
Precision and Recall for Regression

Luis Torgo1 and Rita Ribeiro2

1 FC / LIAAD-Inesc Porto LA, University of Porto, R. de Ceuta, 118, 6., 4050-190
Porto, Portugal

ltorgo@liaad.up.pt
2 LIAAD-Inesc Porto LA, University of Porto, R. de Ceuta, 118, 6., 4050-190 Porto,

Portugal
rpribeiro@liaad.up.pt

Abstract. Cost sensitive prediction is a key task in many real world
applications. Most existing research in this area deals with classification
problems. This paper addresses a related regression problem: the pre-
diction of rare extreme values of a continuous variable. These values are
often regarded as outliers and removed from posterior analysis. How-
ever, for many applications (e.g. in finance, meteorology, biology, etc.)
these are the key values that we want to accurately predict. Any learn-
ing method obtains models by optimizing some preference criteria. In
this paper we propose new evaluation criteria that are more adequate
for these applications. We describe a generalization for regression of the
concepts of precision and recall often used in classification. Using these
new evaluation metrics we are able to focus the evaluation of predictive
models on the cases that really matter for these applications. Our exper-
iments indicate the advantages of the use of these new measures when
comparing predictive models in the context of our target applications.

1 Introduction

Several important predictive data mining applications involve handling non-
uniform costs and benefits of the predictions. This is almost always the case
in event-based applications like prediction of ecological or meteorological catas-
trophes, fraud detection, network intrusions, financial forecasting, etc.. Many of
these tasks are particular cases of regression problems where the continuous tar-
get variable values have differentiated importance. Often these prediction tasks
are related to the anticipation of a critical phenomenon that is inherently con-
tinuous and for which an alarm may be triggered by a specific range of values of
a continuous target variable. This type of applications requires techniques that
are able to cope with differentiated costs and benefits of predictions.

In this paper we have as main goal to address a particular and highly relevant
sub-class of non-uniform cost/benefit prediction tasks. These applications asso-
ciate higher cost or benefit with rarity. For these applications the most (and often
solely) important cases are the ones associated with unusual values of the target
variable. We are thus facing a task of predicting outlier values of a continuous
target variable.



Handling applications with differentiated costs and benefits of predictions is
not new and many cost-sensitive techniques have been proposed in the literature
(e.g. [6, 7]). Still, most of these works focus on predictive classification tasks.
For regression the most common setup considers that the cost of predictions is
uniform across the domain of the target variable and solely dependent on the
magnitude of the prediction errors themselves.

Addressing cost-sensitive applications involves two major issues: i) defining
proper evaluation metrics to correctly assert the merits of alternative models
given the application preference biases; and ii) defining learning strategies to bet-
ter tune the models towards these biases. These two issues have been throughly
addressed within classification problems. However, they have been essentially
ignored in research on regression. The goal of this paper is to address the first of
these issues: the selection of proper evaluation metrics. The main contributions
of the paper are: i) increasing the awareness of the research community for these
important tasks and in general to cost-sensitive regression; ii) exposing the risks
of using standard regression evaluation metrics on cost sensitive applications; iii)
proposing a new evaluation framework for the prediction of rare extreme values
of a continuous variable.

2 Problem Statement

In predictive data mining the goal is to learn a model of an unknown function
that maps a set of predictor variables into a target variable. This model is to be
obtained using a training set containing examples of this mapping. The train-
ing data is used to obtain the model parameters that minimise some preference
criterion. The preference criteria that are commonly used in regression are the
mean squared error, MSE = 1

n

∑n
i=1 (yi − ŷi)

2, and the mean absolute devia-
tion, MAD = 1

n

∑n
i=1 |yi − ŷi|. These are average estimators of the true mean

squared and absolute error of the model, respectively.
In this paper we are interested in a particular sub-class of regression problems.

The main particularity of this sub-class of problems lies on their focus on the
predictive performance at rare extreme values of the continuous target variable,
i.e. extreme low and/or high values. Performance on the other more frequent
values is basically irrelevant for the end user of these applications.

We claim that standard error measures, such as MSE and MAD, are not
suitable for these tasks. They take all the prediction errors equally across the
domain of the target variable, assuming that the magnitude of the error is the
decisive factor for the “cost” of a prediction. We argue that while this magnitude
is important it should be weighed by the “relevance” of the values involved in
the prediction.

Let us illustrate our claim by a small example. In Table 1 we present the pre-
dictions of two artificial models (M1 and M2) for a set of 10 hypothetical returns
of some financial asset given in percentage daily variation. For this prediction
problem it is very clear that we want to be particularly accurate at predicting
the large variations (positive or negative) as these are the ones on which we can



Table 1. The predictions of two artificial models.

True −5.29 −2.65 −2.43 −0.20 −0.03 0.03 0.51 1.46 2.53 2.94

M1 −4.40 −2.06 −2.20 0.10 −0.23 −0.27 0.97 2.00 1.86 2.15
M2 −5.09 −2.95 −2.89 0.69 −0.82 0.70 −0.08 0.92 2.83 3.17

earn some money if they are correct. Smaller variations, even if correctly pre-
dicted are most of the times not tradable given the transaction costs. From the
observation of this table, we can say that M1 has more accurate predictions at
smaller returns (in absolute terms), while M2 achieves more accurate predictions
at the larger variations. However, if we calculate the values of both MAD and
MSE of these two models we observe that they are exactly the same, 0.497 and
0.29893, respectively, meaning that these two metrics tag these two models as
having the same performance. The reason for this is that both models obtain
the same total error magnitude value and thus both have same average error.
This is a clearly misleading “conclusion” for this type of applications, as model
M2 is obviously more useful. This small example provides a simple illustration of
the problem of assuming that the error amplitudes cost the same across all the
domain of the target variable (as it is the case of all standard error metrics). For
our target applications this is clearly not the case and, therefore, it is necessary
to have an error metric that is sensitive to where the errors occur within the
range of the target variable, i.e. that copes with differentiated relevance across
the domain of this variable.

Another further problem with standard error metrics, not illustrated in the
above example, is the fact that even though some model may have a clear ad-
vantage on extreme values, given their rarity, this advantage may well be diluted
by its poorer performance on the “irrelevant” (but very frequent) normal values.

3 Existing Approaches to the Problem

3.1 Case Weights

Within the regression learning setup described in Section 2, there are a few alter-
natives to the standard error measures that could be considered more adequated
to our applications. One such alternative is to use case weights. Some learning
algorithms allow the user to attach a weight to each observation of the training
sample. Model parameters can then be obtained by minimizing a criterion that
takes into account these weights. Training cases with a target variable value that
is more “relevant” should have higher weights. In the case of rare extreme values
prediction this would mean to give more weight to the extreme values.

Assuming we can easily obtain the values of these weights this would appar-
ently lead to a proper evaluation of the models’ performance. However, the main
drawback of this approach is that it only sees one side of the problem, the true
values. In effect, this method does not try to avoid (or penalize) the situation
where a “relevant” value is predicted by the model, but the true value is “nor-
mal”. This is a kind of false alarm and would correspond, for instance, to predict



a high return for some stock that then turns out to have a really irrelevant (very
small) return. This drawback stems from the fact that the weights are dependent
solely on the true value of the cases, yi, instead of being dependent on both yi

and ŷi. Because of this, the above example would have a low penalization (as
the true value is irrelevant), which is contradictory to the application objectives
where we clearly want to avoid these costly mistakes.

3.2 Special-purpose Loss Functions

Some authors (e.g. [4]) have addressed the issue of differentiated prediction costs
by the use of so-called asymmetric loss functions. Their main goal was to be able
to distinguish two types of errors, and assign costs accordingly, namely, the cost
of under-predictions (ŷ < y) and the cost of over-predictions (ŷ > y). That is the
case of the LINLIN loss function, presented in Equation 1.

LINLIN =







co|y − ŷ|, if ŷ > y;
0, if ŷ = y;
cu|y − ŷ|, if ŷ < y.

(1)

where co and cu are constants for penalizing over- and under-predictions.
In spite of its use for some type of applications, the LINLIN loss function

is far from being a general cost-sensitive approach for any regression task as it
only distinguishes between two types of differentiated costs: under- and over-
predictions. Moreover, even on these situations it considers all under-(over-)
predictions as equally serious, only looking at the error amplitude as “standard”
error metrics. For instance, in stock market forecasting, predicting a future price
change of −1% for a true value of 1%, has the same error amplitude as predicting
6% for a true value of 8%, and both are under-predictions. Nonetheless, they may
lead to very different trading actions, and thus different costs/benefits.

4 Precision and Recall for Regression

Our target applications are driven by rare events - the occurrence of rare ex-
treme values of a continuous variable. Within research on classification, this type
of event-driven prediction tasks are usually evaluated using the notions of pre-

cision and recall, which are preferred over other alternatives when in presence
of large skew in the class distribution [5]. The main advantage of these statistics
is that they are focused on the performance of the models on the events, com-
pletely ignoring their accurate predictions for the non-event classes. Informally,
precision measures the proportion of events signalled by the model that are real
events. Recall measures the proportion of events occurring in the domain that
are “captured” by the models. There is usually a trade-off between these two
statistics (always outputting an event signal will get you 100% recall but with
a very poor precision as most signals will be wrong), and often the two are put
together in a single weighted score like for instance the F-measure [11]. Con-
ceptually, our proposal in this paper is to provide the equivalents of these two



statistics for regression problems in order to properly evaluate the performance
of the models on the values that really matter.

4.1 Our Proposal

The standard setup for event-driven classification is to have a so-called “posi-
tive” class that represents the target events while the “negative” class represents
all non-events. Confusion matrices provide a good characterization of the perfor-
mance of a model. The numbers in this matrix can be used to calculate several
statistics among which are precision and recall [8]. Table 2 shows a general confu-
sion matrix for these type of applications. Recall is defined as the ratio TP/POS,
while precision as the ratio TP/PPOS.

Table 2. The 2-classes confusion matrix.

Predicted Predicted
Pos Neg

Pos TP FN POS

Neg FP TN NEG

PPOS PNEG

In these classification problems, relevance (importance) is established by
declaring the “target” class. This enumeration strategy is not possible in re-
gression given the infinite domain of the target variable. We propose the use of
a relevance function, φ(), that maps the original domain of the target variable
into a continuous scale of relevance3,

φ(Y ) : ] −∞,∞[ → [0, 1] (2)

This function allows the specification of different degrees of relevance with
the obvious advantages in terms of sensibility of the method with respect to the
different values of the target variable.

We can also describe the strategy followed in classification using this notion
of relevance. In effect, from this perspective it corresponds to specifying the
following relevance function,

φ(Y ) = I(Y = CE) (3)

where I() is the indicator function given 1 if its argument is true and 0 otherwise,
and CE is the label of the class describing the events (i.e. the positive class).

The information on the relevance function is obviously domain-dependent.
In classification this information consists of choosing the positive class. In re-
gression, given the infinite nature of the domain of the target variable, a real

3 We use the value of zero for completely irrelevant values, and one for maximally
relevant values.



valued function makes more sense. Specifying such function in an analytical way
may not be always easy for a user. Still, for some applications we can come up
with a reasonable automatically generated relevance function. That is the case
of our target applications. In effect, in these domains relevance is associated with
rarity and extremeness of the values. In this context we may say that the rele-
vance function is the complement of the probability distribution function (pdf )
of the target variable. Box plots provide key information on this pdf in particu-
lar regards extreme values. In effect, they are at the basis of a parametric test
for outliers, the box-plot rule. This test assumes a Gaussian distribution of the
variable and tags as outliers all values above the high adjacent value given by
adjH = Q3 + 1.5 · IQR, where Q3 is the third quartile and IQR = Q3 − Q1.
Equivalently, all values below the low adjacent value, adjL = Q1−1.5 · IQR, are
also tagged as outliers. These values correspond to rare high (low) extreme val-
ues. For our target applications we may have both types of outliers or only high
(low) outliers. Our proposal consists of using a sigmoid-like relevance function
whose shape is a function of these adjacent values for each of these two “sides”
of extremeness. Let us see how we can derive this function from the training
sample we have available for each application.

The relevance function is based in the following sigmoid,

f(Y ) =
1

1 + exp−s·(Y −c)
(4)

where c is the center of the sigmoid and s is the shape of the sigmoid. The values
of these parameters are also dependent on the type of extremes the variable
has (low, high or both types of extremes). For applications with only low or
high extremes the relevance function is defined by a single sigmoid, while for
applications with both types of extremes (like stock market prediction tasks) we
will have two of these sigmoids defining φ(Y ).

The parameter c, the center of the sigmoid, represents the value where φ(Y ) =
0.5. The meaning of c is that of a threshold above which the values of target
variable start to be more relevant. We set the c values of the sigmoids to the
values of the respective adjacent values, i.e. cL = adjL and cH = adjH .

With respect to the parameter s we want to set it in such a way that for the
high extreme values φ(c− c · k) ≃ 0, and for low extremes φ(c + c · k) ≃ 0, where
k is a kind of decay factor that determines how fast the sigmoid decays to 0. By
selecting a certain precision value ∆ (e.g. 1e − 04) and solving the equation in
order to s we get,

s = ±
ln(∆−1 − 1)

|c · k|
(5)

where the + signal is used for high extremes, while the − signal is for low
extremes.

In the case of applications with both extremes, each sigmoid is obtained using
the parameter values described above. Figure 1 shows two relevance functions



generated using this method for two types of applications: only with high ex-
tremes ; and with both types of extremes. We provide R code4 that implements
this type of relevance functions that are adequate for applications of predicting
rare extreme values.
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Fig. 1. Two examples of relevance functions generated from box plots.

Please note that our proposal in no way depends on this illustrative and
heuristic definition of a relevance function. This definition is only of use in cases
where the user does not have a precise notion of relevance/importance of his
application, simply having the “intuition” that relevance is associated with ex-
treme and rare values. In these cases, this heuristic function we have described
may help in defining a relevance function that is required for the application of
our evaluation framework that we now describe.

Recall is informally defined as the proportion of relevant events that are
retrieved by a model. Having defined events as a function of relevance we can
say that relevant events are those for which φ(Y ) ≥ tE , where tE is a domain-
dependent threshold on relevance. In classification, as relevance is usually a 0/1
function (c.f. Equation 3), this threshold is 1. For regression, this will most
probably be a value near 1, depending on the values we want to consider as the
targets of our prediction task.

We now need to clarify the notion of “events that are retrieved by a model” in
order to fully define recall. In classification this consists of achieving a correct pre-
diction that is asserted by the usual 0/1 loss function, i.e. having L0/1(ŷi, yi) =
0 ⇔ ŷi = yi. In regression loss functions are usually metric with domain [0,∞[.
Imposing that ŷi = yi will be, in most cases, too strict. Generally, we can say that
a prediction is “correct” in regression if L(ŷi, yi) ≤ tL, where tL is a threshold on
the range of the loss function. We may generalize even further this notion by al-
lowing different degrees of “accuracy” within the interval of “admissible” errors,
i.e. errors that are less than tL. The value of tL is again domain-dependent.

4 Available in http://www.liaad.up.pt/∼ltorgo/DS09 .



Having defined the two general concepts involved in the notion of recall we
can now propose a general definition for this statistic that can cope with both
classification and regression tasks,

Recall =

∑

φ(yi)≥tE
α(ŷi, yi) · φ(yi)

∑

φ(yi)≥tE
φ(yi)

(6)

where α() is a function that defines the accuracy of a prediction.
In classification the α() function is defined as follows,

α(ŷi, yi) = I(L0/1(ŷi, yi) = 0) (7)

where L0/1() is a standard 0/1 loss function.
Given the definition of relevance for classification problems we have described

above, and this definition of what is an accurate prediction in classification, it
is easy to see that our proposed definition of Recall reduces to the standard
proportion TP/POS.

For regression we may define α() using a similar indicator function,

α(ŷi, yi) = I(L(ŷi, yi) ≤ tL) (8)

where tL is the above mentioned threshold defining an admissible error within
the domain a metric loss function L() (e.g. the absolute deviation).

Alternatively, we may use a smoother notion of accuracy by using a continu-
ous function in the interval [0, 1], instead of the 0/1 function of Equation 8. This
allows a more accurate assessment of the quality of the signals of a regression
model. There are many ways of mapping the loss function values in the interval
[0, tL] into a [1, 0] scale. Examples include variations of linear interpolation or
the ramping function. Another alternative is to use a variant of the complemen-
tary error function [1], that has a Gaussian-type shape that we think is more
adequate for our goals,

α(ŷi, yi) = I(L(ŷi, yi) ≤ tL) ·

(

1 − exp
−k·

(L(ŷi,yi)−tL)2

t2
L

)

(9)

where k is a positive integer that determines the shape of the function. Larger
values lead to steeper decreases.

Precision is the proportion of the events retrieved by a model that are ef-
fective events. We have already seen what is an event in both classification and
regression. The only difference here is that we are talking about “retrieved”
events and not the “real” events (i.e. predictions and not true values). Some of
these correspond to “real” events but others not, and the goal of precision is to
assert this proportion. In classification a retrieved event is a prediction of the
“positive” class. In regression this is a prediction of a value whose relevance is
greater than the user-defined relevance threshold tE . As we have seen, both can
be described by the same condition using the relevance function. In this context,
we propose the following generalized definition of precision,



Precision =

∑

φ(ŷi)≥tE
α(ŷi, yi) · φ(ŷi)

∑

φ(ŷi)≥tE
φ(ŷi)

(10)

You may have noticed that the numerators of definitions of Precision and
Recall we are proposing are different (c.f. Equations 6 and 10), which is not
in aggrement with the standard definitions of recall and precision that have
in the numerator the number of true positives (TP ). However, for the settings
used in classification the numerators of these equations we propose are in effect
equal. The α() function used for classification is a 0/1 function that is 1 if the
classification is accurate, which implies that ŷi = yi. This in turn implies that
φ(ŷi) = φ(yi) and thus the numerators are equal. However, we should remark
that this may not be the case for regression setups where an accurate prediction
may not mean that ŷi = yi, namely if tL > 0.

Precision and recall may be aggregated into composite measures, like for
instance the F-measure [11],

F =

(

β2 + 1
)

· Precision · Recall

β2 · Precision + Recall
(11)

where 0 ≤ β ≤ 1, controls the relative importance of recall to precision.
These composite measures have the advantage of facilitating comparisons

among models as they provide a single score.

5 Experimental Analysis

5.1 Artificial Data

On Table 1 we have presented an artificial example on stock returns prediction
with the predictions of two models that, in spite of their clearly different ap-
proach to rare extreme values, had exactly the same score in terms of standard
error metrics like MSE and MAD. Let us examine this example with our new
proposed measures of recall and precision. Let us suppose that we use as thresh-
old for events (tE) a value of relevance greater than 0.75 ,i.e. φ(Y ) ≥ 0.75. We
will use an automatically generated relevance function for extremes (c.f. Equa-
tion 4). The generated function uses a larger sample of values than those shown
on Table 1. Using this sample we estimate adjL = −1.5 and adjH = 1.5. These
values setup the value of the c parameter of the function and together with a
value of k = 0.5 we define our relevance function (c.f. Equation 4). We will also
use the smooth α() function defined in Equation 9 with a threshold for accurate
predictions of half percent return, i.e. tL = 0.5. In this context, we come up with
the results show in Table 3.

These values correspond to a recall of 0.178 for model M1 and of 0.670 for
M2. Precision is of 0.292 for model M1 and of 0.668 for M2. These scores provide
a completely different (and more correct with respect to the preference bias of
this application) perspective on the performance of the models, which according
to both MSE and MAD are equal.



Table 3. Evaluating the two artificial models with the new metrics.

True −5.29 −2.65 −2.43 −0.20 −0.03 0.03 0.51 1.46 2.53 2.94
φ(Y ) 1.00 1.00 0.98 0.00 0.00 0.00 0.00 0.01 0.99 1.00

M1 −4.40 −2.06 −2.20 0.10 −0.23 −0.27 0.97 2.00 1.86 2.15

φ(Ŷ1) 1.00 0.63 0.86 0.00 0.00 0.00 0.00 0.50 0.22 0.80

L(Ŷ1, Y ) 0.89 0.59 0.23 0.30 0.20 0.30 0.46 0.54 0.67 0.79

α(Ŷ1, Y ) 0.00 0.00 0.90 0.72 0.94 0.72 0.05 0.00 0.00 0.00

M2 −5.09 −2.95 −2.89 0.69 −0.82 0.70 −0.08 0.92 2.83 3.17

φ(Ŷ2) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

L(Ŷ2, Y ) 0.20 0.30 0.46 0.89 0.79 0.67 0.59 0.54 0.30 0.23

α(Ŷ2, Y ) 0.94 0.72 0.05 0.00 0.00 0.00 0.00 0.00 0.72 0.90

5.2 Predicting Stock Market Returns

In this section we illustrate the use of the proposed precision and recall statis-
tics in the context of the prediction of rare extreme returns of a set of stocks.
The purpose of this study is to illustrate both the “danger” of using standard
regression evaluation statistics in this type of problems, as well as presenting
and measuring the advantages of our proposals.

The Data The base data we will use in our study are the standard daily quotes
of four companies: International Business Machines (IBM), Coca-Cola (KO),
Boeing (BA) and General Motors (GM). This daily data was obtained from
Yahoo finance5 and it contains the usual quotes and volume information.

Most applications of this type based on daily data focus on predicting the
Adjusted Close prices of the stocks. Namely, a common procedure consists pre-
dicting the h-days returns defined as,

Rh (t) =
Close (t) − Close (t − h)

Close (t − h)
(12)

Using this time series of returns we have defined a prediction task consisting
of trying to predicted the future value of these returns, Rh (t + h), using a set
of p previous values of the time series (usually known as an embed of the time
series). In our experiments we used an embed of 24 days back of the Rh (t)
variable. This modelling task was selected without any particular concern on
whether this was the best setup for predicting future returns. That is not our
main goal here. Our objective is to compare alternative modelling techniques on
the same stock market prediction problems and check the model rankings we
obtain when using both the standard evaluation metrics and our new proposals.
Our hypothesis is that the model rankings obtained with our metrics are “better”
from the perspective of the application objectives, which are being accurate at
the rare extreme returns where profitable trading can take place.

5 http://finance.yahoo.com.



Using this approach we have obtained datasets for the 1-, 3- and 5-days
returns of the four companies used in our study, i.e. 12 regression tasks.

The Experimental Methodology The used quotes data covers the period
from 1970-01-02 till 2008-07-11, in a total of 9725 daily sessions.

In order to provide an accurate estimate of the statistics that we will use
to compare our alternative models we have divided the period mentioned above
in two main consecutive time windows. The first spans from the first date till
1990-01-01. The second time window goes from this latter date till 2008-07-11.
The first time window (first 20 years) will be used for obtaining the prediction
models, while the second window (around 18 and a half years) will be used to
evaluate and compare the models.

The Modelling Tools All tools we have used are available in the (free) R
statistical environment6, which allows easy replication of our results. We have
considered 4 different regression techniques, each with several parameter vari-
ants, in a total of 57 different models being compared for each data set.

Artificial Neural Networks We have used the neural networks provided by the
nnet package of R. This package has a function to obtain feed-forward neural
networks with one hidden layer using the back-propagation learning algorithm.

Regarding model tuning we have considered 15 alternatives varying the num-
ber of inner nodes (parameter Size) of the hidden layer between 5, 10, 15, 20
and 30, and also the learning rate (parameter Decay) between 0.01, 0.05 and 0.1.

Multivariate adaptive regression splines The package mda of R has a re-imple-
mentation of MARS [9] done by Trevor Hastie and Robert Tibshirani. We have
used this system in our experiments.

Regarding model tuning we have considered 16 variants formed by different
combinations of the parameter setting the penalty for extra degrees of freedom
(parameter Pen which was used with values 1,2,3,4), and of the parameter spec-
ifying the forward stepwise stopping threshold (parameter Thr that was tried
with values 0.01, 0.005, 0.001 and 0.0005).

Support Vector Machines Package e1071 of R includes a function implementing
SVMs [10]. This implementation provides an interface to the award-winning
libsvm library by Chang and Lin [3].

We have considered 16 variants of SVMs during our model tuning experi-
ments. These variants were chosen according to the suggestions given in [10].
They include different values for the parameter Cost (tried values 400, 500, 600
and 700) and Gamma (tried values 0.01, 0.005, 0.001 and 0.0005). The former is
a constraints violation parameter, while the latter is the radial basis function
kernel parameter.

6 http://www.R-project.org.



Random Forests Package randomForest of R includes a function that imple-
ments random forests [2] based on original Fortran code by L. Breiman and A.
Cutler.

We have considered 10 variants of these models by setting the parameter
ntree, which controls the number of trees in the ensembles, to values from 50
to 500 in steps of 50.

The Results We have obtained the 57 model variants using the experimental
methodology described before on the returns data sets. The main hypothesis that
we are trying to check is that the model rankings obtained by using our proposed
metrics are significantly different from the rankings obtained with standard re-
gression statistics. Moreover, that these rankings obtained with our metrics are
clearly advantageous in terms of the application preference bias, that in this
case is related to having good “signals” of rare and extreme movements of the
markets.

In terms of our evaluation framework we have used the following settings.
We have assumed that, giving the transaction costs, users of these applications
are not willing to trade on returns smaller than 2% (-2%) for buying (selling)
actions. In this context, we have setup the notion of rare extreme values around
these two thresholds. Namely, with respect to the relevance function we have
used as centers of the two sigmoids the values cL = −0.02 and cH = 0.02, while
for the shapes of the sigmoids we have calculated them using Equation 5 with
k = 0.5 and ∆ = 1e − 04. In the context of precision and recall we have used
tE = 0.5 (thus any return above 2% or below -2% will be considered an event,
given the definition of the φ() function), and tL = 0.005 (i.e. errors above 0.5%
are not considered, c.f. Equation 9).

The first results we show are designed to test the hypothesis concerning the
different rankings. We have used the MAD statistic as a representative of the
“standard” approaches, and the composite F-measure (with β = 0.5 that gives
twice importance to precision compared to recall, as inaccurate trading signals
may be costly) as representing our proposals. For all 12 experimental setups (4
companies and 3 forecasting scenarios), we have obtained the two model rankings
according to these two statistics. Due to lack of space we can not present all
graphs illustrating these 12 experimental setups7. All setups follow a similar
results trend. We have selected 1 setup that is shown in Figure 2. The figure
has two graphs. The graph on the left shows the scores of the best five models
according to the two statistics. We should remark that for MAD, lower values
are better, contrary to what happens with the F measure. On the X-axis we have
the identifiers (a number from 1 to 57) of the top 5 models according to each
statistic (the 5 on the left according to MAD and the other 5 according to F).
Ideally these two sets of numbers should be different indicating that the best 5
models according to the two statistics are also different. On the graph we plot
the actual values of these 10 models for the two statistics: circles and left Y-scale
for MAD; and triangles and right Y-scale for the F measure. The second graph

7 All graphs may be obtained at http://www.liaad.up.pt/∼ltorgo/DS09 .



presented on the figures shows a global perspective (on all 57 models) of the two
rankings produced by the statistics. On both axis we have the possible ranking
positions (from 1 to 57). The coordinates of each of the 57 dots shown on the
graphs are obtained using the rank position assigned by MAD (X coordinate),
and the corresponding rank position assigned by the F measure (Y coordinate).
If for any of the 57 models both statistics give it the same ranking position, the
respective dot should lie in the dashed diagonal line. The vertical and horizontal
dashed lines highlight the results for the top 10 rank positions (left of the vertical
line, and below the horizontal line) according to the two statistics.
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Fig. 2. The results for 3-days returns of Boeing (BA).

Analysing the results in Figure 2, namely the left graph, we observe that the
top 5 models according to the two statistics are completely different. Moreover,
we see that their concrete scores on the statistics are also very different. For
instance the best models according to MAD achieve a much worse score in terms
of F8, when compared to the best 5 models according to this later measure.
In terms of overall ranking we also observe a general tendency for all ranking
positions to be different as most points in the right graph are far from the
diagonal. In particular the top 10 models according to MAD are all below the
45th position in the F ranking. These results clearly indicate that the two metrics
are evaluating very different aspects of the performance of the models.

We have also carried out a formal statistical test of the differences between
the model rankings. On all 12 data sets we have observed some evidence of
disagreement between the rankings, with only 4 lacking proper statistical sig-
nificance. In summary, our experiments have confirmed the hypothesis that the

8 Actually, no score at all because they do not produce any event signal, i.e. predictions
with relevance higher than tE, and thus they have no precision score.



two considered metrics (MAD and F-measure based on our proposed Recall and
Precision statistics), often obtain significantly different model rankings on this
type of applications. Moreover, we should remark that this experimental setup
is not particularly favorable to our proposals. In effect, we are comparing 57
models that optimize some variant of the squared error. This means that these
models are not particularly focused on predicting rare extreme values. Even on
these conditions we have observed that our proposals are able to detect models
that have some ability at predicting rare extreme values. We can expect that
the differences would be even more marked if among the 57 models we had some
that were particularly competent at predicting rare extremes (e.g. if they were
optimizing our F measure instead of squared errors).

What are the advantages of comparing a set of alternative models using our
proposed metrics in alternative to standard statistics? Or in other words, what
are the costs a user can expect if he uses a measure like MAD to select the
model to apply for trading on stock markets? The results we have shown previ-
ously provided evidence that our metrics rank the 57 models we have considered,
differently. However, do these ranking differences lead to better trading perfor-
mance? In other words if a user uses the best model according to our F-measure,
instead of the best model according to MAD, what does he have to gain or
loose? For each of the 12 experimental setups we have selected the two best
models according to MAD and F, respectively. We have used their respective
predictions of the future returns for the 18 years and have calculated a set of
trading-related statistics. We have assumed that we are going to trade with fu-
tures (thus allowing both short and long positions, i.e. trading when we predict
the market goes down or up, respectively). Moreover, considering trading costs
we only “trade” when a model predicts a future return above (below) 2% (-2%),
i.e. we are going to take these situations as indicators for buying (selling). Under
these conditions each model outputs a set of trading signals (predictions above
0.02 or below -0.02). The predicted signals were then compared to the “true”
signals, i.e. did the prices go up (down) as predicted?

These experiments have confirmed the advantages of our metrics. In effect,
the models “selected” by MAD almost never issue a single signal during the
18 testing years! On the contrary, the models selected using our metrics issue
several trading signals during this period. Still, the accuracy of these signals is
far from ideal as expected. This is expectable because: i) the candidate models
are optimizing squared errors; ii) the information used to obtain the models
(embed of 24 days) is clearly sub-optimal; and iii) predicting stock returns is a
very difficult task!

6 Conclusions

This paper has presented a study on the prediction of rare extreme values of a
continuous target variable that can be regarded as outliers. Our study is focused
on the development of proper evaluation metrics for these tasks, which is a key
step in addressing these problems.



We have described a generalization of the notions of precision and recall
for regression tasks. These intuitive concepts are ideal for addressing our tar-
get problems as they focus the evaluation solely on the important events (the
rare extreme values). Our proposals incorporate the standard definitions used in
classification as particular cases.

We have illustrated the use of these metrics in the context of stock market
forecasting applications. Namely, we have used our metrics to compare a large
set of models in several experimental setups. Our experiments have confirmed
that our evaluation metrics provide a significantly different perspective of the
performance of the models, when compared to standard evaluation statistics.
Moreover, this perspective is more adjusted to the preference biases of this type
of applications. Our experimental results have also shown the danger of using
standard evaluation metrics in this class of problems.
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