
57

Chapter 3

Tree-based Regression

This chapter describes two different approaches to induce regression trees. We first present

the standard methodology based on the minimisation of the squared error. Least squares

(LS) regression trees had already been described in detail in the book by Breiman et. al.

(1984). Compared to this work we present some simplifications of the splitting criterion

that lead to gains in computational efficiency. We then address the alternative method of

using a least absolute deviation (LAD) error criterion to obtain regression trees. Although

mentioned in the book of Breiman and colleagues (1984), this methodology was never

described in sufficient detail. In this chapter we present such a description. The LAD

criterion is known to be more robust to skewed distributions and outliers than the LS

criterion used in standard regression trees. However, the use of the LAD criterion brings

additional computational difficulties to the task of growing a tree. In this chapter we

present algorithms based on a theoretical study of the LAD criterion that overcome these

difficulties for numeric variables. With respect to nominal variables we show that the

theorem proved by Breiman et. al. (1984) for subset splits in LS trees does not hold for the

LAD error criterion. Still, we have experimentally observed that the use of the results of

this theorem as a heuristic method of obtaining the best split does not degrade predictive

accuracy. Moreover, using this heuristic brings significant gains in computation efficiency.

CHAPTER 3. TREE-BASED REGRESSION58

3.1 Tree-based Models

Work on tree-based regression models traces back to Morgan and Sonquist (1963) and

their AID program. However, the major reference on this research line still continuous to

be the seminal book on classification and regression trees by Breiman and his colleagues

(1984). These authors provide a thorough description of both classification and regression

tree-based models. Within Machine Learning, most research efforts concentrate on

classification (or decision) trees (Hunt et al.,1966; Quinlan, 1979; Kononenko et al.,1984).

Work on regression trees started with RETIS (Karalic & Cestnik, 1991) and M5 (Quinlan,

1992). Compared to CART (Breiman et. al.,1984), RETIS uses a different pruning

methodology based on the Niblet and Bratko (1986) algorithm and m-estimates (Cestnik,

1990). With respect to M5 (Quinlan, 1992), its novelty results from the use of linear

regression models in the tree leaves19. A further extension of M5 was described in Quinlan

(1993). This extension consisted in combining the predictions of the trees with k nearest

neighbour models.

Tree-based regression models are known for their simplicity and efficiency when

dealing with domains with large number of variables and cases. Regression trees are

obtained using a fast divide and conquer greedy algorithm that recursively partitions the

given training data into smaller subsets. The use of this algorithm is the cause of the

efficiency of these methods. However, it can also lead to poor decisions in lower levels of

the tree due to the unreliability of estimates based on small samples of cases. Methods to

deal with this problem turn out to be nearly as important as growing the initial tree.

Chapter 4 addresses this issue in detail.

In spite of their advantages regression trees are also known for their instability

(Breiman, 1996). A small change in the training set may lead to a different choice when

building a node, which in turn may represent a dramatic change in the tree, particularly if

the change occurs in top level nodes. Moreover, the function approximation provided by

19 Which was also done in a subsequent version of RETIS (Karalic, 1992).

3.1 TREE-BASED MODELS 59

standard regression trees is highly non-smooth leading to very marked function

discontinuities. Although there are applications where this may be advantageous, most of

the times the unknown regression function is supposed to have a certain degree of

smoothness that is hardly captured by standard regression trees. In Chapter 5 we describe

hybrid tree models that improve the smoothness of tree-based approximations. In spite of

this drawback, regression trees do not assume any particular form for the function being

approximated thus being a very flexible regression method. Moreover, the obtained models

are usually considered easily comprehensible.

In Section 3.2 of this chapter we explore methods of inducing regression trees using

the least squares (LS) error criterion. The use of this criterion leads to several

improvements in terms of computational efficiency resulting from the mathematical base

behind it. Namely, thanks to the theorem presented by Breiman et al. (1984), we can

devise an efficient method for dealing with nominal attributes. Moreover, we present a fast

incremental updating method to evaluate all possible splits of continuous attributes with

significant computational gains. These splits are known to be the major bottleneck in terms

of computational efficiency of tree learning algorithms (Cattlet, 1991).

In the subsequent section we present a method of inducing regression trees using the

least absolute deviation (LAD) criterion. The main difference to LS trees lies in the use of

medians instead of averages in the leaves and the use of the mean absolute deviation as

error criterion. The main advantage of using this methodology is the robustness of the

obtained models. In effect, medians and absolute deviations are known to be more robust

with respect to the presence of outliers and skewed distributions. However, we will see that

this methodology poses several computational difficulties. We will present a theoretical

analysis of the LAD criterion, and as a result of this analysis we describe a series of fast

updating algorithms that improve the computational efficiency of LAD regression trees.

Another criterion that can be used when growing regression trees is RRelief (Robnik-

Sikonja & Kononenko, 1997). This criterion is particularly suitable for domains where the

input variables (or attributes) are known to be dependent. Still, this criterion entails much

CHAPTER 3. TREE-BASED REGRESSION60

larger computational complexity than the LAD or LS criteria due to the necessity of

calculating distances between training cases.

A regression tree can be seen as a kind of additive model (Hastie & Tibshirani, 1990)

of the form,

() ()∑
=

∈×=
l

i
ii DIkm

1

xx (3.1)

where,
ki are constants;
I(.) is an indicator function returning 1 if its argument is true and 0 otherwise;

and Di are disjoint partitions of the training data D such that
� l

i
iD

1=

= D and

� l

i
iD

1=

φ= .

Models of this type are sometimes called piecewise constant regression models as they

partition the predictor space χ in a set of regions and fit a constant value within each

region. An important aspect of tree-based regression models is that they provide a

propositional logic representation of these regions in the form of a tree. Each path from the

root of the tree to a leaf corresponds to a region. Each inner node20 of the tree is a logical

test on a predictor variable21. In the particular case of binary trees there are two possible

outcomes of the test, true or false. This means that associated to each partition Di we have

a path Pi consisting of a conjunction of logical tests on the predictor variables. This

symbolic representation of the regression function is an important issue when one wants to

have a better understanding of the regression surface.

Example 3.1 provides a better illustration of this type of models through a small

example of a regression tree:

20 All nodes except the leaves.
21 Although work exists on multivariate tests (e.g. Breiman et. al. 1984; Murthy et. al., 1994; Broadley &

Utgoff, 1995; Gama, 1997).

3.1 TREE-BASED MODELS 61

EXAMPLE 3.1

As there are four distinct paths from the root node to the leaves, this tree divides the input

space in four different regions. The conjunction of the tests in each path can be regarded as

a logical description of such regions, as shown above.

This tree roughly corresponds to the following regression surface (assuming that there

were only the predictor variables X1 and X2) :

0
1

2 3
4 5 0

1
2

3
4

5
30
40
50
60
70
80
90

100

Using the more concise representation of Equation 3.1 we obtain:

() () ()
() ()

m I X X I X X

I X X I X X

x = × < ∧ < + × < ∧ ≥ +

× ≥ ∧ < + × ≥ ∧ ≥

60 3 1 5 100 3 1 5

30 3 4 45 3 4

1 2 1 2

1 2 1 2

. .

♦

Regression trees are constructed using a recursive partitioning (RP) algorithm. This

algorithm builds a tree by recursively splitting the training sample into smaller subsets. We

give below a high level description of the algorithm. The RP algorithm receives as input a

X1

X2

X1<3

X2<1.5 X1<4

60 100 30 45

T

T TF

F

F

P1 ≡ X1 < 3 ∧ X2 < 1.5 , with k1 = 60

P2 ≡ X1 < 3 ∧ X2 ≥ 1.5 , with k2 = 100

P3 ≡ X1 ≥ 3 ∧ X1 < 4 , with k3 = 30

P4 ≡ X1 ≥ 3 ∧ X1 ≥ 4 , with k4 = 45

CHAPTER 3. TREE-BASED REGRESSION62

set of n data points, { } tn

iiit yD
1

,
=

= x , and if certain termination criteria are not met it

generates a test node t, whose branches are obtained by applying the same algorithm with

two subsets of the input data points. These subsets consist of the cases that logically entail

the split test s* in the node t, { }*:, sDyD itiitL
→∈= xx , and the remaining cases,

{ }*:, sDyD itiitR
→/∈= xx . At each node the best split test is chosen according to some

local criterion, which means that this is a greedy hill-climbing algorithm.

Algorithm 3.1 - Recursive Partitioning Algorithm.

Input : A set of n data points, { < xi , yi > }, i = 1,...,n
Output : A regression tree

IF termination criterion THEN
Create Leaf Node and assign it a Constant Value
Return Leaf Node

ELSE
Find Best Splitting Test s*
Create Node t with s*
Left_branch(t) = RecursivePartitioningAlgorithm({ <xi , yi> : xi → s* })
Right_branch(t) = RecursivePartitioningAlgorithm({ <xi , yi> : xi →/ s* })
Return Node t

ENDIF

The algorithm has three main components:

• A way to select a split test (the splitting rule).
• A rule to determine when a tree node is terminal (termination criterion).
• A rule for assigning a value to each terminal node.

In the following sections we present two different approaches to solve these problems.

These alternatives try to minimise either the mean squared error or the mean absolute

deviation of the resulting tree.

3.2 Least Squares Regression Trees

The most common method for building a regression model based on a sample of an

unknown regression surface consists of trying to obtain the model parameters that

minimise the least squares error criterion,

3.2 LEAST SQUARES REGRESSION TREES 63

()()
2

,
1 ∑ β−

n

i
ii ry

n
x (3.2)

where,
n is the sample size;
<xi , yi > is a data point ;
 and r(β, xi) is the prediction of the regression model r(β, x) for the case ii y,x .

As we have seen in Chapter 2 this criterion is used in many existing systems. RETIS

(Karalic & Cestnik, 1991), M5 (Quinlan, 1992) and CART (Breiman et. al., 1984), all use

the least squares (LS) criterion. To our knowledge the only tree induction system that is

also able to use the mean absolute deviation is CART.

The following theorem holds for the LS minimisation criterion:

THEOREM 3.1

The constant k that minimises the expected value of the squared error is the mean value of

the target variable.

♦

A proof of this theorem can be found in the appendix at the end of this chapter. Based on

this theorem the constant that should be assigned to the leaves of a regression tree obtained

using the least squares error criterion, is the average of the target values of the cases within

each leaf l, 22

∑=
lD

i
l

l y
n

k
1

(3.3)

where,
nl is the cardinality of the set Dl containing the cases in leaf l (i.e. nl = #Dl).

22 According to the RP algorithm, the cases within any node t of a tree, are the subset of the given training

sample that satisfies the conjunction consisting of all tests from the root to that node. We will denote those

cases as Dt = { ii y,x ∈ t}.

CHAPTER 3. TREE-BASED REGRESSION64

Some systems like RETIS (Karalic, 1992) and M5 (Quinlan,1992) use other non-constant

models in the tree leaves. They use linear polynomials instead of averages. We go back to

this issue in Chapter 5, where we address hybrid tree models.

With respect to the splitting rule we restrict our description to the case of binary trees.

Each inner node of these trees has two descendent nodes. These inner nodes split the

training instances in two subsets depending on the result of a test on one of the input

variables. Cases satisfying the test follow to the left branch while the others go to the right

branch. The split test is chosen with the objective of improving the fitting error of the

resulting tree. Any path from the root node to a node t corresponds to a partition Dt of the

input cases. Assuming the constant obtained with Equation 3.3, resulting from the

application of the least squares error criterion, we define the fitting error of a node t as the

average of the squared differences between the Y values of the instances in the node and

the node constant kt ,

() ()∑ −=
tD

ti
t

ky
n

tErr 21
(3.4)

where, kt is defined by Equation 3.3.

Furthermore, we define the error of a tree T as a weighed average of the error in its leaves:

() () () () ()∑ ∑∑ ∑∑
∈∈∈

−=−×=×=
Tl D

li
Tl D

li
l

l

Tl ll

ky
n

ky
nn

n
lErrlPTErr

~

2

~

2

~

11
(3.5)

where,
P(l) is the probability of a case falling into leaf l;
n is the total number of training cases;
nl is the number of cases in leaf l;
and T

~
is the set of leaves of the tree T.

A binary split divides a set of cases in two. The goal of the splitting rule is to choose the

split that maximises the decrease in the error of the tree resulting from this division. We

define the error of a split s as the weighed average of the errors of the resulting sub-nodes,

() () ()Err s t
n

n
Err t

n

n
Err t

t

t
L

t

t
R

L R, = × + × (3.6)

3.2 LEAST SQUARES REGRESSION TREES 65

where,
 tL is the left child node of t defining a partition DtL

 that contains the set of cases {<

xi , yi > ∈ Dt : xi → s } and ntL
 the cardinal of this set;

and tR is the right child node of t defining a partition DtR
 that contains the set of

cases {< xi , yi > ∈ Dt : xi →/ s } and ntR
 the cardinal of this set.

We are now ready to present the definition of best split for a node t given a set S of

candidate splits,

DEFINITION 3.1

The best split s* is the split belonging to S that maximises

() () ()∆Err s t Err t Err s t, ,= −

♦

This greedy criterion guides the choice of a split for all inner nodes of an LS regression

tree. On each iteration of the RP algorithm all possible splits of each of the predictor

variables are evaluated and the one with best ∆Err is chosen.

With respect to the last issue of the tree growing method, that is the stopping rule, the

key problem is the reliability of error estimates used for selecting the splits. All the error

measures described above are estimates in the statistical sense, as they are functions of the

training sample (usually called resubstitution estimates). The accuracy of these estimates is

strongly dependent on the quality of the sample. As the algorithm recursively divides the

original training set, the splits are being evaluated using increasingly smaller samples. This

means that the estimates are getting potentially more unreliable as we grow the tree23. It

can be easily proven that the value of ∆Err (Definition 3.1) is always greater or equal to

zero during tree growth. Apparently we are always obtaining a more precise regression tree

model. Taking this argument to extremes, an overly large tree with just one training case in

each leaf would have an error of zero. The problem with this reasoning is exactly the

23 Because the standard error of statistical estimators is inversely proportional to the sample size.

CHAPTER 3. TREE-BASED REGRESSION66

reliability of our estimates due to the amount of training cases upon which they are being

obtained. Estimates based on small samples will hardly generalise to unseen cases thus

leading to models with poor predictive accuracy. This is usually known as overfitting the

training data as we have seen in Section 2.3.2.1.

There are two alternative procedures to minimise this problem. The first consists of

specifying a reliable criterion that tries to determine when one should stop growing the

tree. Within tree-based models this is usually called pre-pruning. The second, and most

frequently used procedure, is to grow a very large (and unreliable) tree and then post-prune

it. Pruning of regression trees is an essential step for obtaining accurate trees and it will be

the subject of Chapter 4. With a post-pruning approach the stopping criteria are usually

very “relaxed” , as there will be a posterior pruning stage. The idea is not to “ loose” any

potentially good post-pruned tree by stopping too soon at the initial growth stage. A

frequently used criterion is to impose a minimum number of cases that once reached forces

the termination of the RP algorithm. Another example of stopping criteria is to create a leaf

if the error in the current node is below a fraction of the error in the root node.

3.2.1 Efficient Growth of LS Regression Trees

The computational complexity of the recursive partitioning (RP) algorithm used for

growing regression trees is highly dependent on the choice of the best split for a given

node. This task resumes to trying all possible splits for each of the input variables. The

number of possible splits of a variable is strongly dependent on its type. We give below a

more detailed version of the RP algorithm used for growing a LS regression tree:

Algorith m 3. 2 – Growi ng a LS Reg r ession Tree.

Input : A set of n data p oints, { < xi , yi > } , i = 1,..., n
Output : A reg r essio n tree

IF termi nation crite r ion T HEN
Create L eaf No de and assig n it t he ave r age Y value of th e n dat a poi nts
Return L eaf No de

ELSE
S* = <arb i trary split>

3.2 LEAST SQUARES REGRESSION TREES 67

FOR all variables Xv DO
IF Xv is a nominal variable THEN

BestSplitXv = TryAllNominalSplits({< xi,yi >}, Xv)
ELSE IF Xv is a numeric variable THEN

BestSplitXv = TryAllNumericSplits({< xi,yi >}, Xv)
ENDIF
IF BestSplitXv is better than s* THEN

s* = BestSplitXv
ENDIF

ENDFOR
Create Node t with s*
Left_branch(t) = GrowLStree({< xi,yi > : xi → s* })
Right_branch(t) = GrowLStree({< xi,yi > : xi →/ s* })
Return Node t

ENDIF

The major computational burden of this algorithm lies in the part where we try all possible

splits of a variable. Each trial split has to be evaluated, which means that we need to obtain

the model of the resulting sub-nodes to calculate their error (c.f. Equations 3.4 and 3.6).

Assuming the constant model defined in Equation 3.3, we need to calculate two averages

(for each branch of the split) to evaluate each split (Definition 3.1). Equation 3.4 is in

effect similar to the formula for calculating the variance of a variable24. This calculation

involves passing through the data twice, once to obtain the average and the second time to

calculate the squared differences. This cost can be reduced using the equivalent formula25,

()

22

−=

∑∑
t

D
i

t

D
i

n

y

n

y

tErr tt (3.7)

This calculation can be carried out using a single pass through the data. Even using this

formula the cost of evaluating each trial split would still be O(nt). We propose to reduce

this cost using a simplification that enables and incremental evaluation of all splits of a

variable. According to the formula given in Definition 3.1 the best split s* is the one that

minimises the value given by Equation 3.6. Using the formula in Equation 3.7 we get,

24 The only difference is that for obtaining unbiased estimates of the variance based on a sample one usually

divides the sum of squares by n-1 and not by n.
25 We should note, however, that this formulation brings potential round-off errors (Press et. al. 1992).

CHAPTER 3. TREE-BASED REGRESSION68

()

−×+

−×=
∑∑∑∑ 2222

,
R

Rt

R

RtR

L

Lt

L

LtL

t

D
i

t

D
i

t

t

t

D
i

t

D
i

t

t

n

y

n

y

n

n

n

y

n

y

n

n
tsErr

To simplify notation let SSL and SSR be equal to ∑∑
RtLt D

i
D

i yy 22 and , respectively,

and SL and SR be equal to ∑∑
RtLt D

i
D

i yy and , respectively, leading to

()
tt

R

t

R

tt

L

t

L

nn

S

n

SS

nn

S

n

SS
tsErr

RL

22

, −+−=

()= + − +

1 1 2 2

n
SS SS

n

S

n

S

nt
L R

t

L

t

R

tL R

♦

It is easy to see that the first term of this formula is constant whatever the split is that is

being evaluated. This is so because Dt = DtL
 ∪ DtR

 , so ∑∑∑ =+
tRtLt D

i
D

i
D

i yyy 222 , which

means that SSL + SSR is always constant and equal to ∑
tD

iy 2 . This means that the only

difference among different candidate splits is in the last term.

This simplification we have derived has important consequences on the method used

to evaluate and select the best split of a node. Using these results we can present a new

definition for the best split s* of a variable, which has significant advantages in terms of

computation efficiency when compared to the previous one (Definition 3.1). Note,

however, that this is only valid assuming a constant model of the form given by Equation

3.3 (i.e. assuming a least squares error criterion). As our goal is to minimise the expression

derived above we get the following new definition for the best split of a node:

DEFINITION 3.2

The best split s* is the split belonging to S that maximises the expression

3.2 LEAST SQUARES REGRESSION TREES 69

S

n

S

n
L

t

R

tL R

2 2

+

where, ∑=
LtD

iL yS and ∑=
RtD

iR yS

♦

This definition enables a fast incremental evaluation of all candidate splits S of any

predictor variable as we will see in the following two sections.

3.2.2 Splits on Continuous Variables

We will now present an algorithm that finds the best split for continuous variables using

the results of Definition 3.2. Assuming that we have a set of nt cases whose sum of the Y

values is St, Algorithm 3.3 obtains the best split on a continuous predictor variable Xv.

Algorithm 3.3 - Finding the best split for a continuous variable.

Input : nt cases, sum of their Y values (St), the variable Xv
Output : The best cut-point split on Xv

Sort the cases according to their value in Xv
SR = St; SL = 0
nR = nt ; nL = 0
BestTillNow = 0
FOR all instances i DO

SL = SL + yi; SR = SR - yi
nL = nL + 1 ; nR = nR - 1
IF (Xi+1,v > Xi,v) THEN % No trial if values are equal

NewSplitValue = (SL
2 / nL) + (SR

2 / nR)
IF (NewSplitValue > BestTillNow) THEN

BestTillNow = NewSplitValue
BestCutPoint = (Xi+1,v + Xi,v) / 2

ENDIF
ENDIF

ENDFOR

This algorithm has two main parts. The first consists of sorting the instances by the values

of the variable being examined, which has an average complexity of O(nt log nt) using

Quick Sort. This sorting operation is necessary for running through all trial cut-point

CHAPTER 3. TREE-BASED REGRESSION70

values26 in an efficient manner. We only need to try these cut-point values as they are the

only ones that may change the value of the score given by Definition 3.2, because they

modify the set of cases that go to the left and right branches. The second relevant part of

the algorithm is the evaluation of all candidate splits. The number of trial splits is at most nt

- 1 (if all i nstances have different value of the variable Xv). Without the equation given in

Definition 3.2 we would have to calculate the “variance” of each of the partitions

originated by the candidate split. This would involve passing through all data points (using

the optimised formula of Equation 3.7) which is O(nt). This would lead to a worst case

complexity of O(nt(nt -1)) for the second part of the algorithm. Our optimisation given by

the formula in Definition 3.2 leads to a worst case complexity of O(nt - 1) as the “variance”

calculation is avoided. Notice that this is only valid for the least squares error criterion that

leads to the given simplification. If other criteria were used the complexity could be

different particularly if no similar incremental algorithm could be found. With the

existence of this fast and incremental method of computing the error gain of a split the

complexity of the algorithm is dominated by the sorting operation.

3.2.3 Splits on Discrete Variables

Splits on nominal (or discrete) variables usually involve trying all possible tests of the form

Xv = xv , where xv is one of the possible values of variable Xv. If there are many possible

values this usually leads to larger trees. An alternative is not to use binary trees and have

one branch for each possible value of the variable. This has the disadvantage of an

increased splitting of the training samples, which leads to potentially less reliable estimates

sooner than the alternative that involves binary splits. Yet another possible alternative is to

consider tests of the form Xv ∈ { },...vx . This solution has additional computational costs

although it can improve the comprehensibility of the resulting trees and it does not split too

much the training cases. Breiman et. al. (1984) proved an interesting result (see their

26 A cut-point value is the value tested in a continuous variable split (e.g. X < 10).

3.2 LEAST SQUARES REGRESSION TREES 71

Theorem 4.5, Proposition 8.16 and Section 9.4) that changes the complexity of obtaining

this type of splits from O(2#χ v -1) into O(#χv - 1), where #χv is the cardinality of the

domain of variable Xv. The method suggested by Breiman et. al. (1984, p.247) involves an

initial stage where the instances of the node are sorted as follows. Assuming that B is the

set of values of Xv that occur in the current node t (i.e. B = { b : xi ∈ t ∧ Xi,v = b }), and

defining ()y bi as the average Y value of the instances having value bi in variable Xv, we

sort the values such that,

() () ()y b y b y b B1 2≤ ≤ ≤ ... #

Having the variable values sorted this way, Breiman and his colleagues have proven that,

DEFINITION 3.3 (BREIMAN ET AL., 1984)27

The best split on discrete variable Xv in node t is one of the #B-1 splits

Xv ∈ { b1 , b2 , ... , bh } , h = 1, ..., #B-1

♦

This definition results from a theorem that was proved by Fisher (1958) for the case of the

least squares error criterion for regression and was extended by Breiman and his colleagues

(1984, Sec. 9.4) for a larger class of concave impurity (error) functions. Chou (1991)

furthers generalised these results to an arbitrary number of bins (i.e. not only binary splits)

and to other error functions.

With this method we only have to look for #B-1 subsets instead of 2#B-1. Notice that

we still need to “pass through” all data to obtain the values ()y bi , plus a sorting operation

with #B elements. Before presenting the algorithm for discrete splits we provide a simple

example to illustrate this method.

27 The proof of this theorem is given in Section 9.4 (p.274) of Breiman et. al. (1984). A much simpler

demonstration based on Jensen’s inequality can be found in Ripley (1996, p.218).

CHAPTER 3. TREE-BASED REGRESSION72

EXAMPLE 3.2

Suppose that we have the following instances in a node t :

COLOR ... Y leading to the averages
green ... 24 () ()y green = + + =24 29 13 3 22

red ... 56 () ()y red = + =56 45 2 505.

green ... 29 and () ()y blue = + =120 100 2 110

green ... 13
blue ... 120
red ... 45
blue ... 100

If we sort the values according to their respective average Y values we obtain the ordering

<green, red, blue>. According to Breiman’s theorem the best split would be one of the #B-

1 (in this case 2 = 3-1) splits, namely Xv ∈ {green} and Xv ∈ {green, red} .

♦

Having the instances sorted according to the method explained above, we use the following

incremental algorithm similar to the one presented for continuous variables.

Algorithm 3.4 - Finding the best subset split for a discrete variable.

Input : n cases, sum of their Y values (St), the variable Xv
Output : An ordered set of values of Xv and a partition of this set

Obtain the average Y value associated to each value of Xv
Sort the values of Xv according to the average Y associated to each value
SR = St ; SL = 0
nR = nt ; nL = 0
BestTillNow = 0
FOR each value b of the obtained ordered set of values DO

YB = sum of the Y values of the cases with Xv = b
NB = number of the cases with Xv = b
SL = SL + YB; SR = SR - YB
nL = nL + NB ; nR = nR - NB
NewSplitValue = (SL

2 / nL) + (SR
2 / nR)

IF (NewSplitValue > BestTillNow) THEN
BestTillNow = NewSplitValue
BestPosition = position of b in set of ordered values

ENDIF
ENDFOR

3.2 LEAST SQUARES REGRESSION TREES 73

The complexity of this algorithm is lower compared to the case of continuous variables. In

effect, it is dominated by the number of values of the attribute (#B). The exception is the

part of sorting the values according to their average Y value. The sorting in itself is O(#B

log #B) but to obtain the average Y values associated to each value b we need to run

through all given instances (O(nt)), which is most probability more complex than the

sorting operation, unless there are almost as different values as there are instances.

3.2.4 Some Practical Considerations

The considerations on computational complexity described in the previous sections,

indicate that the key computational issue when building least squares regression trees is

sorting. We confirmed this in practice by looking at the execution profiles of our tree

induction system, RT. We observed that more than 50% of the CPU time was being spent

inside of the Quick Sort function. We have tried other sorting algorithms like Heap Sort

(e.g. Press et al., 1992) but no significant differences were observed. The weight of this

sorting operation is so high that even the implementation of the Quick Sort algorithm is a

key issue. In an earlier version of our RT system we used a “standard” recursive

implementation of this algorithm. This standard implementation has difficulties when the

data is already almost sorted. When we finally used the implementation given by Press et

al. (1992) we have noticed dramatic improvements in the computation time for large data

sets. This means that when dealing with huge data sets the presence of continuous

variables can become overwhelming due to the necessary sorting of their values for finding

the best cut-point. This was already mentioned in Jason Cattlet’s Ph.D. thesis (1991) in the

context of classification trees. The author described some techniques that try to overcome

this problem, like attribute discretisation, which is often explored within Machine Learning

(see Dougherty et. al. 1995 for a survey), and sub-sampling to avoid sorting all values

(called by the author peepholing).

CHAPTER 3. TREE-BASED REGRESSION74

We have carried out a simulation study with two artificial data sets (Fried and Mv)28 to

observe the behaviour of our RT system with respect to computation time. In this

experiments we have generated training samples with sizes from 1000 to 150000 cases. For

each sample we have generated one LS regression tree, recording the respective CPU

time29 taken to carry out this task. The results for each of the data sets are shown in Figure

3.1:

Fried Data Set

0

10

20

30

40

50

60

70

10
00

10
000

19
000

28
000

37
000

46
000

55
000

64
000

73
000

82
000

91
000

10
000

0

10
900

0

11
800

0

12
700

0

13
600

0

14
500

0

Training Sample Size

C
P

U
 ti

m
e

CPU Time = 4.18E-9 + 0.00042 * Ncases (R2 = 0.9918)

Mv Data Set

0

5

10

15

20

25

30

35

10
00

10
000

19
000

28
000

37
000

46
000

55
000

64
000

73
000

82
000

91
000

10
000

0

10
900

0

11
800

0

12
700

0

13
600

0

14
500

0

Training Sample Size

C
P

U
 ti

m
e

CPU Time = 1.87E-9 + 0.000187 * Ncases (R2 = 0.9954)

Figure 3.1 - Computation time to generate a LS tree for different sample sizes.

These graphs show a clear linear dependence of the CPU time on the number of training

cases. We also present two linear models obtained with the results of these experiments,

confirming that the proportion of variance explained by the respective linear relations is

very significant (R2 > 0.99). This simulation study confirms the validity of the speed-ups

we have proposed to the generation of least squares regression trees. They demonstrate that

our RT system can easily handle large data sets and, moreover, they show a desirable

linear dependence of the necessary computation time on the sample size.

28 Full details of these data sets can be found in Appendix A.2.
29 The experiments were carried out in a dual Pentium II 450MHz machine running Linux.

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 75

3.3 Least Absolute Deviation Regression Trees

In their book on classification and regression trees, Breiman and colleagues (1984)

mentioned the possibil ity of using a least absolute deviation (LAD) error criterion to obtain

the best split for a node of a regression tree. However, at the time the method was not yet

fully implemented (Breiman et al.,1984, p.258), so no algorithms or results were given.

LAD regression trees use as selection criterion the minimisation of the absolute deviation

between the model predictions and the Y values of the cases. The use of this criterion leads

to trees that are more robust with respect to the presence of outliers and skewed

distributions. This is the main motivation for studying LAD regression trees. Least squares

(LS) regression trees do not have this nice property. In effect, the squared differences

amplify the effect of the error of an outlier. Moreover, the presence of outliers can strongly

influence the average, thus leading to values in the leaves that are not “representing”

correctly the corresponding training cases.

Building a regression model based on a sample { }n

iii y
1

,
=

x using the least absolute

deviation error criterion consists of finding the model parameters that minimise the

estimated mean absolute deviation,

()∑
=

−
n

i
ii ry

n 1

,
1

xβ (3.8)

where, ()ir x,β is the prediction of the model ()x,βr for the case ii y,x .

The constant k that minimises the estimated mean absolute deviation of the observations

with respect to k, is the median Y value. Minimising the mean absolute deviation to a

constant k corresponds to minimising the statistical expectation of | yi – k |.

THEOREM 3.2

The constant k that minimises the expected value of the absolute deviation to a continuous

random variable Y, with probability density function f(y), is the median of the variable Y,

νY.

♦

CHAPTER 3. TREE-BASED REGRESSION76

A formal proof of this theorem can be found in the appendix at the end of this chapter. As a

consequence of this theorem LAD trees should have medians at the leaves instead of

averages like LS regression trees. The median is a better statistic of centrality than the

average for skewed distributions. When the distribution is approximately normal the

median and the average are almost equivalent. This generality can be seen as an advantage

of LAD trees over LS trees. However, we will see that LAD trees bring additional

computational costs, which can make them less attractive for extremely large data sets.

Growing a LAD regression tree involves the same three major questions mentioned

before with respect to LS trees: a splitting rule; a stopping criterion; and a rule for

assigning a value to all terminal nodes. Moreover, the algorithm driving the induction

process is again the Recursive Partitioning algorithm. With respect to the stopping rule the

same considerations regarding overfitting can be made for LAD trees. In effect, the

overfitting avoidance strategy is independent of the error criterion selected for growing the

trees. We can stop earlier the growth of the tree, or we may post-prune an extremely large

tree. With respect to the value to assign to each leaf, we have seen that it is the median of

the Y values of the cases falling in the leaf. This leads to some differences in the splitting

rule. Using the definition presented in Equation 3.6 for the error of a split, we can define

the best split for a node t using the least absolute deviation criterion as,

DEFINITION 3.4

The best split s* is the split belonging to the candidate set of splits S that maximises

() () ()tsErrtErrtsErr ,, −=∆

which using Equations 3.6 and 3.8 turns out to be equivalent to minimising

 ∑∑ ν−×+ν−×
Rt

R

R

R

Lt

L

L

L

D
ti

tt

t

D
ti

tt

t
y

nn

n
y

nn

n 11

or equivalently minimising ∑∑ ν−+ν−
Rt

R

Lt

L
D

ti
D

ti yy

where,
Lt

ν and
Rt

ν are the medians of the left and right sub-nodes, respectively.

♦

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 77

Thus the best split minimises the sum of the absolute deviations to the respective medians

of the left and right branches. Obtaining the median of a set of values involves sorting

them, the median being the “middle” value after the sorting. Without any computational

simpli fication this would mean that for each trial split we would need to sort the cases by Y

value in each sub-branch to obtain the medians and then “pass through” the data again to

obtain the two sums of absolute deviations. This would have an average complexity of

O(n2 log n) for each trial split. Furthermore, this would have to be done for all possible

splits of every variable. For instance, a continuous variable has potentially n-1 trial cut-

points, which would lead to a average complexity proportional to O(n3 log n). This

represents too much computation even for simple problems. We wil l present algorithms

that overcome this serious limitation of LAD trees.

3.3.1 Splits on Continuous Variables

As we have seen in Algorithm 3.3 the first step before trying all possible splits of a

continuous variable Xi is to sort the instances by the values of this variable. According to

Definition 3.4, given a set of cases and a cut-point V, we need to obtain the sum of the

absolute deviations (SAD) of the left and right branches to evaluate the split. For this

purpose we need to know the Y medians of the cases in each branch of the test. As we have

seen the median of a random variable Y with probabil ity density function f(y), is the value

ν for which the probabil ity of a value being greater or equal to it is 0.5 (i.e.

() ()∫∫
+∞

∞−
=

ν

ν
dyyfdyyf). If we have a sample of such a variable we approximate these

probabilities with frequencies. Thus the sample median of a set of n measurements of a

variable Y, is the middle value when the observations are arranged in ascending order. If n

is an odd number, there is a unique middle value, otherwise the median is taken as the

average between the two middle points. This means that we need to sort the set of

observations to obtain the median. Figure 3.2 shows an example split (Xi < 145) to help

clarifying this task:

CHAPTER 3. TREE-BASED REGRESSION78

Xi 100 123 130 131 140 150 150 170 175 230

Y values 230 200 10 13 53 234 546 43 23 67

Sorted
Y values

10 13 53 200 230 23 43 67 234 546

Figure 3.2 - A spli t on Xi < 145.

The key issue we face within LAD trees, is how to eff iciently compute the sum of absolute

deviations for a new trial split Xi < V’ (with V’ > V). Obtaining these SAD values for a new

cut point involves “moving” some cases from the right branch to the left branch. For

instance, in Figure 3.2 if the new trial cut-point is 160 this would mean that 234 and 546

would now belong to the left branch. We would like to avoid having to re-sort the Y values

for each new trial cut point to obtain the new medians. Moreover, we would also like to

avoid passing again through the data to calculate the new SAD values. Thus the key to

solve the efficiency problems of LAD trees resumes to the following two related problems:

• Given a set of points with median ν and respective SAD, how to obtain the new median
ν’ and the new SAD’, when we add a new set of data points to the initial set.

• Given a set of points with median ν and respective SAD, how to obtain the new median
ν’ and the new SAD’, when we remove a set of data points from the initial set.

In the remaining of this section we will describe an efficient method for solving these two

problems. The algorithm we wil l present obtains the new medians and SADs based on the

values of the previous trial cut point, which largely improves the efficiency of finding the

best LAD split of a continuous variable.

Let P be a set containing the ordered Y values of a branch. Let us divide this set in two

ordered subsets, P- and P+. The set P- contains all observations less or equal to the median,

Xi < 145 Xi ≥ 145

νL = 53

SADL = 407

νR = 67

SADR = 708

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 79

and P+ the remaining observations. For the left branch of the example in Figure 3.2, we

would have P- = {10, 13, 53} and P+ = {200, 230}. Given the definition of the median it is

easy to see that the following holds:

=−
=−

+−

+−

odd is # if 1##

even is # if 0##

PPP

PPP
(3.9)

If the total number of observations in P is even, the median is the average between the

maximum value in P- and the minimum value in P+, otherwise the median is the maximum

value of P-. Adding (or removing) a set of observations to P is equivalent to obtaining two

new ordered subsets subject to the restrictions given in 3.9. Ordered insertion (removal) in

sorted sets can be achieved with computational efficiency using balanced binary trees

(AVL trees) (Wirth, 1976). Using these data structures we can eff iciently update P- and P+

when given a new set of data points B that we wish to add to P. An insertion (removal) in

an AVL tree can be done in an average time of the order of O(log SizeOfTree). This means

that the addition (removal) of a set of points B can be done in an average time of the order

of O(#B log #P/2). The only problem we face is that when new points are added (removed)

the restrictions given in 3.9 may be violated. We thus may need some additional

bookkeeping to maintain these constraints. By updating the new subsets subject to the

restrictions given in 3.9, we can easily obtain the new median after the addition (removal)

of a set of observations.

We now address the issue of obtaining the new sum of absolute deviations, SAD’ . Let

d(y1, y2) be defined as

d(y1, y2) = y2 – y1

The sum of absolute deviations of a set of points P with median νP is given by ,

() () ()

()+− −ν+−=ν−+−ν=

ν+ν=ν=

∑∑∑∑∑∑
∑ ∑ ∑

−+++−−

− +

PPyyyy

ydydydSAD

P
P

i
P

i
P

P
P

i
P

i
P

P

P P P
iPPiPiP P

##

,,,,ν

(3.10)

Using again the example in Figure 3.2, we can confirm this expression observing that

CHAPTER 3. TREE-BASED REGRESSION80

() () () () ()
() () () () () 407230,53200,5353,5353,1353,10

53,23053,20053,5353,1353,10

=++++
=++++=

ddddd

dddddSADL

or equivalently,

() () () 40753764302353531310230200 =+−=−×+++−+=LSAD

We will now address the problem of what happens to this SAD value when we remove a

set of points from P. Let B be a set of points we want to remove from P, originating the set

R (i.e. R = P \ B). According to 3.10, the sum of absolute deviations of the set R is given

by:

()+− −ν+−= ∑∑
−+

RRyySAD R
R

i
R

iR R
##,ν (3.11)

We will present an alternative formulation for SADR,νR
 based on the value of SADP,νP

 and

B. This will reduce the computational complexity of obtaining SADR,νR
 from O(#R) to

O(#B log #R/2). Furthermore our solution avoids the second pass through the data, and we

manage to obtain SADR,νR
 as we update the median.

Let us assume that in the set B there are more values smaller than the median νP, than

values above this median. If we denote these two subsets of B as B- and B+, respectively,

this corresponds to saying that #B- > #B+. This implies that the new median after the

removal of B will be larger than the previous value, i.e. νR > νP. The following example

clarifies this reasoning.

• • • • • • • • • • •

where,
P- is the set of values smaller or equal to the median of the set P;

P- P+

B-

νP

Q νR B+

R- R+

10 15 21 25 28 35 36 42 45 56 70

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 81

P+ is the set of value greater than this median;
B is the set of points we want to remove from P 30;
B- is the subset of B with values smaller or equal to the median of P;
B+ is the subset of B containing the values greater than this median;
R is the new set resulting from removing B from P;
R- is the subset of R containing the values smaller or equal to the median of R;
R+ is the subset of R with the values greater than this median;
and Q is the subset of R containing values in the interval between the median of P
and the median of R.

The following set relations hold under the assumption that νR > νP after removing B from

P:

R+ = P+ - B+ - Q

R- = P- - B- + Q
where, Q is the set containing all points for which d(yi ,νP) < d(νR ,νP).

Using these relations we can re-write Equation 3.11 as :

()
()QBBPPyyyyy

QBPQBP

yyyyyySAD

R
Q

i
B

i
B

i
P

i
P

i

R

Q Q
i

B
i

P
ii

B
i

P
iR R

#2####2

######

,

+−+−ν+−−+−=

++−+−ν+

+−+−−−=

−++−

++−−

∑∑∑∑∑

∑ ∑∑∑∑∑

+−−+

−−++
ν

Similarly, if we assume that νR < νP (i.e. #B- < #B+):

R+ = P+ - B+ + Q

R- = P- - B- - Q

This leads to,

()
()QBBPPyyyyy

QBPQBP

yyyyyySAD

R
Q

i
B

i
B

i
P

i
P

i

R

Q Q
i

B
i

P
ii

B
i

P
iR R

#2####2

######

,

−−+−ν++−+−=

−+−−−ν+

+++−+−=

−++−

++−−

∑∑∑∑∑

∑ ∑∑∑∑∑

+−−+

−−++
ν

Finally, if νR = νP (i.e. #B- = #B+), we have :

30 For instance as a result of a new trial cut-point split (c.f. example of Figure 3.2)

CHAPTER 3. TREE-BASED REGRESSION82

R+ = P+ - B+

R- = P- - B-

leading to,

()
()−++−

++−−

−+−ν+−+−=

+−−ν++−−=

∑∑∑∑
∑∑∑∑

+−−+

−−++

BBPPyyyy

BPBPyyyySAD

R
B

i
B

i
P

i
P

i

R
B

i
P

i
B

i
P

iR R

####

####,ν

Integrating all three cases into one single formula we get,

()()()

()()()()QBBPP

yyyyySAD

PR

PR

R

PRR

Q
iPR

B
i

B
i

P
i

P
iR

#2####

2,

×ν≠ν−+−+−ν+

×ν≠ν−+−+−=

ν<ν−++−

ν>ν ∑∑∑∑∑
+−−+

ν
(3.12)

This formula looks much more complex than Equation 3.11. However, from a

computational point of view, it is more suitable for the incremental evaluation of the trial

splits. In effect, we are defining the SAD of the new set of points (R) as a function of the

previous set (P) plus some additional calculations with B and Q. Moreover, as we have to

remove the observations in B from the two AVL trees in order to obtain the new median

νR, we can obtain the summations over B at the same time, thus adding no additional

computational cost.

We will now present an algorithm31 that given a set P and a subset B, obtains the value

of the SAD in the set resulting from removing B from P. This is one of the steps for the

evaluation of a new trial split based on a previous one, as it was mentioned before. Going

back to the example in Figure 3.2 this algorithm solves the problem of obtaining the SAD

of the right branch of the test Xi < 160 based on the SAD of the test Xi < 145. In this

example the set B is {234, 546}. The algorithm we present below assumes that we have the

values in P stored in two AVL trees P- and P+. Furthermore we must have the values of νP,

∑
+P

iy , ∑
−P

iy , #P- and #P+. The algorithm returns the values of νR, ∑
+R

iy , ∑
−R

iy , #R-, #R+

plus the updated AVL trees. According to Equation 3.11 we can use these values to

31 An algorithm with similar objectives was presented in Lubinsky (1995).

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 83

calculate SADR,νR. To avoid over-cluttering of the algorithm we have omitted some special

cases like when the AVL trees turn empty after removing the cases in B.

Algorith m 3. 5 – Updat ing t he med i an and SAD after r emovi ng a s et of
points B.

Input :
P+, P - % AVL’s co ntaini ng the eleme nts in the c urrent parti t ion
SP+, SP - % The sum of the Y val ues of the c ases i n each AVL
NP+, NP - % Number o f elements i n each AVL
Med % The curr ent me dian v alue
B % The data point s to b e removed

Output :
The upda t ed va l ues c haract erisin g the new par titio n
(i.e. up dated P +, upd ated P -, SR +, SR -, NR+, NR-, and NewMED)

SB- = SB+ = NB- = NB+ = SQ = 0
FOR each b in B DO % removi ng the B cas es

IF (b <= Med) THEN
SB- = SB - + b
NB- = NB- + 1
P- = AVLr emove(b,P -)

ELSE
SB+ = SB+ + b
NB+ = NB+ + 1
P+ = AVLr emove(b,P +)

END IF
END FOR
NQ = (NB + - NB -) DIV 2 % DIV st ands f or int eger d i visio n, e.g . 5 DI V 2 = 2
NR+ = NP+ - NB + + NQ % Obtain i ng th e number of cases i n the two n ew AVL’ s
NR- = NP- - NB - - NQ
IF (NR + > NR-) T HEN % Check consis t ency with 3. 9

NR+ = NR+ - 1
NR- = NR- + 1
NQ = NQ – 1

END IF
IF (NQ > 0) TH EN % Now moving t he cas es bel onging to Q

FOR i=1 TO NQ DO
X = AVLm aximum(P-)
P- = AVLd elete(X,P -)
P+ = AVLi nsert(X,P +)
SQ = SQ + X

END FOR
ELSE IF (NQ < 0) THEN

FOR i=1 TO -NQ DO
X = AVLm i nimum(P+)
P+ = AVLd elete(X,P +)
P- = AVLi nsert(X,P -)
SQ = SQ + X

END FOR
END IF
IF (NR - > NR+) TH EN % Calcul ating t he ne w Median

CHAPTER 3. TREE-BASED REGRESSION84

NewMED = AVLmaximum(P-)
ELSE

NewMED = (AVLmaximum(P-) + AVLminimum(P+)) / 2
END IF
SR+ = SP+ - SB+ + (-(NewMED ≠ MED))̂ (NewMED > MED)* SQ % Calcul ating t he SR’ s
SR- = SP- - SB- + (-(NewMED ≠ MED))̂ (NewMED < MED)* SQ

Following a similar reasoning it would be possible to prove that the sum of absolute

deviations of a set A, resulting from adding a set of points B to our original set P can be

obtained by,

()()()

()()()()QBBPP

yyyyySAD

PA

PA

A

PAA

Q
iPA

B
i

B
i

P
i

P
iA

#2####

2,

×ν≠ν−+−+−ν+

×ν≠ν−+−+−=

ν<ν+−+−

ν>ν ∑∑∑∑∑
−+−+

ν
(3.13)

This equation leads to a very similar algorithm that updates the median and SAD when we

add a set of points. In the example mentioned before this algorithm would enable to obtain

the value of the SAD of the left branch of the test Xi < 160 based on the SAD of the test Xi <

145. Due to its similarity to Algorithm 3.5 we do not present it here.

The computational complexity of these algorithms is dominated by the operations in

the AVL trees with the cases in B. These operations can be done in time proportional to

O(#B log #P/2). If we consider all possible splits of a continuous variable we get to an

average complexity of O(n log n/2), where n is the number of observations in the node.

This number results from the fact that all observations need to be moved from the right

branch to the left branch when we try all possible splits. As we have seen the naïve

approach has an average complexity of O(n3 log n), which means that our algorithms

provide a significant computational complexity decrease for the task of finding the best

split of a continuous variable in LAD trees. However, we have seen in Section 3.2.2 that

the corresponding complexity in LS regression trees is O(n), which means that even with

our optimisations LAD trees are more complex. Still , both type of trees need a previous

sorting operation on the values of the variable that is done on average in O(n log n), which

turns out to be the major computational burden.

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 85

Having solved the problem of incrementally obtaining the SAD of a new split based on

a previous one, we are now ready to present the algorithm for obtaining the optimal LAD

split for a continuous variable.

Algorith m 3. 6 - Best LAD split o f a con t inuo us var i able.

Input : n case s; the i r med i an, S AD, an d resp ective AVL’s ; the variab l e Xv
Output : The best cu t -poin t spli t on Xv

Sort the cases accor ding t o thei r valu e in Xv

Initiali se Rig ht wit h the I nput median infor mation (med, sad an d avl’ s)

Set B to the e mpty s et
BestTill Now = 0
FOR all i nstan ces i DO

Add yi to B
IF (Xi+1,v > Xi,v) THEN

Left = A ddToSet (Left , B)
Right = RemoveFromSet (Righ t ,B)
RightSAD = Rig ht.R + - Right . R- + Ri ght.Me dian * (Righ t .N - - Right.N +)
LeftSAD = Left . R+ - L eft.R - + Left. Median * (Le f t.N - - Left.N +)
NewSplit Value = Righ t SAD + LeftS AD
IF (New SplitV alue > BestT i llNow) THEN

BestTill Now = NewSpl i tValue
BestCutP oint = (Xi+1, v + Xi,v) / 2

ENDIF
Set B to the e mpty s et

ENDIF
ENDFOR

Algorithm 3.6 uses the algorithms we have described before (the call RemoveFromSet is

Algorithm 3.5, while AddToSet is the corresponding algorithm for adding a set). The

values returned by these two algorithms enable us to calculate the SADs of both branches

using Equation 3.11.

We have carried out an experiment with the Fried domain in order to confirm the

validity of our proposed algorithms as a means to allow growing LAD trees within

reasonable computation times. In this experiment we have varied the training sample size

from 1000 to 150000 cases. For each size, we have grown a LAD tree storing the

respective CPU time taken to carry out this task. The results are shown in Figure 3.3:

CHAPTER 3. TREE-BASED REGRESSION86

Fried Data Set

0

50

100

150

200

250

300

350

400

450

10
00

10
00

0

19
00

0

28
00

0

37
00

0

46
00

0

55
00

0

64
00

0

73
00

0

82
00

0

91
00

0

10
00

00

10
90

00

11
80

00

12
70

00

13
60

00

14
50

00

Training Sample Size

C
P

U
 ti

m
e

CPU Time = 2.53E-8 + 0.00254 * Ncases (R2 = 0.9815)

Figure 3.3 - Computation time to grow a LAD tree for different sample sizes

of the Fried domain.

This experiment shows that although LAD trees are computationally more demanding than

LS trees (c.f. Figure 3.1), they still maintain an almost linear dependence of the CPU time

with respect to the training sample size. This behaviour clearly confirms that our

algorithms are able to evaluate all possible splits of continuous variables in a

computationally efficient way.

3.3.2 Splits on Discrete Variables

The best nominal split of the form Xv ∈ { },...vx can be efficiently obtained in LS trees due

to a theorem proved by Breiman et al. (1984). This theorem reduces the number of tried

splits from 2#χ v -1 to #χv – 1. Even for a small number of values of the variable this

reduction is significant. This means that the question whether this theorem also applies to

the LAD error criterion is a key issue in terms of computational efficiency.

According to Definition 3.4 the value of a split is given by the sum of the SADs of the

left and right branches. A theorem equivalent to the one proved by Breiman et. al. (1984)

for the LAD criterion would mean that the following hypothesis is true :

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 87

HYPOTHESIS 3.1

If P1, P2 form a partition resulting from the best split in a discrete variable (i.e. P1, P2 is an

optimal partition) and νP1
 < νP2

 then

212211
:, BBPBPB ν<ν∀ ⊂⊂

♦

If this hypothesis is true, to obtain the best discrete split it would be sufficient to order the

values of the discrete variable by their median and the best split is guaranteed to be

between two of these ordered values. This is exactly the same procedure followed in

Example 3.2 presented in Section 3.2.3, but now with medians instead of averages.

To prove Hypothesis 3.1 it is suff icient to demonstrate that if we exchange any two

subsets of the optimal partition we get a worse value of the split. In particular if ψP1,P2
 is

the sum of the SADs of the optimal partition (i.e. ψP1,P2
 = SADP1

 + SADP2
), B1 =

i
i

p
Pp

ν
∈ 1

max

and B2 =
i

i

p
Pp

ν
∈ 2

min , then if we exchange B1 with B2, originating the partition N1, N2, we

should be able to prove that ψP1,P2
 ≤ ψN1,N2

. Notice that,

N1 = P1 – B1 + B2 and N2 = P2 – B2 + B1

For instance, let X1 ∈ {a, b, c} be an optimal split for the variable X1, with the domain of

the variable being χ1 = { a, b, c, d, e} . Let P1 and P2 be the sets containing the respective Y

values associated with the division entailed by the split. Furthermore, let us suppose32 that

νa > νc > νb , and νe < νd. If B1 is the subset of P1 containing the Y values of the cases for

which X1 = a, and B2 is the subset of P2 containing the Y values of the cases for which X1 =

e, we want to prove that SAD{ b,c,e} + SAD{ a,d} ≤ SAD{ a,b,c} + SAD{ d,e} (i.e. that ψ{ b,c,e} ,{ a,d} ≤

ψ{ a,b,c} ,{ d,e}).

32 νi represents the median of the Y values of the cases for which the value of the variable is i.

CHAPTER 3. TREE-BASED REGRESSION88

The derivation of equations for the SAD of the sets N1 and N2 follows a similar

reasoning used for deriving Equations 3.12 and 3.13. However, the expressions are a bit

more complex. Our goal is to find an expression for ψN1,N2 as a function of ψP1,P2
. Namely,

we want an expression of the form

21, 212121
KSADKSADSADSAD PPNNNN +++=+=ψ (3.14)

If we manage to obtain expressions for K1 and K2 and to prove that their sum is greater or

equal to zero, we would be able to obtain a demonstration of Hypothesis 3.1. At the end of

this chapter we present a derivation of such an expression for ψN1,N2
 . However, the

expressions we were able to derive for K1 and K2 are still too complex for a clear

understanding of the behaviour of ψN1,N2
 . Still, we were able to prove the falsity of

Hypothesis 3.1 by finding a counter-example through a large-scale simulation study. This

means that its use may lead to the choice of sub-optimal discrete splits for LAD tree nodes.

The question that arises is whether the predictive accuracy of LAD trees is affected by

these potentially sub-optimal splits. In effect, although we were not able to formally

characterise the cases where sub-optimality occurs, we have experimentally observed that

these are rare events. In most of our simulation experiments using Hypothesis 3.1 leads to

the optimal split. Moreover, if the split is sub-optimal it does not means that the resulting

LAD tree will have lower performance in a separate independent test set. We have

implemented in our RT system both alternative ways of finding the best nominal split:

using Hypothesis 3.1; or trying all possible combinations. Regression data sets with lots of

nominal variables do not abound. In our benchmark data sets only Abalone and Mv include

nominal variables. In all experiments we have carried out with these two domains, we

never observed any difference in terms of accuracy or tree size33, between the two

alternatives. On the contrary, in terms of computation time there is an overwhelming

advantage of using the heuristic method of finding best nominal variable splits outlined by

Hypothesis 3.1. We have carried out an experiment with the Mv artificial domain to

33 Actually the trees were always the same, meaning that the use of the Hypothesis in these data sets is not

leading to sub-optimal splits.

3.3 LEAST ABSOLUTE DEVIATION REGRESSION TREES 89

confirm this advantage. We have varied the training sample size from 1000 to 150000

cases, generating two LAD trees. The first (LAD) was obtained by exploring all possible

combinations of the discrete variable values, when addressing the task of finding the best

sub-set split of a tree node. The latter (LAD, fast) was generated through the use of the

results of Hypothesis 3.1 as a heuristic process of finding the best discrete split of a node.

The computation time taken to grow these two trees is shown in Figure 3.4:

LAD vs. LAD(fast) / Mv Data Set

0

100

200

300

400

500

600

10
00

11
00

0
21

00
0

31
00

0
41

00
0

51
00

0
61

00
0

71
00

0
81

00
0

91
00

0

10
10

00

11
10

00

12
10

00

13
10

00

14
10

00

Training Sample Size

C
P

U
 ti

m
e

LAD LAD(fast)

CPU Time(LAD) = 3.34E-8 + 0.00335 * Ncases (R2 = 0.9768)

CPU Time(LAD,fast) = 2.62E-8 + 0.00263 * Ncases (R2 = 0.9727)

Figure 3.4 - Computation Time of LAD and LAD(fast) trees for different sample sizes.

This experiment confirms the clear computational advantage of using our proposed

heuristic process of finding the best discrete split for the nodes of LAD trees. Moreover,

we should remark that the three discrete variables of the Mv domain, have very few values

(two or three). This means that the cost of evaluating all possible discrete splits is not too

large when compared to our heuristic process. In domains containing discrete variables

with a large set of values (e.g. Costa, 1996) the advantage of our proposal would be even

more evident. Still, we should remark that both alternatives have a nearly linear behaviour

with respect to the relation between CPU time and number of training cases.

CHAPTER 3. TREE-BASED REGRESSION90

3.4 LAD vs. LS Regression Trees

In the previous sections we have described two methods of growing regression trees. These

alternatives differ in the criteria used to select the best split for each tree node. While LAD

trees try to ensure that the resulting model has the smallest possible deviation from the true

goal variable values, LS trees try to minimise the squared differences between the

predicted and true values. In this section we address the question of which type of trees

should we prefer given a new regression task.

The answer to this question is related to the predictive performance measure that will

be used to evaluate the resulting regression models. There are two major groups of

prediction error statistics (c.f. Section 2.3.2): one based on absolute differences between

the predicted values and the true Y values of the cases; and the other based on the squared

differences between these values. These two forms of quantifying the prediction error of a

model entail different preference biases. In effect, the squared differences are more

“ influenced” by large prediction errors than the absolute differences. As such, any

regression model that tries to minimise the squared error will be strongly influenced by this

type of errors and will try to avoid them. This is the case of LS regression trees whose

splitting criterion revolves around the minimisation of the resulting mean squared error

(c.f. Definition 3.1). On the contrary, the minimisation of the absolute differences will

result in a model whose predictions wil l on average be “nearer” the Y value of the training

cases. This model is not so influenced by large prediction errors as they are not so

“ampli fied” as when using squared differences. Models obtained by minimising the

absolute differences are expected to have lower average difference between the true and

predicted values. However, these models will probably commit extreme errors more often

than models built around the minimisation of the squared differences. This is the case of

LAD trees that use a splitting criterion that tries to minimise the absolute differences (c.f.

Definition 3.4). From this theoretical perspective we should prefer LAD regression trees if

we will evaluate the predictions of the resulting model using the Mean Absolute Deviation

(MAD) statistic. On the contrary, if we are evaluating the prediction error using the Mean

3.4 LAD VS. LS REGRESSION TREES 91

Squared Error (MSE) statistic, we should prefer LS regression trees. So, given a new

regression problem, which statistic should we use? In applications where the ability to

avoid large errors is crucial (for instance due to economical reasons), achieving a lower

MSE is preferable as it penalises this type of errors, and thus LS trees are more adequate.

In applications where making a few of such extreme errors is not as crucial as being most

of the times near the true value, the MAD statistic is more representative, and thus we

should theoretically prefer LAD trees.

We should remark that both types of trees are built using estimates of both the MAD

and MSE prediction error statistics. Any statistical estimator is prone to error. Thus, if

either our estimators are unreliable or our training sample is not representative, the

expected theoretical behaviour described above can be misleading. In these cases, we could

see a LS tree outperforming a LAD tree in terms of MAD, or a LAD tree outperforming a

LS tree in terms of MSE. Still, as we will see by a series of example applications, this is

not the more frequent case.

The first application we describe concerns the environmental problem of determining

the state of rivers and streams by monitoring and analysing certain measurable chemical

concentrations with the goal of inferring the biological state of the river, namely the

density of algae communities34. This study is motivated by an increasing concern as to

what impact human activities have on the environment. Identifying the key chemical

control variables that influence the biological process associated with these algae has

become a crucial sub-task in the process of reducing the impact of man activities. The data

used in this application comes from such a study. Water quality samples were collected

from various European rivers during one year and an analysis was carried out to detect

34 This application was used in the 3rd International Competition (http://www.erudit.de/erudit/activities/ic-99/)

organised by ERUDIT in conjunction with the new Computational Intelligence and Learning Cluster

(http://www.dcs.napier.ac.uk/coil/). This cluster is a cooperation between four EC-funded Networks of

Excellence : ERUDIT, EvoNet, MLnet and NEuroNet. The regression system implementing the ideas in this

thesis (RT) was declared one of the runner-up winners by the international jury of this competition.

CHAPTER 3. TREE-BASED REGRESSION92

various chemical substances. At the same time, algae samples were collected to determine

the distributions of the algae populations. The dynamics of algae communities is strongly

influenced by the external chemical environment. Determining which chemical factors are

influencing this dynamics represents important knowledge that can be used to control these

populations. At the same time there is also an economical factor motivating this analysis.

In effect, the chemical analysis is cheap and can be easily automated. On the contrary, the

biological part involves microscopic examination, requires trained manpower and is

therefore both expensive and slow. The competition task consisted of predicting the

frequency distribution of seven different algae on the basis of eight measured

concentrations of chemical substances plus some additional information characterising the

environment from which the sample was taken (season, river size and flow velocity).

The first regression problem we analyse concerns the task of predicting the frequency

distribution of one of the algae (Alga 6). Using the 200 available training cases we have

grown a LS regression tree. The resulting model is shown in Figure 3.5. If we test this tree

on the available testing set consisting of 140 test cases we get a Mean Squared Error

(MSE) of 162.286. In alternative, if we evaluate the same model using the Mean Absolute

Deviation (MAD) of the model predictions we obtain a score of 7.328. This latter score is

more intuitive in the sense that it is measured using the same units as the goal variable.

This means that the induced tree (shown in Figure 3.5) makes on average an error of 7.328

in guessing the distribution frequency of the alga.

3.4 LAD VS. LS REGRESSION TREES 93

Figure 3.5 - A LS regression tree for the Alga 6 problem35.

(MSE = 162.286; MAD = 7.328)

Using the same training data we have also grown a LAD regression tree. The resulting

model is shown in Figure 3.6. The MSE of this tree on the same testing set is 179.244,

which is worse than the MSE of the LS tree shown earlier (MSE = 162.286). However, if

we evaluate this LAD tree using the MAD statistic we obtain a score of 6.146, which is

better than the MAD of the LS tree (MAD = 7.328). With respect to the training times,

both trees are obtained with little computation time due to the small size of the training

35 Left branches correspond to cases were the node test is true, while right branches correspond to the

opposite.

MeanNO3N ≤ 28.03

MeanNO3N ≤ 3.00

season ∈ {winter,spring}

MeanNO3N ≤ 1.48 MinO2 ≤ 5.30

MeanOrtPO4 ≤ 21.83

MeanNO3N ≤ 6.19

season ∈ {winter,spring}

riversz ∈ {small,medium}

MeanNO3N ≤ 3.05

Y = 77.60

Y = 16.81

Y = 0.21 Y = 2.16

Y = 32.10

Y = 1.12 Y = 5.67

Y = 3.42

Y = 11.81

Y = 42.70 Y = 10.45

CHAPTER 3. TREE-BASED REGRESSION94

sample. Regarding comprehensibility, both models are acceptable although the LAD tree is

considerably smaller.

Figure 3.6 - A LAD regression tree for the Alga 6 problem.

(MSE = 179.244; MAD = 6.146)

This example clearly illustrates our previous position concerning which type of model is

better. This question depends on the goals of the application. In effect, if one is willing to

accept a few exceptionally large errors but give more weight to a model that on average

leads to predictions that are nearer the true frequency distribution of the alga, then we

should prefer the LAD tree. On the contrary, if we consider that extreme errors are

inadmissible because, for instance, they could lead to an environmental disaster, then we

should definitely use the LS model. To support these arguments we show in Figure 3.7 the

absolute difference between the predicted and true values for both trees on all 140 test

cases. As it can be confirmed, the LAD tree makes several very large errors.

MeanNO3N ≤ 3.00

MeanNO3N ≤ 28.03

MinO2 ≤ 8.55

Y = 0.00

Y = 0.60 Y = 6.90

Y = 77.60

3.4 LAD VS. LS REGRESSION TREES 95

0

10

20

30

40

50

60

70

80

LAD Errors LS Errors

Figure 3.7 - The absolute difference of the errors committed by the LAD and LS trees.

A closer inspection of the distribution of the error size committed by the two models is

given in Figure 3.8. This histogram confirms that the LAD tree errors are more often

nearer the true value (in 108 of the 140 test cases the error is less than 10) than those of the

LS model. In effect, looking at the first two error bins that can be seen as the best scores of

both models, we observe that the frequency of errors is more balanced in the case of the LS

tree, while the LAD tree is clearly skewed into the bin of smallest errors. Moreover, this

histogram also confirms that the LAD tree makes more extreme errors than the LS tree.

Histogram of Errors

0
2
4
6
8

10
12
14
16
18
20

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 >80

Error

F
re

q
u

e
n

cy

LAD LS

1
0

8

9
6

3
2

Figure 3.8 - The histogram of the errors of the LAD and LS trees.

CHAPTER 3. TREE-BASED REGRESSION96

We have repeated similar experiments with other data sets and we have observed a similar

behaviour. Table 3.1 summarises the results of these experiments in other domains: Alga 2

of the same competition data; the Abalone data set; and the Pole domain. Further details

concerning these problems can be found in Appendix A.2.

Table 3.1. Results of comparisons between LAD and LS trees.

Alga 2
200 train cases/140 test cases

Abalone
3133 / 1044

Pole
5000 / 4065

LAD LS LAD LS LAD LS
MSE 109.347 92.431 5.894 5.094 119.342 41.612
MAD 6.232 6.422 1.632 1.639 2.889 2.984
N. Leaves 13 5 51 39 119 97
Error Bins
Frequencies
1st bin
2nd bin

117
6

102
2

658
162

452
280

1782
38

1772
91

Last but one
Last bin

2
1

0
0

3
1

1
0

11
3

1
0

We observe that depending on the criteria used to evaluate the models (MSE or MAD),

either the LAD or LS trees achieve the best score. Moreover, the last lines of the table,

showing the frequency distribution of the first two error bins containing the smallest errors

and the last two error bins containing the largest errors, confirm a similar error distribution

exists as the one shown in Figure 3.8.

The experiments described in this section lead to the following conclusions regarding

the applicability of both LS and LAD regression trees. LAD trees are, on average, more

accurate than LS trees, although they also commit extreme errors more often. LS trees, on

the other hand, are less prone to large prediction errors, while achieving less accurate

predictions than LAD trees, on average. Both types of trees are comparable in terms of

comprehensibility of the models, but LAD trees are considerably more demanding in terms

of computation time. Still, this latter observation can only be regarded as relevant for

extremely large training samples.

3.5 CONCLUSIONS 97

3.5 Conclusions

In this chapter we have addressed the issue of growing regression trees. We have described

in detail two alternative methods of tree induction: one based on the least squares (LS)

criterion and the other on the least absolute deviation (LAD) criterion.

Least squares (LS) regression trees had already been described in detail in the book by

Breiman et. al. (1984). Compared to this work we have presented some simplifications of

the splitting criterion that lead to gains in computational eff iciency. With these

simpli fications the task of growing a tree is carried out in computation times that are

practically linear with respect to the training sample size.

With respect to LAD regression trees we have presented a detailed description of this

methodology. These trees can be considered more adequate to certain types of applications.

However, they bring additional computational diff iculties to the task of finding the best

split of a node. We have presented algorithms that overcome these difficulties for numeric

variables, as confirmed by our experiments. With respect to nominal variables we have

shown that the theorem proved by Breiman et. al. (1984) for subset splits in LS trees does

not hold for the LAD error criterion. Still, we have experimentally observed that the use of

a heuristic based on the “theorem” does not entail any significant loss in predictive

accuracy. Moreover, using this heuristic to find the best discrete split brings very

significant gains in computation time as we have observed through a large experiment with

a domain containing discrete variables.

We have shown through a set of experiments that both types of trees can be useful

depending on the application goals. LAD trees were found to be more accurate on average,

while being more susceptible to make large errors. If a few of these errors do not present a

problem in the application under consideration then these trees are clearly preferable to LS

trees. On the contrary, if extreme errors are unacceptable then LS trees should be the

choice. Moreover, these latter trees are obtained in a considerably smaller computation

time.

CHAPTER 3. TREE-BASED REGRESSION98

3.5.1 Open Research Issues

A simple formal proof of the falsity of Hypothesis 3.1 would also be useful. This could

provide safe indications of when we should or should not use the hypothesis to find the

best subset split of a nominal variable in LAD trees.

A further comparative study between LAD and LS trees would be desirable. As

Breiman et. al. (1984, p.262) mentioned, it is difficult to decide which tree is best. If we

use as measure of accuracy on unseen cases the mean squared error (MSE), LS trees will

usually have better score as they are grown to minimise this error. If we use instead the

mean absolute deviation (MAD) the opposite occurs because LAD trees minimise absolute

errors. Apart from extended experimental comparisons a theoretical study of the properties

of these two types of trees would certainly help to decide which type of model to use in a

new application.

APPENDIX 99

APPENDIX.

PROOF OF THEOREM 3.1.

If Y is a continuous random variable with probability density function f(y), the function that

we want to minimise with respect to k is,

() ()[] () () [] ()

() ()

() () ()∫∫∫
∫

∫∫

∞+

∞−

∞+

∞−

∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−

=+−=

+−=

=−=−=φ

1 as,2

2

 as ,

22

22

22

dyyfkdyyfykdyyfy

dyyfkyky

dyyfyYEdyyfkykYEk

Minimising with respect to k we have,

() () ()∫∫
∞+

∞−

∞+

∞−
=⇔=+−⇔=

∂
∂

dyyfykkdyyfyk
k

02200φ

which by definition is E[Y], i.e. the mean value of the variable Y.

♦

PROOF OF THEOREM 3.2.

The function we want to minimise with respect to k is,

() () ()

() () () ()

() () () ()∫∫∫ ∫
∫ ∫

∫

∞+∞+

∞− ∞−

∞−

∞+

+∞

∞−

−+−=

−+−=

−==

kk

k k

k

k

dyyfkdyyfydyyfydyyfk

dyyfkydyyfyk

dyyfkyy-kEkφ

, as () ()∫∫ ∞−

+∞
−=

k

k
dyyfdyyf 1 .

So, we have

CHAPTER 3. TREE-BASED REGRESSION100

() () () () ()

() () ()

() () ()∫∫
∫∫ ∫

∫∫ ∫∫

∞+

∞−

∞+

∞− ∞−

+∞

∞− ∞−∞−

+−−=

+−−=

+−+−=φ

k

k

k

k k

k

k kk

dyyfydyyfykkFk

dyyfydyyfykdyyfk

dyyfydyyfydyyfkkdyyfkk

2

2

where, F(y) is the cumulative distribution function of the variable Y.

Now, obtaining the derivative of this function in order to k, and making it equal to zero we

get,

() () () () () ()

() ()
2

1
0so,

12122

=⇔=
∂
∂

−=−−−+=
∂
∂

kFk
k

kFkfkkfkkfkkFk
k

φ

φ

As by definition the cumulative distribution function is equal to ½ for the median of any

distribution, the proof is complete.

♦

TENTATIVE PROOF OF HYPOTHESIS 3.1.

To prove Hypothesis 3.1 it is suff icient to demonstrate that if we exchange any two subsets

of the optimal partition we get a worse value of the split. In particular if ψP1,P2
 is the sum

of the SADs of the optimal partition (i.e. ψP1,P2
 = SADP1

 + SADP2
), B1 =

i
i

p
Pp

ν
∈ 1

max and B2 =

i
i

p
Pp

ν
∈ 2

min , then if we exchange B1 with B2, originating the partition N1, N2, we should be

able to prove that ψP1,P2
 ≤ ψN1,N2

. Notice that,

N1 = P1 – B1 + B2 and N2 = P2 – B2 + B1

In this appendix we derive an expression for ψN1,N2
 based on the SADs of P1 and P2. The

derived expression as the form

APPENDIX 101

21, 2121
KSADKSAD PPNN +++=ψ

Understanding the sign of K1 + K2, is a fundamental step for the proof of Hypothesis 3.1.

The SAD of the set N1 consisting of removing a set B1 from a set P1 and adding to the

same set the set B2, is given by

()()() ()+−ν>ν −ν+×ν≠ν−+

−+−+−=

∑

∑∑∑∑∑∑
−++−−+

11

,

##2
1

1

11

11

221111

11

NNy

yyyyyySAD

N
Q

iPN

B
i

B
i

B
i

B
i

P
i

P
iN

PN

Nν

(3.15)

We omit the derivation of this equation, as it is similar to the derivation of Equations 3.12

and 3.13. As we need to obtain an expression for the sum of the two SADs (Equation 3.14),

it is necessary to introduce notation for differentiating numbers bigger (smaller) than νP1

from the ones bigger (smaller) than νP2
. The following figure illustrates this problem for

the set B1 and the adopted notation.

 • • • • • •

The same kind of notation can be used to describe the relation of set B2 with both medians.

Using Equation 3.15 and the notation presented above, we can derive an expression for our

target function ψN1,N2,

−1
1B

νP1 νP2
νB1

+1
1B

−2
1B +2

1B

+−
1B

CHAPTER 3. TREE-BASED REGRESSION102

()()() ()

()()() ()+−ν>ν

+−ν>ν

−ν+×ν≠ν−+

−+−+−+

−ν+×ν≠ν−+

−+−+−

=+=Ψ

∑

∑∑∑∑∑∑

∑

∑∑∑∑∑∑

−++−−+

−++−−+

22

11

,,,

##2

##2

2

2

22

22

2
1

2
1

2
2

2
2

2
2

2
2

1

1

11

11

1
2

1
2

1
1

1
1

1
1

1
1

221121

NNy

yyyyyy

NNy

yyyyyy

SADSAD

N
Q

iPN

B
i

B
i

B
i

B
i

P
i

P
i

N
Q

iPN

B
i

B
i

B
i

B
i

P
i

P
i

NNNN

PN

PN

NN νν

as it may be confirmed in the figure presented above the following holds,

∑∑∑
+−−−

−=−
1

2
1

1
1 B

i
B

i
B

i yyy and ∑∑∑
+−++

−=−
1

1
1

2
1 B

i
B

i
B

i yyy

∑∑∑
+−++

=−
2

2
2

1
21 B

i
B

i
B

i yyy and ∑∑∑
+−−−

=−
2

1
2

2
2 B

i
B

i
B

i yyy

which leads to,

()()() ()()()

() ()+−+−

ν>νν>ν

−ν+−ν+

+

×ν≠ν−+×ν≠ν−×+

+

−×+

+−+−=Ψ

∑∑

∑∑

∑∑∑∑

+−+−

−+−+

2211

,

####

2

2

21

2

22

22

1

11

11

12

2
2

2
2

1
1

1
1

21

NNNN

yy

yy

yyyy

NN

Q
iPN

Q
iPN

B
i

B
i

P
i

P
i

P
i

P
iNN

PNPN

We know that36

() ()

() ()21,

21,

##

##

2121
2

2
2

2
1

1
1

1

2
2

2
2

2

1
1

1
1

1

21

PODDPODDyyyy

PODDyyPODDyy

PPPP
P

i
P

i
P

i
P

i

P
P

i
P

iP
P

i
P

iPP

×ν−×ν−Ψ=−+−⇔

×ν+−+×ν+−=Ψ

∑∑∑∑

∑∑∑∑

−+−+

−+−+

where,

()

=
otherwise0

odd is if1 i
iODD

36 Notice that due to the restrictions presented in Equation 3.9, ODD(#P) = #P- - #P+.

APPENDIX 103

So, finally we get

()()() ()()()

() () () ()2211

,,

####

2

2

2211

2

22

22

1

11

11

12

2121

PODDNODDPODDNODD

yy

yy

PNPN

Q
iPN

Q
iPN

B
i

B
i

PPNN

PNPN

ν−ν+ν−ν+

+

×ν≠ν−+×ν≠ν−×+

+

−×+

+Ψ=Ψ

∑∑

∑∑

ν>νν>ν

+−+−

(3.16)

This means that to prove Hypothesis 3.1 we need to prove that

()()() ()()()

() () () () 0####

2

2

2211 2211

2

22

22

1

11

11

12

≥ν−ν+ν−ν+

+

×ν≠ν−+×ν≠ν−×+

+

−×

∑∑

∑∑

ν>νν>ν

+−+−

PODDNODDPODDNODD

yy

yy

PNPN

Q
iPN

Q
iPN

B
i

B
i

PNPN (3.17)

The analytic proof of the falsity of 3.17 is rather complex as there are too many variants

depending on the relation between the medians and also the cardinalities of the sets

involved (P1, P2, B1 and B2). Being so, we have decided to present a simple example that

falsifies Hypothesis 3.1.

Let X1 be a discrete variable with the following domain : χ1 = {a, b, c, d, e}. Let us

further suppose that we have the following set of cases,

X1 Y X1 Y X1 Y X1 Y X1 Y X1 Y

d -582 a -143 c -356 e -594 b -138 b 924

d -289 a 503 c -94 e -280 b 98

d -274 a -400 c 79 e 231 b 177

d -226 a -128 c 562 e 601 b 194

a 568 c -995 e -986 e 711 b 717

CHAPTER 3. TREE-BASED REGRESSION104

This set of cases leads to the following ordering of the values, based on their respective

medians,

{d, a, c, e, b} as νd (-281.5) < νa (-128) < νc (-94) < νe (-24.5) < νb (185.5)

Let us consider the split X1 ∈ {d,a}. The value of this split is given by the sum of the

two respective SADs and is equal to ψ{d,a},{c,e,b} = 2345 + 7481 = 9826. According to

Hypothesis 3.1, if we exchange a and c we should get a value of the split at most equal to

this value, but never smaller. If we make the necessary calculations we obtain the value of

ψ{d,c},{a,e,b} = 2543 + 7020 = 9563, which proves that the hypothesis is false. This means

that using Hypothesis 3.1 may lead to a sub-optimal nominal split.

