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ABSTRACT
Research on time series forecasting is mostly focused on
point predictions - models are obtained to estimate the ex-
pected value of the target variable for a certain point in
future. However, for several relevant applications this type
of forecasts has limited utility (e.g. costumer wallet value
estimation, wind and electricity power production, control
of water quality, etc.). For these domains it is frequently
more important to be able to forecast a range of plausi-
ble future values of the target variable. A typical example
is wind power production, where it is of high relevance to
predict the future wind variability in order to ensure that
supply and demand are balanced. This type of predictions
will allow timely actions to be taken in order to cope with
the expected values of the target variable on a certain future
time horizon. In this paper we study this type of predictions
- the prediction of a range of expected values for a future
time interval. We describe some possible approaches to this
task and propose an alternative procedure that our exten-
sive experiments on both artificial and real world domains
show to have clear advantages.
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1. INTRODUCTION
Time series forecasting is a key modeling technique in

many real world applications. One of the goals of developing
time series models is to obtain predictions of the future val-
ues of the series. The most common form of predictions are
the so-called point predictions - at time t try to forecast the
value of the series for time t+ h, where h is the forecasting
horizon. However, some applications require a different type
of forecasts. Namely, users may be interested in obtaining
an interval of plausible values for time t+h. Moreover, other
applications may even require this type of interval of values
for a certain future interval of time [t + h, t + h + k]. We
will call this latter type of predictions 2D-interval predic-
tions where the goal is to forecast the expected interval of
values of the time series for a certain future time interval.
How to handle these 2D-interval predictions is the subject of
this paper. Figure 1 briefly describes the differences between
these three types of forecasts.

Existing work on time series forecasting essentially focus
on (i) point predictions (e.g. [6]), (ii) on predicting an inter-
val where the future value is expected to be with a certain
probability (e.g. [5]), or even (iii) on generalizing the lat-
ter to density forecasts [16]. To the best of our knowledge
there is no established method for forecasting an interval of
values for an interval of time. Addressing this limitation is
the main goal of this paper. The lack of a method to han-
dle these problems is rather surprising given the amount of
relevant applications that could benefit from this type of pre-
dictions. For instance, any application requiring some form
of production planning for a certain demand scenario, will
find this type of predictions of high utility. This includes ar-
eas like manufacturing in general, energy production, water
distribution, etc. For example, in wind power production it
is important to predict the future wind variability in order
to ensure that supply and demand are balanced [3, 18]. In
power production it is common to place bids for the future
production. In this context, the forecast of the future wind
variability must be accurate not to receive a penalty from
any deviation between production and demand. To make
optimal decisions, a model that is able to predict the quan-
tiles of the distribution gives much more information than
single point predictors [3]. Similar problems are faced in
electricity markets, where it is more important to predict
the interval of demand than a single value [17]. In inven-
tory management, over-production may lead to inventory
costs while under-production may originate unsatisfied de-
mand and lost profits [4]. Other relevant application areas
include customer wallet estimation [14] or computer network
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Figure 1: Three types of time series prediction tasks.

traffic analysis [21]. Several investment-related applications
(e.g. financial markets) will also find this type of forecasts
of great use.
From a theoretical perspective we are talking about fore-

casting the distribution of the values of the target time series
variable for a future time window. The key difference from
existing work on density forecasting (e.g. [16]) is the fact
that we want to estimate a density for a time interval and
not for a single point in time. The applicability to real world
scenarios motivates this difference. In this work we restrict
this general scenario to the prediction of some descriptive
statistics of this distribution. Namely, we will focus on fore-
casting a kind of interval of “normality” of the values of the
series for a certain future time interval. We will represent
this interval of normality by the 1st and 3rd quartiles of the
variable distribution, though our proposal could be applied
to any quantile.
The main contributions of our work are: (1) to increase

the awareness of the data mining community to a high-
impact task that was not addressed before; and (2) to pro-
pose a general method for addressing this class of time series
forecasting problems. In the context of the presentation of
our proposal we describe an extensive set of experiments
that we have carried out to demonstrate the validity of our
approach under a wide range of scenarios.

2. PREDICTING 2D-INTERVALS
A 2D-interval is a range where the values of the time series

are expected to be included in a future time window with
high probability (c.f. Figure 1). The goal of this concept is
to provide the user with a plausible range of values of the
time series in this future period. It is thus a form of summary
statistic of the unknown future distribution of the values of
the series for the target forecasting horizon. We will address
this general problem by simplifying it into predicting the
1st and 3rd quartiles of this unknown distribution. These
two statistics provide us with an interval where a significant
number of the values should be contained (assuming a near-
normal distribution of the values of the target variable).

2.1 Possible Approaches to the Problem
As mentioned before, we are not aware of any existing

approach to the 2D-interval prediction problem. Neverthe-
less, we can try to apply the existing time series forecasting
techniques to obtain this type of forecasts.
Point estimates can be iterated to obtain predictions for

more than one point in the future (known as iterated pre-
dictions e.g. [6]). At time t we obtain a prediction for time
t + 1. This prediction can be incorporated into the train-
ing data available to the model as if it was true, and a new
step ahead prediction can be obtained, which in effect would

correspond to a prediction for time t + 2. These iterations
can continue until we get a point prediction for all the fore-
casting interval. Using these predictions we can obtain the
statistics we want to have a 2D-interval forecast. This is
a simple approach that can be applied to any existing time
series modeling technique. The main drawback of this strat-
egy is that by incorporating the one-step ahead predictions
into the training data we are potentially amplifying the pre-
diction errors of the models.

Another plausible approach to our problem is to decom-
pose it into several prediction tasks. If we want a 2D-interval
for a time window of k steps in the future, then we can trans-
form this into k prediction tasks with each being addressed
by a different model designed to obtain a point prediction
for t + i, where i ∈ [1, k]. Given these k models, to obtain
a 2D-interval forecast at time t we use the k models pre-
dictions and calculate the necessary statistics to obtain the
interval. The main drawback of this approach is the compu-
tational cost of obtaining k different models. This may be a
critical issue with high-frequency data as it is often the case
in time series problems.

Finally, we will also consider a naive approach as a kind
of baseline method. A 2D-interval forecast at time t for the
interval [t+ 1, t+ k] can be obtained by using the statistics
calculated with the known values of the series in the interval
[t−k, t]. This can be regarded as a kind of random walk ap-
proach to our problem and we will expect other alternatives
to clearly outperform this baseline method.

2.2 Our Proposal
In order to obtain 2D-interval predictions we propose to

directly forecast some summary statistics of the distribu-
tion of the time series values for the target future time win-
dow. Let Qk

α and Qk
β be the α and β unknown quantiles of

the time series values for a future time window of length k,
respectively. These two values establish an interval where
|β − α| × 100% of the series values are supposed to be in-
cluded. Assuming a near normal distribution of the values
of the target variable the interval between the 1st and 3rd
quartiles (Q0.25 and Q0.75) will contain roughly 50% of the
values of the series. We will use the predicted values for
these two distribution statistics as the source for obtaining
2D-interval predictions. This means that we will directly
forecast these quantile statistics instead of calculating them
from predictions of the target time series. Our proposal is
thus to define two prediction problems Qk

α = f(v1, · · · , va)
and Qk

β = f(v1, · · · , va), where v1, · · · , va are a set of de-

scriptor variables, and Qk
α (Qk

β) is the α (β) quantile of the
time series variable for the next k time points, i.e. the es-
timated quantile for the time interval [t, t + k]. In order
to be able to obtain models to forecast these quantiles we



need to have a set of training data where these values are
known. Thus for “preparing” the training sample at time
t we will need information on both the selected predictor
variables but also on the target time series values in the pe-
riod [t + 1, t + k], where k is the time length of the target
2D-intervals.
The methods presented in Section 2.1 are all based on pre-

dicting the value of the target time series for a future time
interval. This is done either by iterated predictions or by
obtaining several different models. Either way it is based
on these predictions that we calculate the summary statis-
tics to obtain the 2D-intervals. In our approach we directly
predict these statistics. We claim that this is an easier pre-
diction task as quantile statistics have a distribution that
is smoother than the original variables from which they are
calculated. In effect, quantiles are known to be robust to a
few extreme values, thus smoothing-out these variations on
the original time series. This means that the distribution of
the quantile variables that we use as targets is clearly more
“well behaved” than the distribution of the original series.
We expect this to bring an advantage to our proposal, be-
cause it should simplify the task of obtaining 2D-intervals.
The experiments described in Section 3 are designed to test
this hypothesis.
The choice of the predictor variables v1, · · · , va is not part

of our proposal. They should be selected with the goal of
trying to optimize the performance of the selected modeling
tool in the task of forecasting the target variable. This deci-
sion is not different from what is necessary on any other time
series prediction task. Our proposal only changes the target
variable. In our experiments we will include as predictors
recent past values of the time series and also past values of
some distribution statistics as we will see in Section 3.

3. EXPERIMENTAL EVALUATION
In this section we evaluate our proposed method for ob-

taining 2D-interval predictions under a large set of exper-
imental setups. The main goal of these experiments is to
check the validity of the hypothesis that directly predicting
the quantile statistics is a better method of obtaining inter-
vals of variation of a time series for a future time window.
All code, data and extra results not fitting here are provided
in a web page1 associated with this paper, to ensure that our
work is replicable.

3.1 Experimental methodology

3.1.1 Models
We have tried to select a wide range of modeling ap-

proaches to test our method. The idea is to confirm its
validity independently of the technique used to forecast the
Qk

p quantiles. All the used tools are freely available in the
R software environment [15], which ensures easy replication
of our work. The following is a list of the methods used in
our experiments:

Random Walk (RW) - a simple baseline method that uses
the quantiles estimated with the last k time series val-
ues as predictions for the quantiles of the next k time
points;

1http://www.dcc.fc.up.pt/∼ltorgo/KDD11

Regression Trees (RT) - a regression tree (e.g. [1]) based
on the R package rpart [19]. In our experiments we
have used an interface to the rpart function provided
in package DMwR [20] and have tried 4 different variants
by using the parameter se that controls the level of
pruning with values 0, 0.5, 1 and 1.5.

Support Vector Machines (SVM) - an implementation
of SVMs (e.g. [7]) available in the R package e1071 [8].
We have tried 20 variants by using the parameter cost
with the values 1, 5, 10, 50, 100 and the parameter gamma
with the values 0.001, 0.01, 0.05 and 0.1.

Random Forest (RF) - an implementation of random
forests [2] available in the R package randomForest

[11]. We have used 3 variants of the parameter ntree
with the values 500, 1000 and 1500.

Quantile Regression Forests (QRF) - a random forest
variant [12] designed to optimize the prediction of quan-
tiles. We have used the implementation of these mod-
els available in the R package quantregForest [13].
We have tried 3 variants of the parameter ntree with
the values 500, 1000 and 1500.

3.1.2 Evaluation Metrics
There is an extensive literature on evaluation metrics for

single point prediction models. Most measures compare the
true and predicted values and eventually contrast the perfor-
mance of the model being evaluated against some baseline.
Our prediction task is different as we have mentioned before.
We are addressing the prediction of a 2D-interval by means
of the 1st and 3rd quartiles, which means there are some sim-
ilarities with the goals of quantile regression [10]. However,
in quantile regression the goal is to obtain point predictions
of the quantiles. The evaluation of quantile regression mod-
els is usually carried out with the help of Equation 1. It can
be easily shown that the value of Lα(y, ŷ) is optimized by
predicting the quantile Qα (i.e. ŷ = Qα).

Lα(y, ŷ) =

{
α · (y − ŷ) ify ≥ ŷ
(1− α) · (ŷ − y) otherwise

(1)

In this context, if we want to estimate the values of Q0.25

and Q0.75 for a certain period of time k we can evaluate
the predictions of our models (Q̂k

0.25 and Q̂k
0.75) using Equa-

tion 1, given the true target variable values yt+1, · · · , yt+k.
Moreover, if we are given a test set we can calculate the
total quantile error (TQE) of our 2D-interval predictions as
follows,

TQE =
n∑

i=1

[
i+k∑
j=i

L0.25(yj , Q̂
k
0.25,i) +

i+k∑
j=i

L0.75(yj , Q̂
k
0.75,i)

]

(2)

where Q̂k
α,t is the α quantile prediction for the future k-

length interval starting at time t.
We have also compared our alternative models using the

mean absolute quantile (MAQ) deviation of the model pre-
dictions, i.e.

MAQ =
1

2n

[
n∑

i=1

|Qk
0.25,i − Q̂k

0.25,i|+ |Qk
0.75,i − Q̂k

0.75,i|
]

(3)



Table 1: Benefit matrix.
low normal high

ˆlow 2 -1 -2
ˆnormal -1 1 -1
ˆhigh -2 -1 2

This evaluation metric can be easily obtained by calculat-
ing the observed 2D-interval quantiles and comparing these
with the predictions of our models. This statistic will mea-
sure the average absolute error of our quantile predictions
when compared to the true observed quantiles.
The real world applications that we target with this pro-

posal of 2D-interval predictions have some particularities
that are not completely captured by the statistics of Equa-
tions 2 and 3. Namely, there are usually costs and benefits
associated with the predictions of the models. In effect, the
predicted intervals are frequently used to carry out some ac-
tions (e.g. production planning) that may result in costs or
benefits depending on the accuracy of the predictions. We
will also evaluate the 2D-interval predictions taking these
factors into account. The predicted intervals divide the val-
ues in three classes: unusually high or low values, and nor-
mal values that are within the intervals. This means that
given the predictions Q̂k

0.25 and Q̂k
0.75 we can discretize the

series values into these three classes. Accordingly, we can
look at the observed values in the k-length interval and cal-
culate the real Qk

0.25 and Qk
0.75 values. Using these values

we can calculate the true class labels of each value in the k
period. Elkan [9] has established the theoretical grounds for
cost-sensitive learning. The proposed framework is based on
the concept of benefit matrix. This matrix sets the benefits
of all accurate predictions, as well as the costs (negative ben-
efits) of the errors. We will also use this setup to evaluate
the 2D-interval predictions of our models. We discretize the
continuous values of the target time series using the method
described above and then calculate the Utility of the pre-
dictions as the total sum of benefits using the matrix in
Table 1.

3.2 Experiments with Artificial Data
The first set of experiments that we will describe involves

the use of artificially created data sets. The goal was to test
our hypothesis on a diverse range of time series with different
dynamic regimes. Figure 2 shows the seven artificial time
series we have generated and used in our experiments, each
with 3000 values2. The gray lines on each graph try to
describe the type of regimes in terms of trend and variability
that have guided the generation process. As you can observe
these series have rather different dynamic regimes in terms
of these two important properties.
We have applied the models described in Section 3.1.1 to

these 7 problems, using the 3 alternative methods for ob-
taining 2D-intervals. Our goal is to check which is the best
method for obtaining this type of predictions: (i) iterat-
ing the model over the k window; (ii) obtaining k different
models; or (iii) our proposed method of predicting directly
the distribution statistics defining the intervals. For each
experimental setup, we have estimated the values of the 3
evaluation metrics (TQE, MAQ and Utility) described in

2The R code used to generate the data sets as well as the
data sets themselves, are available at the paper web page.

Section 3.1.2 using a Monte Carlo simulation. Namely, we
have randomly selected 10 time points within each data set.
For each of these 10 points we have used the previous 365
values of the series to obtain the models that were then used
to make 2D-interval predictions for the next 90 points using
a sliding window approach. At each of these 90 prediction
points the goal was to estimate the 2D-interval for a future
time window of 10, 20 and 30 time points. The results we
present for these 3 different values of k (the time length of
the 2D-intervals) are averages over these test sets with 90
points, on the 10 Monte Carlo repetitions (i.e. at randomly
selected points of the full time series).

The goal for all alternatives is to obtain an estimate of the
1st and 3rd quartiles for the target time intervals (k = 10, 20
and 30). However, depending on the approach followed,
these estimates are obtained using a different method as ex-
plained in Section 2. Still, all alternatives will use the same
predictor variables that were selected with the goal of try-
ing to provide useful information on the recent dynamics of
the time series and also past values of k-length descriptive
statistics. The used prediction tasks are described by the
following general equation,

TGT = f(Yt−1, · · · , Yt−10, Q
−k
0.25,t, Q

−k
0.75,t, Ȳ

−k, σ−k
Y ) (4)

where Q−k
α,t is the value of the α quantile calculated using the

past k values of the series at time t, Ȳ −k is the average time
series value on the same past window, σ−k

Y the respective
standard deviation, and Yt−1, · · · , Yt−10 are the last 10 val-
ues of the series. The target variable (TGT ) will be different
depending on the approaches. For the iterated predictions
this will be the next value of the series, Yt+1. For the k
models the targets will be Yt+i where i ∈ [1, k] for each of
the k models. For our proposal there will be two models,
one predicting the 1st quartile on the 2D-interval, Qk

0.25,t,

and the other the 3rd quartile, Qk
0.75,t.

All model variants were given exactly the same data in the
context of the Monte Carlo simulation, with the exception
of the target variable. Given the large set of experimental
setups (3 metrics, 7 problems, 3 values for k) we can not
afford to present all results given the space restrictions ap-
plicable. Nevertheless, we can confirm that in all setups we
have observed a similar pattern of results/conclusions. The
full experimental results can be checked at the Web page
associated with the paper.

Figure 3 shows the results for 3 different setups. We have
selected one graph for each series, metric and interval length.
The graph on the left shows the TQE scores of all model
variants on the first time series when predicting a 2D-interval
of length 10. The results of the models are grouped in three
batches, one for each different approach we are comparing:
the iterated approach (“iterated” on the graphs), the use
of several models (“k-models” on the graphs), and our pro-
posal of directly predicting the quantiles (“quantiles” on the
graphs). For each of these batches we show the results of
all model variants described before. A vertical dashed line
marks the best score on each graph and the result of the
baseline RW model is given as a sub-title of the graphs.
The middle graph shows the same type of results this time
for the MAQ metric, 4th time series and k = 20, while the
graph on the right presents the results in terms of Utility on
the 7th series for k = 30. Note that while for the first two
metrics lower scores are better, for utility it is the opposite.



Figure 2: The seven artificial times series problems.

TQE for Series=1, k=10

0 10 20 30 40

RW score=127

qu
an

til
es

ite
ra

te
d

k−
m

od
el

s

MAQ for Series=4, k=20

0 2 4 6 8

RW score=36
qu

an
til

es
ite

ra
te

d
k−

m
od

el
s

Utility for Series=7, k=30

0 5 10 15 20

RW score=−6

qu
an

til
es

ite
ra

te
d

k−
m

od
el

s

QRF RF SVM RT

Figure 3: The results on three different experimental setups for the artificial time series.

We have observed that the “k-models” and “quantiles” ap-
proaches have rather similar results on these problems. Still,
when there is some slight difference this is more frequently
favorable to our approach. The “iterated” approach on the
contrary is most of the times the worst in terms of scores,
although all models typically outperform the baseline RW
model, as expected. This pattern of results is similar over
all experimental setups we have tried with these 7 problems.
These results show that the prediction accuracy of our ap-
proach is highly competitive with the existing alternatives.
Moreover, these scores are obtained with a significant advan-
tage in terms of computational efficiency. In effect, while our
approach requires two models to be obtained (one for each
quantile), the “k-models” approach requires as many models
as the length of the interval, i.e. k models. This is a sig-
nificant difference as shown in Figure 4. This figure shows
the ratio between computation time of “k-models” over our
approach. We can observe that, depending on the size of the
interval, the“k-models”approach can take from 5 to 30 times
more time to be obtained. On dynamic environments where
new data is constantly being collected, eventually requiring
new models to be obtained, this margin can be rather signifi-
cant. We do not show the results for the “iterated”approach
as they are essentially similar to our proposal.

Summarizing, the experiments on these artificial problems
show that our proposal is able to achieve a rather competi-
tive prediction accuracy with a significantly smaller compu-
tational cost.

3.3 Experiments with Real World Data
The first real world application of 2D-intervals we describe

is related with water quality control in the distribution net-
work of the metropolitan region of Porto, Portugal (serving
roughly 1 million people). The company (AdDP) that man-
ages this network has legal limits that must not be reached
for several water quality parameters that are monitored.
With the goal of avoiding the danger of crossing these limits
(and paying the respective high fines) the company inter-
nally establishes tighter limits that if broken generate an
alarm that leads to several control actions over the network.
These actions have associated costs and thus having these
internal limits too tight will lead to a high operational cost
of the network. However, having wider internal limits, pos-
sibly too near the legal ones, will increase the risk of when
the alarms are fired being too late for the control actions
to have any effect to avoid breaking the legal limits. This
means that establishing the intervals of acceptable (normal)
values of a large set of water quality parameters is a problem
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Figure 4: The relative computation times of “k-
models” vs “quantiles” on the 7 artificial time series.

with high socio-economical impact for the company and the
region. The company is aware of the fact that these inter-
vals that establish a range of normality for each parameter
change along the year as the rivers from where the water
is collected are very dynamic and change a lot during the
seasons of the year. This means that this notion of nor-
mal parameter values is dynamic, though the legal limits
are fixed.
The AdDP company has provided us daily data concern-

ing a large set of water quality parameters along several
years (2000 till 2008). In this paper we focus on the task of
trying to forecast a 2D-interval of normal values for a small
set of parameters (pH, iron, turbidity and aluminium) us-
ing this data set. This is a task similar to the ones described
in Section 3.3. The interval of “normal” values can again be
approximated by the expected 1st and 3rd quartiles on a fu-
ture time window, i.e. a 2D-interval. We have used exactly
the same prediction tasks and predictors as in the artificial
problems (c.f. Equation 4). However, following the com-
pany requirements, we have only applied our method for a
2D-interval of 30 days (i.e. k = 30).
The results we report are again estimates of the 3 evalu-

ation statistics using 10 repetitions of a Monte Carlo sim-
ulation. We have used the previous 365 values of each of
the four time series and tested the models along a 90 days
window, again using a sliding window approach.
Figure 5 shows the results for 3 different setups using the

same schema as before. On the left graph we have the TQE
scores for the Iron time series. The central graph illus-
trates the results in terms of MAQ for the pH parame-
ter, while the right-most graph shows the Utility results for
Turbidity. The overall pattern is similar to the results on
the artificial problems. The “iterated” approach is clearly
the worst method, while our approach and “k-models” get
similar scores. Still, compared to the results on the artificial
data, we observe a more marked advantage of our proposal.

The exception is the QRF model variants where the “k-
models” approach achieves better results whilst not the best
overall scores.
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Figure 6: The relative computation times of “k-
models” vs “quantiles” on the water quality control
problem with k = 30.

In terms of computation times the results are show in
Figure 6. Again we observe a significant overhead of the
“k-models” approach when compared to our proposal.

The second real world problem concerns again a water
distribution network, this time in the south of Spain. The
problem here is related to production planning in order to
face the varying demand in terms of water consumption.
We have hourly data concerning the water consumption in
a residential area of the water distribution network from Jan,
2005 till Apr, 2005. Our goal is to forecast a 2D-interval for
the next 12 and 24 hours (values of k). The distribution of
the water demand has very marked seasonal properties not
only along the different periods of the day, but also across
similar weekdays. Because of this we use a slightly different
approach in terms of predictors with the goal of providing
the models with information on this weekly seasonal effects.
For k = 12 we have used the last 6 values of the demand (last
6 hours), the same information as on previous problems re-
gards the quartiles, mean and standard deviation on the past
k values, but also the quartiles that we want to forecast mea-
sured in the previous week (i.e. on the same weekday/hour)
to provide information on this observed weekly seasonality.
In the case of k = 24 we have increased the number of past
values of the series from 6 to 12, while the other predictors
stayed the same.

Regards the experiments we have used again 10 random
repetitions of a Monte Carlo simulation this time with a
training window of 1344 values (8 weeks) and a test win-
dow of 336 values (2 weeks), for which predictions were ob-
tained using a sliding window approach. The size of the
2D-intervals (k) was set to 12 and 24 hours.

The results of 3 different setups of these experiments are
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Figure 5: The results on the water quality control problem.

show in Figure 7. The pattern of results is similar to the one
observed in the water quality problems. Both “k-models”
and our approach have similar results with a slight advan-
tage of our method, while the “iterated” approach clearly
lags behind. Once again we have observed that the QRF
models achieve better results with the “k-models” approach.
We should note that the Utility score is particularly relevant
for this type of applications where serious mistakes may have
significant financial costs.
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Figure 8: The relative computation times of “k-
models” vs “quantiles” on the water consumption
problem.

In terms of computation times the scores are shown in Fig-
ure 8, and reveal the same type of advantage of our proposal
over the “k-models” alternative.

4. CONCLUSIONS
This paper has described 2D-interval predictions, a class

of time series tasks with a high relevance for several appli-
cation domains. To the best of our knowledge there is no
established methodology to handle these problems across the
several disciplines that address time-dependent data. The
main goals of this paper were: (i) to raise the awareness of
the data mining community to these relevant problems, and
(ii) to propose a new methodology to address these tasks
that can be used with any time series modeling technique.
The proposal consists in directly predicting the distribution
statistics for the target time interval, which allows for in-
stance to obtain a range of plausible values for this period.

We have described our proposal and have carried out an
extensive set of experiments designed with the goal of check-
ing the validity of the proposal when compared to existing
alternatives. This comparison was carried out from two per-
spectives: (i) the perspective of prediction accuracy of the
2D-intervals, and (ii) the perspective of the computational
cost of the alternatives. This latter issue may be particu-
larly relevant in dynamic contexts where new data arrives
at a high pace. The question of the accuracy of the predic-
tions was also addressed from different perspectives trying
to capture characteristics that are important to this type of
applications (e.g. the costs and benefits of the predictions).

The results of our experiments with several artificial time
series and also two real world problems provide clear evi-
dence on the validity of our proposal. It achieves a prediction
accuracy that it is highly competitive with the best alterna-
tives in the different experimental setups that were consid-
ered, but with a significantly lower computational cost. This
makes the proposal particularly adequate for high-frequency
time series where 2D-interval predictions may be of use.
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Figure 7: The results on the water consumption problem.

In terms of future work we plan to study our proposal from
a more theoretical perspective with the goal of understand-
ing why it achieves these competitive results. Namely, we
will try to check the hypothesis that this performance may
be caused by the smaller difficulty of the task we address.
Predicting these distribution statistics directly, instead of
calculating them from the time series predictions, may be
easier because distribution statistics (particularly the quan-
tiles we are using) are more stable and not so exposed to
the effects of spurious variations on the original time series
values.
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