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Abstract.
From small farms to electricity markets the interest and impor-

tance of wind power production is continuously increasing. This in-
terest is mainly caused by the fact that wind is a continuous resource
of clean energy. To take full advantage of the potential of wind power
production it is crucial to have tools that accurately forecast the ex-
pected wind speed. However, forecasting the wind speed is not a triv-
ial task. Wind speed is characterised by a random behaviour as well
as several other intermittent characteristics. This paper proposes a
new approach to the task of wind speed forecasting. The main distin-
guishing feature of this proposal is its reliance on both temporal and
spatial characteristics to produce a forecast of the future wind speed.
We have experimentally tested the proposed method with historical
data concerning wind speed on the eastern region of the US. Never-
theless, the methodology that is described in the paper can be seen as
a general approach to spatio-temporal prediction. We have compared
our proposal to other standard approaches in the task of forecasting
2 hours ahead wind speed. Our extensive experiments show that our
proposal has clear advantages in most setups.

1 Introduction

The importance of wind power production is continuously increas-
ing, as countries are looking for more sustainable alternatives for
their power grid. Wind power generation is an excellent option given
that it is a continuous resource of clean energy. The main drawback
of this technology is the large variability in production, which makes
almost impossible to rely only in the wind energy. Generally, wind
energy is used in conjunction with other types of technologies, like
thermal, hydraulic, natural-gas, and so on. Wind power generation
is also crucial in small remote autonomous locations, where it can
be used as a fuel saver to reduce the operational costs. Some coun-
tries like the US [10], China [24] and UK [2] have electricity mar-
kets, which work similarly to an auction. Market participants rely on
the expected future power production and on the market price to de-
cide their bidding strategy. These expectations are usually considered
for a short period, from a couple of hours to a day ahead. All these
factors contribute to the crucial importance of having accurate pre-
diction models of future power production. For wind energy this is
even more relevant given its dependency on other sources of energy
if wind speed is low. Having an accurate forecast of the wind speed
in the next hours is of key importance to estimate wind power pro-
duction and define the best bidding strategy that maximizes the profit
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and avoids the penalties from missing delivering energy.
According to Alexiadis et al. [1] wind power production is a func-

tion of the wind speed. This means that the accurate forecast of wind
speed allows a better estimate of future wind power production. The
wind is considered one of the most difficult meteorological parame-
ters to forecast [20]. The wind speed behavior is influenced by sev-
eral factors like: the topographical properties of the land, the rota-
tion of the earth, temperature, pressure, obstacles, the height of the
anemometer, etc. [12, 20]. Lei et al. [13] classify wind speed predic-
tion models in four classes: physical models, conventional statistical
models, spatial correlation models and artificial intelligence models.
The physical models consider only characteristics like: terrain, ob-
stacles, pressure and temperature to estimate the future wind speed.
They generally have poor results in short term prediction. Conven-
tional statistical models are based on time series techniques (ARMA,
ARIMA, etc.) to forecast the future wind speed. Spatial models use
the neighbourhood information as predictors of the wind speed, usu-
ally applied to locations where the wind speed measurement is not
available. Artificial intelligent models use historical data to obtain
machine learning models that can be used to forecast the future wind
speed. The method proposed in this paper is an artificial intelligence
approach that incorporates spatio-temporal predictors to forecast the
future wind speed on any location.

The development of prediction tools for wind speed forecasting is
not a new subject, and there is a considerable number of important
contributions on this research field. Kavasseri and Seetharaman [11]
use time series models to forecast the hourly average wind speed for
up to 2 days ahead in North Dakota, US. Kusiak et al. [12] applied
several machine learning models to forecast the next wind speed data,
using the historical information of each site. Mohandes et al. [17]
compare support vector machines against neural networks in the task
of forecasting the average daily wind speed in Madina city, Saudi
Arabia. In this study, support vector machines outperformed the neu-
ral network models. Sfetsos [20] compares machine learning models
against time series models for forecasting the average hourly speed
value in Greece. The study provided evidence in favour of the ma-
chine learning models. Damousis et al. [8] proposed a fuzzy model
adjusted by a genetic algorithm for the prediction of wind speed 2
hours ahead, in Greece. Zhao et al. [24] proposed a hybrid approach
including numerical weather prediction with a neural network and
kalman filter to forecast the next day ahead wind power, in China. Li
and Shi [14] compared three neural networks in the task of forecast-
ing the next hour wind speed in North Dakota, US. Bilgili et al. [3]
use a neural network model to forecast the mean monthly wind speed
in Turkey. Among the inputs used in this work are the mean monthly
value of neighbouring sites. Alexiadis et al. [1] proposed to forecast
the speed of the next site in the wind direction based on the wind



speed in the previous site, using a neural network model. According
to the authors, the main motivation behind the proposed technique
was that the wind travels from one location to another and suffers
disturbances during the propagation.

The most frequent approach used by machine learning models to
predict the expected wind speed considers as predictors the previ-
ously observed values of this wind speed [12, 17, 20, 24]. Similar
approaches are adopted by time series models [11]. All these ap-
proaches assume that the future wind speed depends on the recently
observed wind speed on the same location. Given the fact that wind
travels through the landscape this might be limiting for the models
as they are being feed only with values from the same location for
which a future prediction is required. These models ignore the spa-
tial dependency that exists on this domain, where the wind speed at
a certain location is clearly correlated with the wind speed at neigh-
bouring locations. There are some attempts to use the spatial infor-
mation of the domain. In the work of Bilgili et al. [3], they propose
to use the monthly average wind speed at 4 neighbouring locations
as inputs for a neural network model to forecast the monthly aver-
age at the target location. The work of Alexiadis et al. [1] tries to
identify the temporal relationship of the wind speed between spatial
locations. They try to identify a pattern of the wind speed measured
in two different locations, based on the travel time of the wind from
one location to the other. The authors use this relationship to fore-
cast the wind speed in a sub-sequent location. The main drawback of
this approach is that it limits the neighbors used in the analysis and
requires the information of the wind direction between the locations.
In situations where this information is not available or is unreliable
we can not use this technique.

The main motivation for the approach we propose in this paper is
the assumption that the future wind speed at any location depends
not only on the recent wind speed on the same location, but also on
this speed on neighbouring locations. In this context, our proposal
may be succinctly described as an attempt to try to convey informa-
tion on both the spatial and temporal historical wind speed values to
the models, with the goal of improving their forecasting ability. Still,
the approach is by no means dependent on this particular application
and can actually be seen as a general approach to the problem of for-
malising prediction tasks in the context of spatio-temporal data. We
have tested and compared our proposal against a series of alterna-
tive formalisations on a particular prediction task. As experimental
benchmark we have used real world data collected in wind farms in
the US (see Section 3.1). Our experiments show that our approach
outperforms the standard formalisation that includes no information
from the spatial neighbours, in the task of forecasting the wind speed
2 hours ahead. This result carries out for the majority of the machine
learning models used in this experiment. We have also compared the
machine learning models against two baseline models - a time series
model (ARIMA) and a random walk approach.

In Section 2 we describe our proposed formalisation of the pre-
diction problem that includes the definition of spatio-temporal in-
dicators. Section 3 describes the experiments included in the paper,
namely the data and the experimental methodology that were used.
In Section 4 we present and discuss the results of our experiments,
while on Section 5 we draw the conclusions of the work and describe
our future research agenda.

2 Spatio-Temporal Indicators

The task being addressed in this paper consists on trying to forecast
the future value of a time series variable on a certain geographical

location, based on historical data of this variable collected on both
this and other locations. The most common approach to time series
forecasting using machine learning models consists in transforming
the original problem into a multiple regression task, where the target
variable is the future value of the series, while the predictors are pre-
vious past values of the series up to a certain p-length time window.
This transformation technique is usually known as time delay em-
bedding [21]. The idea is to provide the modelling techniques with
information on the recent dynamics of the time series by means of the
most recent values. An improvement over this simple strategy is fre-
quently used within financial forecasting. In this field it is frequent to
also use as predictors what are known as technical indicators. These
variables are nothing more than summaries of certain properties of
the time series. These properties include effects like tendency, accel-
eration, momentum and so on. Different indicators were developed
to express these features of a time series. These indicators can be re-
garded as “sophisticated” descriptors of the recent dynamics of the
time series we want to forecast.

In our approach to wind speed forecasting we started with the as-
sumption that the future values of the wind speed depend not only
on the recent past values at the same location but also on nearby lo-
cations. This spatio-temporal dependency is not particular to wind
speed forecasting. Several real world domains have similar forecast-
ing problems with the same type of spatio-temporal data. In effect,
with the profusion of mobile computing devices with GPS capabili-
ties, the demand for the analysis of spatio-temporal data is increasing
at a very high rate. The key idea behind our proposal is to try to de-
velop predictors that are able to capture the spatio-temporal dynam-
ics of the time series we aim to forecast. More precisely, we plan on
mapping the concept of technical indicators used in financial fore-
casting to a spatio-temporal context. With this purpose we derive a
series of spatio-temporal indicators that can be used as predictors in
the task of developing forecasting models. Our assumption is that
these extra predictors will provide the model with important infor-
mation on the recent spatio-temporal dynamics of the time series,
which in turn will improve the model prediction accuracy. In this
context, we plan to formalise the prediction problem in such a way
that the future values of the target time series are forecasted using not
only previous values of the series and summaries of its temporal dy-
namics, but also with spatio-temporal indicators that summarise the
dynamics of the series within the neighbourhood.

The first question we need to address is how to describe the be-
haviour of the time series within the neighborhood of the target loca-
tion. Our proposal is based on the notion of spatio-temporal neigh-
bourhood. In this context, we need to define a function to calculate
the distance between any two points in the space-time dimension.

In this work a point in space-time is the value of a variable (in
our application the wind speed) at a time t in a geographical location
x, y, which we will denote as wtx,y . Let i and j be two points in
space-time (i.e. two measurementswtixi,yi andwtjxj ,yj ). We define the
spatio-temporal distance between i and j in a similar way to Ming-
yao et al. [16], namely,

Di,j = di,j × α+ ti,j × (1− α) (1)

where di,j is the spatial distance between the locations of the objects
(xi, yi and xj , yj), ti,j is the time distance between the objects (ti
and tj), and α is weighing factor between time and geographical dis-
tances that are assumed to be normalised. The spatial distance can
be calculated using a standard metric, like for instance the Euclidean
distance, or more sophisticated versions for geographical data like



the great-circle distance [6]. In our experiments we have use this lat-
ter alternative given that our data is geographically indexed. The time
distance is simply the absolute difference between the two time tags
in some adequate time unit (e.g. hours).

Having defined the spatio-temporal distance between two objects
we can define the spatio-temporal neighbourhood of a point o as the
set of points within a certain spatio-temporal distance,

N β
o = {k ∈ D : Do,k < β} (2)

where D is the available spatio-temporal data set.
Given the above definitions we can look at the spatio-temporal

neighbourhood of a point as a kind of cone within space-time. Dif-
ferent settings for α and β lead to cones of difference sizes as shown
in Figure 1.

Figure 1. Defining spatio-temporal neighbourhoods with different sizes.

Each cone defines a neighbourhood around a central location.
These cones represent which past values may influence the future
value of the time series at that location. The cones can be regarded
as the spatio-temporal equivalents of the idea of time-delay embed-
ding. Increasing the size of the cone will increase the spatio-temporal
embed size.

As we have mentioned before in finance it is common to sum-
marise the dynamics of a time series by means of technical indica-
tors, which may reflect different properties. For instance, the ratio
between two moving averages calculated using two different em-
bed sizes provides indications on the tendency of the series. If the
value of the moving average with shorter embed surpasses the longer
moving average we know that the time series is on an upwards ten-
dency, while the opposite indicates a downwards direction. We have
imported this idea into the spatio-temporal dimension. The ratio be-
tween two spatio-temporal averages provides us with information on
how the time series values evolve in the space-time dimension. This
ratio can be defined as follows,

W
β1,β2
o =

w(N β1
o )

w(N β2
o )

(3)

where β1 and β2 are two neighbourhood sizes and w() is the average
of the target time series values for a set of points in the neighbour-
hood of o.

A variation of this indicator can be easily obtained by using
weighted averages of the values within the spatio-temporal neigh-
bourhood. If we set the weights to the inverse of the spatio-temporal
distance to the point o we have the effect that “closer” (in spatio-
temporal terms) points are given more importance within the aver-
ages,

W̃ β1,β2
o =

w̃(N β1
o )

w̃(N β2
o )

(4)

where w̃() is the weighed average of target time series for a set of
points in the neighbourhood of o.

The spatio-temporal averages themselves can be seen as inter-
esting indicators that provide information on the typical value of
the time series within a certain spatio-temporal vicinity. Similarly,
spatio-temporal standard deviations can be calculated to provide in-
formation on the dispersion of values within the neighbourhood of o.
All these indicators can be easily calculated with their standard for-
mulae applied to the cases inside the spatio-temporal neighbourhood
of o.

Having defined a series of spatio-temporal indicators, our hypoth-
esis is that they provide useful information for the target prediction
task. In this context, given the goal of forecasting the value of the
target time series for k time steps ahead at location o, we propose to
tackle this problem using the following formalisation,

W t+k
o = f(W t

o ,W
t−1
o , · · · ,W t−m

o ,

w(N k1
o ), w(N k2

o ), w(N k3
o ),W

k1,k2
o ,W

k2,k3
o ,

w̃(N k1
o ), w̃(N k2

o ), w̃(N k3
o ), W̃ k1,k2

o , W̃ k2,k3
o ,

σw(N k1
o ), σw(N k2

o ), σw(N k3
o ))

(5)

where f() is the unknown regression function we are trying to model
using a set of training data D, m is the size of a temporal embed,
k1, k2 and k3 (with k1 < k2 < k3) are spatio-temporal neighbour-
hood sizes, and σw() is the standard deviation of the target time series
calculated with the set of points in a neighbourhood of o.

We should note that this is simply one among many possible se-
tups including spatio-temporal indicators as predictors. The decision
of using 3 spatio-temporal neighbourhood sizes was arbitrary and
other setups could make more sense depending on the application.
Still, this was the setup used in our experiments with wind speed
forecasting.

3 Experimental Evaluation
The main goal of our experiments is to test the hypothesis that moti-
vates our work: using information on the wind speed of nearby loca-
tions in recent time will improve the predictive accuracy of our mod-
els when forecasting the future wind speed at a certain location. With
the goal of collecting experimental evidence towards this hypothe-
sis we have designed an experiment where we have compared dif-
ferent models that tackle this prediction task using different predic-
tors. Namely, we have compared our approach that includes spatio-
temporal indicators as shown in Equation 5, with other approaches
where the predictors do not include data from this spatio-temporal
vicinity. In order to exclude eventual dependencies of the outcome of
the experiments on the used modelling tools, we have repeated the
comparisons using several learning algorithms with different param-
eter settings.

3.1 Data Description

In this paper all the experiments were carried out using real world
data publicly provided by the DOE/NREL/ALLIANCE3. The data

3 http://www.nrel.gov/



consist in wind speed measurements from 1326 different locations at
80m of height in the eastern region of the US. The data were col-
lected in 10 minutes intervals during the year of 2004. This wind
farm is able to produce 580 GW, and each site produces between
100 MW and 600 MW. For our experiments we have selected two
locations as our targets in terms of forecasting the future wind speed.
This selection was guided by the availability of a larger number of
neighbouring sites at these places. Figure 2 shows the geographical
location of the data collection sites.
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Figure 2. Wind Farm at Eastern US.

3.2 Used Machine Learning Models
We have tried to select a wide range of modeling approaches to test
our hypothesis. The idea is to confirm its validity independently of
the technique used to forecast. All used tools are freely available in
the R software environment [19], which ensures easy replication of
our work. The following is a list of the methods used in our experi-
ments as well as the considered parameter variants:

Random Walk - a simple baseline method that uses the last wind
speed measurement as prediction for the 2 hours ahead wind
speed;

Arima - a time series Box-Jenkins model [18] based on the R pack-
age forecast [9]. The function auto.arima automatically
selects the best parameters for the algorithm;

Regression Trees (RT) - a regression tree (e.g. [4]) based on the R
package rpart [22]. In our experiments we have used an inter-
face to the rpart function provided in package DMwR [23] and
have tried 4 different variants by using the parameter se that con-
trols the level of pruning with values: 0, 0.5, 1 and 1.5.

Support Vector Machines (SVM) - an implementation of SVMs
(e.g. [7]) available in the R package e1071. Six variants were
tried by using the parameter cost with the values 10 and 100, and
the parameter epsilon with the values 0.1, 0.3 and 0.5.

Random Forest (RF) - an implementation of random
forests [5] available in the R package randomForest [15].
We have used 3 variants of the parameter ntree with the values
500, 1000 and 1500.

3.3 Experimental Methodology
Each model variant that we have considered in our experiments (a
combination of a learning algorithm plus parameter settings), was
applied to 6 different prediction tasks. These tasks have exactly the
same target variable (the wind speed at time t + 2h), but differ in
the way they use the available past data to obtain the predictors used
to forecast the target variable. One of these 6 tasks only uses data
from the same spatial location, i.e. it only uses information from the
past values of the wind speed measured on the site for which we
want a forecast. The other 5 variants use the formalisation we have
proposed in Equation 5, with different configurations of the 3 neigh-
bourhoods. As we have seen these neighbourhoods are cones defined
by Equation 2. The problem formalisation proposed in Equation 5
uses three of these cones. An alternative way of defining a cone is
by its maximum radius and its height from the base. This equiva-
lent specification of the neighbourhood is more intuitive in our ap-
plication. For instance, the cone with maximum radius of 10km and
height of 10 days, defines a neighbourhood that for the current time
uses points that are at most 10km away from the target location, and
goes back in time at most 10 days. Using this alternative specifica-
tion of neighbourhoods we can describe the remaining five variants
of the problem specification as follows: i) [50km, 10 days], [100km,
20 days] and [150km, 30 days]; ii) [140km, 10 days], [350km, 20
days] and [730km, 30 days]; iii) [75km, 10 days], [150km, 20 days]
and [300km, 30 days]; iv) [100km, 10 days], [500km, 20 days] and
[900km, 30 days]; and v) [150km, 10 days], [675km, 20 days] and
[1200km, 30 days]. Regards the first variant using only data from the
same location we have used exactly the same predictors as in Equa-
tion 5. However, all indicators are calculated using only the wind
speed values of the same location, i.e. the spatial neighbours are ig-
nored. It is like we were using a cylinder of spatial radius near zero,
instead of the cones.

The predictions of the different trials were evaluated using the
mean absolute error (MAE),

MAE =
1

n

n∑
i=1

|ŷi − yi| (6)

where ŷi is the predicted wind speed value for a true value of yi.
With the goal of obtaining statistically reliable estimates of this er-

ror measure we have used a Monte Carlo simulation. The simulation
was designed to provide estimates of the MAE at predicting the wind
speed for two hours ahead of the different alternatives considered in
our experiments. To increase the statistical reliability of the experi-
ments we have repeated the process 10 times at randomly selected
time points within the available data interval (10 minutes measure-
ments throughout all 2004). For each of these 10 randomly selected
time points, and for each of the two sites, the alternatives were eval-
uated by means of their predictions during the next day (144 predic-
tions given that the periodicity of the data is 10 minutes and the test
window is a full day). The predictions for the next day were obtained
using a sliding window approach. Each model obtained with this ap-
proach was learnt using data from the same past window, although
using it to build different predictors as we have seen. For instance, at
time t and site A we use the available training data to obtain a model
that is used to forecast the wind speed at time t+ 2h. After this pre-
diction is obtained, the training window is slided one time step (i.e.
10mins) and another model is obtained to forecast the value of wind
speed at time t + 2h + 10mins. This sliding window process is re-
peated until we have predictions for all time points in the next day.
All model variants are evaluated using the same data.
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Figure 3. Results for site A.

4 Experimental Results and Discussion

Figures 3 and 4 summarise the results of all experiments. They
present the Monte Carlo estimates of the MAE of all considered vari-
ants for the sites A and B, respectively. Each bar is the MAE estimate
of a variant. There are four groups of model variants. The first group
includes the baseline approaches: the random walk and the arima
model. Then we have all variants of the regression trees, SVMs and
random forests. For each of the parameter settings we have consid-
ered (c.f. Section 3.2) we show 6 bars, corresponding to each of the
6 alternative problem formulations we have described in Section 3.3.
Recall that the main goal of our experiments is to compare the use of
the spatio-temporal indicators as predictors against the use of indica-
tors built with data from the same location only. This means we want
to compare the 5 last bars of each variant against the first bar (darkest
bar of the six). On top of the last five bars we may have one or two
symbols (+ or −). They represent the statistical significance of the
difference in performance against the first bar according to a paired
t-test. A single + (−) means that the respective bar is better (worse)
than the first bar with 95% confidence. Two symbols increase the
confidence to 99%.

In general, with the exception of some SVM variants, we can say
that these experiments confirm our hypothesis that the use of pre-
dictors based on data from a spatio-temporal neighbourhood is ad-
vantageous in terms of predictive performance. Moreover, for the
best models in the set we have considered (Random Forests), this
advantage is even more marked. As shown in the graphs the best
overall predictive performance is always obtained by some random
forest variant using our spatio-temporal indicators. Regression trees
have achieved a performance surprisingly competitive with SVMs,
and they have also taken advantage of the use of our indicators. The
results with SVMs are a bit contradictory and their generally poor
performance may provide indications that further parameter tuning

may be required for improving their performance.
Table 1 summarises the results on the number of significant differ-

ences between the spatio-temporal neighbourhood variants and the
strategy of using only the temporal information. Each row shows
the number of significant wins (+’s) and losses (−’s) of the spatio-
temporal variants for the different experimental configurations.

Site A Site B
tree svm rf tree svm rf

+
+
+ −

−
− +

+
+ −

−
− +

+
+ −

−
− +

+
+ −

−
− +

+
+ −

−
− +

+
+ −

−
−

sp1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 3 0 0 0
sp2 0 0 0 0 1 0 1 1 0 3 0 0 3 0 0 0 1 0 3 1 0 3 0 0
sp3 0 0 0 0 0 0 1 0 1 0 0 0 4 0 0 0 0 0 3 1 0 3 0 0
sp4 4 0 0 0 1 0 0 0 0 3 0 0 4 0 0 0 1 0 2 0 0 3 0 0
sp5 4 0 0 0 1 0 0 0 0 3 0 0 0 4 0 0 1 0 1 1 0 3 0 0
Tot. 8 0 0 0 3 0 2 1 1 9 0 0 11 4 0 0 4 0 11 4 3 12 0 0

Table 1. Number of significant wins and losses.

5 Conclusion and Future Work
This paper has described a new methodology for short-term wind
speed prediction, a class of problems with extreme relevance for
electricity markets and wind power production. We proposed a new
formalisation of this spatio-temporal prediction problem, which in-
cludes the definition of spatio-temporal indicators. These predictors
provide information on the spatio-temporal dynamics of the target
time series. Our proposal is general and can be applied to any spatio-
temporal prediction task. These type of prediction problems are be-
coming more and more relevant with the prevalence of mobile com-
puting devices with localisation features. In this paper we have tested
our proposal on the task of forecasting the wind speed for a two hours
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Figure 4. Results for site B.

ahead horizon in the eastern region of the US. Our experimental re-
sults confirm the advantages of the use of spatio-temporal informa-
tion on this prediction task. Models using our spatio-temporal indi-
cators have generally obtained superior performance.

In the future we plan to extend our tests to other applications and
also to explore the reasons for the sub-optimal performance of SVMs
on the prediction task we have considered. Finally, we plan to study
the use of other alternative spatio-temporal indicators to further im-
prove the performance of the models.

REFERENCES

[1] MC Alexiadis, PS Dokopoulos, and HS Sahsamanoglou, ‘Wind speed
and power forecasting based on spatial correlation models’, Energy
Conversion, IEEE Transactions on, 14(3), 836–842, (1999).

[2] RJ Barthelmie, F. Murray, and SC Pryor, ‘The economic benefit of
short-term forecasting for wind energy in the uk electricity market’,
Energy Policy, 36(5), 1687–1696, (2008).

[3] M. Bilgili, B. Sahin, and A. Yasar, ‘Application of artificial neural net-
works for the wind speed prediction of target station using reference
stations data’, Renewable Energy, 32(14), 2350–2360, (2007).

[4] L. Breiman, Classification and regression trees, Chapman & Hall/CRC,
1984.

[5] L. Breiman, ‘Random forests’, Machine learning, 45(1), 5–32, (2001).
[6] M.R. Bridson and A. Haefliger, Metric spaces of non-positive curva-

ture, volume 319, Springer Verlag, 1999.
[7] N. Cristianini and J. Shawe-Taylor, An introduction to support Vector

Machines: and other kernel-based learning methods, Cambridge Univ
Pr, 2000.

[8] I.G. Damousis, M.C. Alexiadis, J.B. Theocharis, and P.S. Dokopoulos,
‘A fuzzy model for wind speed prediction and power generation in wind
parks using spatial correlation’, Energy Conversion, IEEE Transactions
on, 19(2), 352–361, (2004).

[9] Rob J Hyndman, forecast: Forecasting functions for time series, 2011.
R package version 3.11.

[10] P. Joskow and E. Kahn, ‘A quantitative analysis of pricing behavior in

california’s wholesale electricity market during summer 2000’, Techni-
cal report, National Bureau of Economic Research, (2001).

[11] R.G. Kavasseri and K. Seetharaman, ‘Day-ahead wind speed fore-
casting using f-arima models’, Renewable Energy, 34(5), 1388–1393,
(2009).

[12] A. Kusiak, H. Zheng, and Z. Song, ‘Short-term prediction of wind farm
power: A data mining approach’, Energy Conversion, IEEE Transac-
tions on, 24(1), 125–136, (2009).

[13] M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan, ‘A review
on the forecasting of wind speed and generated power’, Renewable and
Sustainable Energy Reviews, 13(4), 915–920, (2009).

[14] G. Li and J. Shi, ‘On comparing three artificial neural networks for wind
speed forecasting’, Applied Energy, 87(7), 2313–2320, (2010).

[15] A. Liaw and M. Wiener, ‘Classification and regression by randomfor-
est’, R News, 2(3), 18–22, (2002).

[16] Q. Ming-yao, M. Li-xin, and S. Jie, ‘A spatio-temporal distance based
two-phase heuristic algorithm for vehicle routing problem’, in Fifth In-
ternational Conference on Natural Computation, ICNC’09, pp. 352–
357. IEEE, (2009).

[17] MA Mohandes, TO Halawani, S. Rehman, and A.A. Hussain, ‘Support
vector machines for wind speed prediction’, Renewable Energy, 29(6),
939–947, (2004).

[18] A. Pankratz, Forecasting with univariate Box-Jenkins models, vol-
ume 3, Wiley Online Library, 1983.

[19] R Development Core Team, R: A Language and Environment for Sta-
tistical Computing, R Foundation for Statistical Computing, 2010.

[20] A. Sfetsos, ‘A comparison of various forecasting techniques applied to
mean hourly wind speed time series’, Renewable Energy, 21(1), 23–35,
(2000).

[21] F. Takens, ‘Detecting strange attractors in turbulence’, Dynamical sys-
tems and turbulence Warwick 1980, 898(1), 366–381, (1981).

[22] T. M. Therneau and B. Atkinson. R port by B. Ripley., rpart: Recursive
Partitioning, 2009. R package version 3.1-44.

[23] L. Torgo, Data Mining with R, learning with case studies, CRC Press,
2010.

[24] P. Zhao, J. Wang, J. Xia, Y. Dai, Y. Sheng, and J. Yue, ‘Performance
evaluation and accuracy enhancement of a day-ahead wind power fore-
casting system in china’, Renewable Energy, (2011).


