-
cal implementation of the ideas in Algorithm 1 requires some
extra decisions. Namely, we need to decide which learning
tools are to be included in Steps 1 and 2 of the algorithm, and
also on the utility function to use. Note that our proposal is
independent of this choice, only requiring that the outlier de-
tection tool is able to attach a score in the interval [0, 1] to
each member of the set of candidate cases for inspection.

3 An Implementation of the Proposal
3.1 Predicting Costs and Benefits
The two tasks of predicting the inspection costs and the po-
tential benefits of an inspection are “standard” supervised re-
gression problems. In both cases we are trying to forecast a
continuous variable as a function of a set of predictors that
describe the case under consideration. This means that any
standard regression tool would be capable of handling this
task provided we have a training sample with both the values
of the target variable and of the predictors. Still, the problems
have some characteristics that may bias our choice of models
to use. Namely, the data concerning the benefits will have a
proportion of the learning sample with the value of zero on
the target. These are the past cases that after inspection were
tagged as non-fraudulent. This problem should not occur on
the task of predicting the inspection costs as every inspection
has some cost. Still, in both problems we can expect that we
will have a rather diverse range of values, and this is actually
one of the motivations for the work presented in this paper.



Algorithm 1 High-level description of the methodology.
1: procedure UOR(HistD, InspCand)

B where HistD = {〈x1, · · · , xp, C,B〉},
InspCand = {〈x1, · · · , xp〉},
and x1, · · · , xp are variables describing each case

B Step 1 - Train Cost and Benefit Prediction Models
2: DSC ← {〈x1, · · · , xp, C〉 ∈ HistD}
3: DSB ← {〈x1, · · · , xp, B〉 ∈ HistD}
4: Cmodel ← RegressionTool(DSC)
5: Bmodel ← RegressionTool(DSB)

B Step 2 - Obtain Outlier Probabilities for InspCand
6: P ← OutlierProbEstimator(HistD, InspCand)

B Step 3 - Estimate Utilities
7: for all i ∈ InspCand do
8: Ci ← Predict(Cmodel, i)
9: Bi ← Predict(Bmodel, i)

10: EUi = Pi · u(Bi − Ci) + (1− Pi) · u(−Ci)
11: end for

B Step 4 - Obtain utility ranking (solution)
12: return InspCand ranked by decreasing EUi

13: end procedure

In our experiments with the proposed method we will use
both regression trees and neural networks for illustrative pur-
poses. These are two methodologies with a rather different
approach and thus we expect this to be a good test of the ro-
bustness of the methodology to this choice.

3.2 Outlier Ranking
Our methodology also requires probabilities of being outlier
to be obtained. There are many existing outlier detection tools
that can be used to estimate these probabilities. Once again
we have selected two particular representatives to illustrate
our methodology in the experimental section.

The first approach we have selected is the method
ORh [Torgo, 2010]. This method obtains outlier rankings
using a hierarchical agglomerative clustering algorithm. The
overall motivation/idea of the method is that outliers should
offer more resistance to being merged with large groups of
“normal” cases and this should be reflected in the informa-
tion of the merging process of this clustering algorithm. The
ORh method calculates the outlier score (a number in the in-
terval [0, 1]) of each case as follows. For each merging step
i involving two groups of cases (gx,i and gy,i) the following
value is calculated,

ofi(x) = max

(
0,
|gy,i| − |gx,i|
|gy,i|+ |gx,i|

)
(2)

where gx,i is the group to which x belongs, and |gx,i| is that
group cardinality.

Each observation may be involved in several merges
throughout the iterative process of the hierarchical clustering
algorithm. Sometimes as members of the larger group, others

as members of the smaller group. The final outlier score of
each case is given by,

ORh(x) = max
i

ofi(x) (3)

In our experiments we use an implementation of this
method available in the R package DMwR [Torgo, 2010].

The second method we have used is the LOF outlier rank-
ing algorithm [Breunig et al., 2000]. LOF obtains an outlier
score for each case by estimating its degree of isolation with
respect to its local neighbourhood. This method is based on
the notion of local density of the observations. Cases in re-
gions of very low density are considered outliers. The esti-
mates of the densities are obtained with the distance between
cases. The authors define a few concepts that drive the algo-
rithm used to calculate the outlier score of each point. These
are: the (1) concept of core distance of a point p that is de-
fined as its distance to its kth nearest neighbour; the (2) con-
cept of reachability distance between the case p1 and p2 that
is given by the maximum of the core distance of p1 and the
distance between both cases; and the (3) local reachability
distance of a point that is inversely proportional to the aver-
age reachability distance of its k neighbours. The local outlier
factor (LOF ) of a case is calculated as a function of its local
reachability distance.

In our experiments with LOF we have used a R implemen-
tation of this method available in package DMwR [Torgo,
2010]. Please note that the scores produced by LOF are not
in the interval [0, 1] so we have used a soft max scaling func-
tion to cast these values into this interval.

We should remark that neither the scores obtained by ORh

and LOF can be considered as “proper” probabilities. Still,
they lead to values in a [0, 1] interval and we can look at
them as badly calibrated probabilities of being outlier. We
should expect better results with more reliable estimates of
these probabilities.

4 Experimental Evaluation
4.1 Artificially Generated Data
In this section we present a set of experiments1 with artifi-
cially created data using an implementation of Algorithm 1.
The goal of these experiments is to test the validity of some of
our assumptions and also to observe the performance of the
proposal on a controlled experiment.

We have generated a data set with the following proper-
ties. For easier visualisation we have described each case by
two variables, x1 and x2. Two well-separated clusters of data
points were generated, each containing some local outliers,
though on one of them these outliers are more marked. The
idea here is that any outlier ranking method would easily be
able to rank these outliers on top positions, but the ones that
are more marked should appear on higher ranking positions.
For all data points we have artificially generated costs and
benefits of their inspection. We have done so in a way that
the cluster containing the less evident outliers brings a higher
utility by having significantly higher payoffs for fraudulent

1All code and data available at http://www.dcc.fc.up.
pt/˜ltorgo/IJCAI11



cases, though with a higher inspection cost. Figure 1 shows
the resulting data formed by 2200 randomly generated data
points following the general guidelines just described.
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Figure 1: The Artificial Data Set.

The payoffs were set to zero for cases that we have con-
sidered non-fraudulent. We have chosen these cases to be the
ones near the centre of the two clusters. More specifically,
cases for which (0 < x1 < 100 ∧ 0 < x2 < 100) ∨ (900 <
x1 < 1100 ∧ 900 < x2 < 1100) is true. Still, all cases, even
non-fraudulent, have an inspection cost.

We have randomly selected 20% of these data to be the set
for which we want to obtain an inspection priority ranking
(i.e. a kind of test set). For this test set the information on the
cost, payoff and utility was hidden from our algorithm. They
are to be estimated by the regression models included in our
methodology (lines 8-9 in Algorithm 1).

Looking at the characteristics of the above artificial prob-
lem we would want our algorithm to include the outliers near
Cluster 2 as the top priority cases for inspection as these will
bring the higher rewards, i.e. are more useful in terms of opti-
mising the inspection resources. Moreover, our hypothesis is
that most standard outlier ranking methods will fail to achieve
this goal and will put the outliers nearer Cluster 1 on top po-
sitions as these are more obviously deviating from the main
(local) bulk of data points.

Although this is an artificially created data set we have tried
to include properties of real world applications. In effect, if
we think for instance of the scenario of detecting tax frauds,
we can see that within this high impact application there are
also marked clusters of tax payers with rather different char-
acteristics (e.g. due to different economic activities). It is also
easy to imagine that for these different groups of tax payers
the inspection costs and eventual payoffs, if confirmed fraud-
ulent, can be rather diverse. For instance, on low income pro-
fessionals we could imagine a smaller inspection cost due to
the their simpler economic activity, and also a lower poten-
tial reward caused by the small monetary values involved in
their activity (these are properties similar to points in Cluster
1). On the other hand, tax payers with a very high income
(e.g. large companies) would probably involve a more com-
plex (and thus costly) inspection phase, but if found fraudu-

lent would also potentially bring a much higher payoff (Clus-
ter 2 situation). In summary, we think this artificial scenario is
a simplified version of some highly relevant real world appli-
cations of fraud detection constrained by limited inspection
resources.

We have applied an implementation of our algorithm to this
problem. We have tested it using different setups regarding
the learning components. Namely, we have used both a re-
gression tree and a neural network as supervised regression
learners, and both the ORh and LOF algorithms as outlier
probability estimators. Figure 2 shows the results of two of
the tested combinations: (1) regression trees with ORh and
linear utility (u(w) = w); and (2) neural nets with LOF and
also linear utility. We have also tested the methodology with
other combinations of these components, like for instance a
power utility function (u(w) = w1−k−1

1−k , with k = 0.2). The
results with the other tested combinations were qualitatively
similar to these so we omit them for space reasons.

Figure 2 includes information on the top 20 cases accord-
ing to two different rankings. The first is obtained by look-
ing only at the probabilities of being outlier produced by the
outlier ranking method (ORh in one case and LOF on the
other). The second is the ranking obtained with our utility-
based methodology. As we can observe in both setups the
results provide clear evidence that our proposal is able to pro-
duce a ranking more adequate to the application goals, i.e.
better optimise the inspection resources. In effect, while most
of the top positions of the standard outlier rankers belong to
Cluster 1, our method ranks at top positions mostly outliers
of Cluster 2. These are the cases that provide a larger pay-
off. We have confirmed this by calculating the total balance
of both rankings if we inspect their respective top 20 sugges-
tions. The scores are shown in Table 1.

Regr.Tree+ORh+linearU NNet+LOF+linearU
UOR(ORh) P̂ (ORh) UOR(LOF ) P̂ (LOF )

Costs 190 687.8 4 719.9 118 089.6 15 037.5
Benefits 423 566.6 5 140.7 260 907.3 26 172.1
Utility 232 878.8 420.7 142 817.7 11 134.7

% Util. Gain 55 243.9% 1 182.6%

Table 1: Net Inspection Results.

The results shown in Table 1 reveal an overwhelming dif-
ferent in net results of the inspection activity if we follow
either the advice of a standard outlier ranking method (P̂ ) or
our proposed utility-based outlier ranker (UOR).

4.2 Foreign Trade Transactions
In this section we describe an application of our methodology
to a real world domain. This domain consists on trying to
detect errors and/or frauds in foreign trade transaction reports.
The data was provided by a national institute of statistics and
consists of information regarding these reports that describe
transactions of companies with foreign countries. Due to the
impact that errors and/or frauds on this database can have on
official statistics it is of high relevance to detect them. At
the end of each month the institute faces the task of trying to
detect these problems on the reported transactions that cover
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Figure 2: Results with the Artificial Data Set.

a wide range of rather diverse products. There are varying
but limited human resources allocated for this task. In this
context, it is of high importance to allocate these resources to
the “right” reports. Given the diverse range of products the
impact of error/frauds on official statistics is not uniform due
to the amounts involved. This impact is a function of both the
unit price of the product in question but also of the reported
quantity involved in the transaction.

Among the information in the transaction reports, domain
experts recommend the use of the cost/weight ratio as the
key variable for finding suspicious transactions. According
to these experts transactions of the same product should have
similar cost/weight ratio. The available data set contains
around 410 000 transaction reports concerning 8 months and
covering a wide range of products. The information of past
inspection activities on these transactions is rather limited. In
effect, the sole information we have is a label on transactions
that were found to be errors. We do not have any informa-
tion on transactions that were inspected but found correct nei-
ther on the corrected values for transactions labelled as errors.
This limited information creates serious difficulties for apply-
ing our methodology because we assume a relatively rich set
of information on prior inspection activities.

According to domain experts the inspection cost of each
report is roughly constant and was set to 150 Euros (approx-
imately 2 hours of work). This means that we do not need a
prediction model to estimate this cost. Regarding the bene-
fits we do not have any information on past corrections so we
can not build a training set to obtain a model for predicting
benefits. However, we can try to estimate the benefit of in-
specting a certain transaction report by confronting the values
in the form with the expected values for transactions of the
same product. The difference between the two can provide
us with clues on the eventual corrections that are necessary to
the report and thus on the benefit of the correction in mone-
tary terms. For instance, if we have a transaction of 1000 Kg
of product A with a reported cost/weight ratio of 10, and we

observe that the typical cost/weight of this product is 4 then
if we decide to inspect this transaction and confirm it as an
error the benefit can be approximated by (10− 4)× 1000. In
summary, in the application of our method to this problem we
have used a constant value of Ĉi = 150, and have estimated
the benefit of a detection, B̂i, as |c/wi − c̃/w| × wi, where
c̃/w is the median cost/weight of the past transactions of the
same product, and wi, c/wi are the weight and cost/weight
reported in transaction i, respectively.

Our experimental analysis follows the procedure used in
the institute of analysing each month data independently. We
also analyse each product transactions independently, given
the rather diverse prices involved. Given the transactions of
a product in a month we calculate the expected utility of in-
specting each of the transactions using our method, according
to the procedure explained above concerning the estimates of
costs and benefits. Using the estimated utilities for all transac-
tions of all products in the current month we obtain an utility-
based ranking of that month transactions.

This ranking of the transactions of a month obtained using
our methodology was compared to the ranking of the same
transactions obtained using solely the probabilities of being
outlier, i.e. not taking into account neither benefits nor costs.
The comparison was carried out for different inspection effort
levels. Namely, for inspecting the top 10%, 15%, · · · , 30%
transactions of the month, according to each ranking method.
So for inspection effort x% we compare the top x% cases ac-
cording to the two rankings. This is done by calculating the
net utility in the respective x% set of cases for each of the
rankings. The net utility is given by the sum of the benefits of
the cases in the set that have the error label set (i.e. the ones
experts told us that are errors), subtracted by the total inspec-
tion cost (i.e. 150× ‖set‖). Comparing the net utility values
of each of the two rankings we obtain % gain in utility of our
proposal over the simple probability of outlier rankings. This
comparison was carried out twice for each of the two meth-
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Figure 3: Results with the Foreign Trade Transactions Data Set.

ods that we considered to estimate these probabilities: LOF
and ORh. Figure 3 presents the results of these experiments.
The lines on each graph represent the % utility gain of our
method over the respective outlier probability ranking (results
are shown on log scale for better visualisation), for different
inspection effort levels. Once again we have observed a clear
superiority of our rankings in terms of the net results of the
inspection activities. In effect, in all setups the % utility gain
is positive. We have also observed that our advantage tends
to decrease for larger inspection efforts, which is expectable.
Moreover, the advantage also holds across the two alternative
outlier probability estimators.

5 Conclusions
We have presented a new methodology for supporting fraud
detection activities. The main distinguishing feature of this
method is its focus on trying to optimise the available inspec-
tion resources. This is achieved by producing an inspection
ranking that is ordered by decreasing expected utility of the
posterior inspection. We use the theoretical framework pro-
vided by Utility Theory to integrate several learning steps that
obtain probabilities of being outlier and also forecast the ex-
pected inspection costs and resulting payoffs.

We have presented a series of experimental tests of our pro-
posal with both artificially created data and a real world fraud
detection application. These experiments provide clear evi-
dence of the advantages of our proposal in terms of the opti-
misation of the available inspection resources.

Further work should focus on investigating the contribu-
tions of the different steps of our methodology as well as the
exploration of different variants in its components.
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