Chapter 3

Tree-based Regression

This chapter describes two different approaches to induce regression trees. We first present
the standard methodology based on the minimisation of the squared error. Least squares
(LS) regression trees had already been described in detail in the book by Breiman et. al.
(1984). Compared to this work we present some simplifications of the splitting criterion
that lead to gains in computational efficiency. We then address the alternative method of
using a least absolute deviation (LAD) error criterion to obtain regression trees. Although
mentioned in the book of Breiman and colleagues (1984), this methodology was never
described in sufficient detail. In this chapter we present such a description. The LAD
criterion is known to be more robust to skewed distributions and outliers than the LS
criterion used in standard regression trees. However, the use of the LAD criterion brings
additional computational difficulties to the task of growing a tree. In this chapter we
present algorithms based on a theoretical study of the LAD criterion that overcome these
difficulties for numeric variables. With respect to nominal variables we show that the
theorem proved by Breiman et. al. (1984) for subset splitsin LS trees does not hold for the
LAD error criterion. Still, we have experimentally observed that the use of the results of
this theorem as a heuristic method of obtaining the best split does not degrade predictive

accuracy. Moreover, using this heuristic brings significant gains in computation efficiency.

57

58 CHAPTER 3. TREE-BASED REGRESSON

3.1 Tree-based Models

Work on tree-based regression models traces back to Morgan and Sonquist (1963) and
their AID program. However, the major reference on this research line still continuous to
be the seminal book on classification and regression trees by Breiman and his colleagues
(1984). These authors provide a thorough description of both classification and regression
tree-based models. Within Machine Learning, most research efforts concentrate on
classification (or decision) trees (Hunt et al.,1966; Quinlan, 1979; Kononenko et al.,1984).
Work on regression trees started with RETIS (Karalic & Cestnik, 1991) and M5 (Quinlan,
1992). Compared to CART (Breiman et. al.,1984), RETIS uses a different pruning
methodology based on the Niblet and Bratko (1986) algorithm and m-estimates (Cestnik,
1990). With respect to M5 (Quinlan, 1992), its novelty results from the use of linear
regression models in the tree leaves™. A further extension of M5 was described in Quinlan
(1993). This extension consisted in combining the predictions of the trees with k nearest
neighbour models.

Tree-based regression models are known for their simplicity and efficiency when
dealing with domains with large number of variables and cases. Regression trees are
obtained using a fast divide and conquer greedy algorithm that recursively partitions the
given training data into smaller subsets. The use of this algorithm is the cause of the
efficiency of these methods. However, it can also lead to poor decisions in lower levels of
the tree due to the unreliability of estimates based on small samples of cases. Methods to
deal with this problem turn out to be nearly as important as growing the initial tree.
Chapter 4 addresses this issue in detail.

In spite of their advantages regression trees are also known for their instability
(Breiman, 1996). A small change in the training set may lead to a different choice when
building a node, which in turn may represent a dramatic change in the tree, particularly if

the change occurs in top level nodes. Moreover, the function approximation provided by

19 Which was a'so done in a subsequent version of RETIS (Karaic, 1992).

3.1 TREE-BASED MODELS 59

standard regression trees is highly non-smooth leading to very marked function
discontinuities. Although there are applications where this may be advantageous, most of
the times the unknown regression function is supposed to have a certain degree of
smoothness that is hardly captured by standard regression trees. In Chapter 5 we describe
hybrid tree models that improve the smoothness of tree-based approximations. In spite of
this drawback, regression trees do not assume any particular form for the function being
approximated thus being a very flexible regression method. Moreover, the obtained models
are usually considered easily comprehensible.

In Section 3.2 of this chapter we explore methods of inducing regression trees using
the least squares (LS) error criterion. The use of this criterion leads to several
improvements in terms of computational efficiency resulting from the mathematical base
behind it. Namely, thanks to the theorem presented by Breiman et al. (1984), we can
devise an efficient method for dealing with nominal attributes. Moreover, we present a fast
incremental updating method to evaluate all possible splits of continuous attributes with
significant computational gains. These splits are known to be the major bottleneck in terms
of computational efficiency of tree learning algorithms (Cattlet, 1991).

In the subsequent section we present a method of inducing regression trees using the
least absolute deviation (LAD) criterion. The main difference to LS trees lies in the use of
medians instead of averages in the leaves and the use of the mean absolute deviation as
error criterion. The main advantage of using this methodology is the robustness of the
obtained models. In effect, medians and absolute deviations are known to be more robust
with respect to the presence of outliers and skewed distributions. However, we will see that
this methodology poses several computational difficulties. We will present a theoretical
analysis of the LAD criterion, and as a result of this analysis we describe a series of fast
updating algorithms that improve the computational efficiency of LAD regression trees.

Another criterion that can be used when growing regression trees is RRelief (Robnik-
Sikonja & Kononenko, 1997). This criterion is particularly suitable for domains where the

input variables (or attributes) are known to be dependent. Still, this criterion entails much

60 CHAPTER 3. TREE-BASED REGRESSON

larger computational complexity than the LAD or LS criteria due to the necessity of
calculating distances between training cases.
A regression tree can be seen as a kind of additive model (Hastie & Tibshirani, 1990)

of the form,

m(x) = IZki x| (xOD,) (3.1)

1=1

where,
k are constants;
[(.) isan indicator function returning 1 if its argument is true and O otherwise;

|
and D, are digjoint partitions of the training data D such that U D, = D and
i=1
|
n D =0.
i=1

Models of this type are sometimes called piecewise constant regression models as they
partition the predictor space X in a set of regions and fit a constant value within each
region. An important aspect of tree-based regression models is that they provide a
propositional logic representation of these regionsin the form of atree. Each path from the
root of the tree to aleaf corresponds to a region. Each inner node® of the tree is a logical
test on a predictor variable”. In the particular case of binary trees there are two possible
outcomes of the test, true or false. This means that associated to each partition D; we have
a path P; consisting of a conjunction of logical tests on the predictor variables. This
symbolic representation of the regression function is an important issue when one wants to
have a better understanding of the regression surface.

Example 3.1 provides a better illustration of this type of models through a small

example of aregression tree:

20 All nodes except the leaves.
2! Although work exists on multivariate tests (e.g. Breiman et. al. 1984; Murthy et. al., 1994; Broadley &
Utgoff, 1995; Gama, 1997).

3.1 TREE-BASED MODELS 61

EXAMPLE 3.1
Pi=X;<30X,<15 ,withk; =60
@ P,=X;<30X,215 , withk, =100
@ @ Ps=X;230X;<4 , withks=30
T F

P,=X,>230X,24 , with ks = 45
60| [100] (30 (=X 3t “

As there are four distinct paths from the root node to the leaves, this tree divides the input

gpace in four different regions. The conjunction of the tests in each path can be regarded as
alogical description of such regions, as shown above.
This tree roughly corresponds to the following regression surface (assuming that there

were only the predictor variables X; and X,) :

Using the more concise representation of Equation 3.1 we obtain:

m(x) =60 x (X, <30X, <15)+100x (X, <30X, 215)+

30x (X, 230X, <4)+45x1(X, 230X, = 4)

.

Regression trees are congtructed using a recursive partitioning (RP) algorithm. This

algorithm builds a tree by recursively splitting the training sample into smaller subsets. We

give below a high level description of the algorithm. The RP algorithm receives as input a

62 CHAPTER 3. TREE-BASED REGRESSON

set of n data points, D, :{<xi,yi >}in;l, and if certain termination criteria are not met it

generates a test node t, whose branches are obtained by applying the same algorithm with

two subsets of the input data points. These subsets consist of the cases that logically entail
the split test s’ in the node t, D, :{<xi,yi>D D, X, — s*}, and the remaining cases,
D, = {(xi Y)OD %, 4 s*}. At each node the best split test is chosen according to some

local criterion, which means that this is a greedy hill-climbing algorithm.

Agorithm3.1 - Recursive Partitioning A gorithm

Input : Aset of ndatapoints, { <xi, vyi >} i =1,..., n
Qutput : Aregression tree

IFtermnation criterion THEN
Geate Leaf Node and assign it a Gonstant Val ue
Return Leaf Node

BSE
Fnd Best Slitting Test s*
Qeate Node t wth s*
Left _branch(t) = RecursivePartitioningAgorithn{{ < , vi>: X - s*})
R ght _branch(t) = RecursivePartitioningA gorithnf{ <xi , vi>: xi L s* })
Return Node t

BNDF

The algorithm has three main components:

* A way to select a split test (the splitting rule).
* A ruleto determine when atree node isterminal (termination criterion).
* A rulefor assigning a value to each terminal node.

In the following sections we present two different approaches to solve these problems.
These alternatives try to minimise either the mean squared error or the mean absolute

deviation of the resulting tree.

3.2 Least Squares Regression Trees

The most common method for building a regression model based on a sample of an
unknown regression surface consists of trying to obtain the model parameters that

minimise the least squares error criterion,

3.2 LEAST SQUARES REGRESSON TREES 63

o

5 0-re.x) (32

where,
n isthe sample size;
<X, Y >isadatapoint ;
and r(B, x;) isthe prediction of the regression model r(f3, x) for the case (xi , yi> .

As we have seen in Chapter 2 this criterion is used in many existing systems. RETIS
(Karalic & Cestnik, 1991), M5 (Quinlan, 1992) and CART (Breiman €t. al., 1984), all use
the least squares (LS) criterion. To our knowledge the only tree induction system that is
also able to use the mean absolute deviation is CART.

The following theorem holds for the LS minimisation criterion:
THEOREM 3.1

The congtant k that minimises the expected value of the squared error is the mean value of
the target variable.

¢

A proof of this theorem can be found in the appendix at the end of this chapter. Based on
this theorem the constant that should be assigned to the leaves of a regression tree obtained
using the least squares error criterion, is the average of the target values of the cases within
each leaf |, 2

K :% Yy (33)

where,
n isthe cardinality of the set D, containing the casesin leaf | (i.e. n = #D)).

22 According to the RP agorithm, the cases within any node t of atree, are the subset of the given training

sampl e that satisfies the conjunction consisting of all tests from the root to that node. We will denote those

casesale:{<Xi,yi>Dt}.

64 CHAPTER 3. TREE-BASED REGRESSON

Some systems like RETIS (Karalic, 1992) and M5 (Quinlan,1992) use other non-constant
models in the tree leaves. They use linear polynomials instead of averages. We go back to
this issue in Chapter 5, where we address hybrid tree models.

With respect to the splitting rule we restrict our description to the case of binary trees.
Each inner node of these trees has two descendent nodes. These inner nodes split the
training instances in two subsets depending on the result of a test on one of the input
variables. Cases satisfying the test follow to the left branch while the others go to the right
branch. The split test is chosen with the objective of improving the fitting error of the
resulting tree. Any path from the root node to a node t corresponds to a partition D, of the
input cases. Assuming the constant obtained with Equation 3.3, resulting from the
application of the least squares error criterion, we define the fitting error of a nodet as the
average of the squared differences between the Y values of the instances in the node and

the node constant k, ,
Err()= - 3 (k) (34)

n,

t

where, k is defined by Equation 3.3.

Furthermore, we define the error of atree T as a weighed average of the error in its leaves:
)=y PIxEr()= 5 L S ly k) =25 3 (k) (35)
o rnon s near 4

where,
P(l) isthe probability of a case falling into leaf I;
n isthe total number of training cases;
ny is the number of casesin leaf I;

and T isthe set of leaves of thetree T.

A binary split divides a set of cases in two. The goal of the splitting rule is to choose the
split that maximises the decrease in the error of the tree resulting from this division. We

define the error of a split s as the weighed average of the errors of the resulting sub-nodes,

Err(st) = rr]]tL x Err(t,)+ r:]tR x Err(tg) (3.6)
t t

3.2 LEAST SQUARES REGRESSON TREES 65

where,
t, isthe left child node of t defining a partition D, that contains the set of cases{ <

Xi,¥i>0ODt © % - s} andn,_the cardinal of this set;
and t; istheright child node of t defining a partition D, that contains the set of
cases{<Xi,yi>UD: : x 4 s} and n, the cardinal of this set.

We are now ready to present the definition of best split for a node t given a set S of
candidate splits,

DEFINITION 3.1

The best split s* isthe split belonging to Sthat maximises

AErr(s;t) = Err(t) - Err(s,t)

This greedy criterion guides the choice of a split for all inner nodes of an LS regression
tree. On each iteration of the RP algorithm all possible splits of each of the predictor
variables are evaluated and the one with best AErr is chosen.

With respect to the last issue of the tree growing method, that is the stopping rule, the
key problem is the reliability of error estimates used for selecting the splits. All the error
measures described above are estimates in the satistical sense, as they are functions of the
training sample (usually called resubstitution estimates). The accuracy of these estimates is
strongly dependent on the quality of the sample. As the algorithm recursively divides the
original training set, the splits are being evaluated using increasingly smaller samples. This
means that the estimates are getting potentially more unreliable as we grow the tree?. It
can be easily proven that the value of AErr (Definition 3.1) is always greater or equal to
zero during tree growth. Apparently we are always obtaining a more precise regression tree
model. Taking this argument to extremes, an overly large tree with just one training case in

each leaf would have an error of zero. The problem with this reasoning is exactly the

%3 Because the standard error of statistical estimatorsisinversaly proportional to the sample size.

66 CHAPTER 3. TREE-BASED REGRESSON

reliability of our estimates due to the anount of training cases upon which they are being
obtained. Estimates based on small samples will hardly generalise to unseen cases thus
leading to models with poor predictive acarracy. This is usually known as overfitting the
training data & we have seen in Sedion 2.3.2.1.

There ae two aternative procedures to minimise this problem. The first consists of
specifying a reliable aiterion that tries to determine when one should stop growing the
tree. Within treebased models this is usually called pre-pruning. The second, and most
frequently used procedure, isto grow avery large (and unreliable) tree and then post-prune
it. Pruning of regression trees is an essential step for obtaining acairate trees and it will be
the subjea of Chapter 4. With a post-pruning approach the stopping criteria ae usually
very “relaxed”, as there will be aposerior pruning stage. The ideais not to “loose” any
potentially good post-pruned tree by stopping too soon a the initial growth stage. A
frequently used criterion isto impose aminimum number of cases that once reached forces
the termination of the RP algorithm. Another example of stopping criteriaisto creae a leaf

if the aror in the arrent node is below a fradion of the aror in the root node.

3.2.1 Efficient Growth of LS Regression Trees

The mmputational complexity of the reaursive partitioning (RP) agorithm used for
growing regression trees is highly dependent on the doice of the best split for a given
node. This task resumes to trying all possible splits for ead of the input variables. The
number of possible splits of a variable is grongly dependent on its type. We give below a

more detail ed version of the RP algorithm used for growing a LS regression tree

Algorith m 3.2 — Growi nga LSRegr ession Tree.

Input :A setof n datap oaints,{ <X, VY >}i= 1., n
Qutput :A regressio n tree

IFtermi nationcrite rionT HEN
Createl. eafNo deand assig n itt heave rage Y vaueof the n datapoi nts
RetumL eafNo de

ELSE
S =<ab i traryspit>

3.2 LEAST SQUARES REGRESSON TREES 67

FOR al | variables X, DO
IF X is anonmna variable THEN
Best plitXv = TryA I Nonminal Splits({< xi,yi >}, X)
BSEIF X is anuneric variable THEN
Best plitXv = TryA I Nunericplits({< xi,yi >}, X)
BNDF
IF BestplitXv is better than s* THEN
s = BestSlitX
BNDF
BENCFCR
Qeate Node t wth s*
Left branch(t) = GowSree({< Xi,yi >: Xi - s* })
Rght branch(t) = GowSree({< xi,yi >: Xi b s*})
Return Node t
BNDF

The major computational burden of this algorithm lies in the part where we try all possible
splits of avariable. Each trial split has to be evaluated, which means that we need to obtain
the model of the resulting sub-nodes to calculate their error (c.f. Equations 3.4 and 3.6).
Assuming the constant model defined in Equation 3.3, we need to calculate two averages
(for each branch of the split) to evaluate each split (Definition 3.1). Equation 3.4 is in
effect similar to the formula for calculating the variance of a variable®. This calculation
involves passing through the data twice, once to obtain the average and the second time to

calculate the squared differences. This cost can be reduced using the equivalent formula®,

I

N, on O
U U

Err(t)= (3.7)

This calculation can be carried out using a single pass through the data. Even using this
formula the cost of evaluating each trial split would still be O(n;). We propose to reduce
this cost using a simplification that enables and incremental evaluation of all splits of a
variable. According to the formula given in Definition 3.1 the best split s* is the one that

minimises the value given by Equation 3.6. Using the formulain Equation 3.7 we get,

4 The only differenceis that for obtaining unbiased estimates of the variance based on a sample one usually
divides the sum of squares by n-1 and not by n.
> We should note, however, that this formulation brings potentia round-off errors (Press et. al. 1992).

68 CHAPTER 3. TREE-BASED REGRESSON

Lxmgy. ;yg . ng ;yﬂE

- -2

n n %Ln n C
g™ BMHEp g™ ﬁ“‘ﬁE

To simplify notation let SS. and Sk be equal to ; y? and ; y? , respectively,

Err(s,t)=

and S and S be equal to ; y, and ; y, , respectively, leading to

s _ S ,SS,_ S

Err(s,t)=
N, n, N n, N, n

_ 0st | SiF
S S
L4

It is easy to see that the first term of this formula is constant whatever the split is that is
being evaluated. This is so because D: = D, O D, , S0 ; yZ + ; y? = ; y?, which

means that S§ + Sz is always constant and equal to g y?. This means that the only

difference among different candidate splitsisin the last term.

This simplification we have derived has important consequences on the method used
to evaluate and select the best split of a node. Using these results we can present a new
definition for the best split s* of a variable, which has significant advantages in terms of
computation efficiency when compared to the previous one (Definition 3.1). Note,
however, that this is only valid assuming a constant model of the form given by Equation
3.3 (i.e. assuming a least squares error criterion). As our goa isto minimise the expression

derived above we get the following new definition for the best split of a node:

DEFINITION 3.2

The best split s* isthe split belonging to Sthat maximises the expression

3.2 LEAST SQUARES REGRESSON TREES 69

2
+
nt

@

=]

L tR

where, S, = ;yi and S, = ;yi

¢

This definition enables a fast incremental evaluation of all candidate splits S of any

predictor variable as we will see in the following two sections.

3.2.2 Splitson Continuous Variables

We will now present an algorithm that finds the best split for continuous variables using
the results of Definition 3.2. Assuming that we have a set of n, cases whose sum of the Y

valuesis S, Algorithm 3.3 obtains the best split on a continuous predictor variable X,.

Agorithm3.3 - Finding the best split for a continuous vari abl e.

Input : n, cases, sumof their Yvalues (§), the variable X
Qutput : The best cut-point split on X,

Sort the cases according to their value in X,
*X=§ §=0
nR=n; nL=0
BestTilINow =0
FOR all instances i DO
S =S +Y; KR=XR-Y
nn=nmn+1 ; RrR=nr-1
IF (Xy > X.v) THN % Notrid if vdluesareequal
NewSplitValue = (S?/ n) + (S¢/ m
IF(NewsplitValue > BestTill Now) THEN
Best Ti | | Now = Newspl i t Val ue
BestQutPoint = (Xuay +X.y) [/ 2
END F
END F
BENOFCR

This algorithm has two main parts. The first consists of sorting the instances by the values
of the variable being examined, which has an average complexity of O(n, log n,) using

Quick Sort. This sorting operation is necessary for running through all trial cut-point

70 CHAPTER 3. TREE-BASED REGRESSON

values™ in an efficient manner. We only nedd to try these aut-point values as they are the
only ones that may change the value of the score given by Definition 3.2, because they
modify the set of cases that go to the left and right branches. The second relevant part of
the algorithm is the evaluation of all candidate splits. The number of trial splitsisat most n
- 1 (if all instances have different value of the variable X,). Without the equation given in
Definition 3.2 we would have to calculate the “variance” of each of the partitions
originated by the andidate split. This would involve passng through all data points (using
the optimised formula of Equation 3.7) which is O(n). This would lead to a worst case
complexity of O(n(n, -1)) for the second part of the algorithm. Our optimisation given by
the formula in Definition 3.2 leads to aworst case complexity of O(n, - 1) asthe “variance”
calculation is avoided. Noticethat thisis only valid for the least squares error criterion that
leads to the given simplification. If other criteria were used the cmplexity could be
different particularly if no similar incremental algorithm could be found. With the
existence of this fast and incremental method of computing the eror gain of a split the

complexity of the algorithm is dominated by the sorting operation.

3.2.3 Splitson Discrete Variables

Splits on nominal (or discrete) variables usually involve trying all possible tests of the form
X, = X, , where x, is one of the possible values of variable X,. If there ae many possible
values this usually leals to larger trees. An alternative is not to use binary trees and have
one branch for eat possible value of the variable. This has the disadvantage of an
increased splitting of the training samples, which leads to potentially lessreliable estimates
sooner than the alternative that involves binary splits. Y et another possble alternative is to

consider tests of the form X, O {x,,..}. This lution has additional computational costs

although it can improve the comprehensibility of the resulting trees and it does not split too

much the training cases. Breiman et. al. (1984) proved an interesting result (see their

26 A cut-point value isthe value tested in a continuous variable split (e.g. X < 10).

3.2 LEAST SQUARES REGRESSON TREES 71

Theorem 4.5, Proposition 8.16 and Sedion 9.4) that changes the cmplexity of obtaining
this type of splits from O™) into O#X. - 1), where #X, is the cadinality of the
domain of variable X,. The method suggested by Breiman et. al. (1984 p.247) involves an

initial stage where the instances of the node ae sorted as follows. Asuming that B is the

set of values of X, that occur inthe arrrent nodet (e B={ b :x OtOX,=b}), and
defining y(bi) as the average Y value of the instances having value b, in variable X,, we

sort the values sich that,

Having the variable values orted this way, Breiman and his colleagues have proven that,

DEFINITION 3.3 (BREIMAN ET AL., 19842

The best split on discrete variable X, in nodet is one of the #B-1 splits

X, 0{b,,b,,..,b}, h=1, .. #B1

This definition results from a theorem that was proved by Fisher (1958 for the cae of the
least squares error criterion for regression and was extended by Breiman and his coll eagues
(1984 Sec 9.4) for a larger class of concave impurity (error) functions. Chou (1997
furthers generalised these results to an arbitrary number of bins (i.e. not only binary splits)
and to ather error functions.

With this method we only have to look for #B-1 subsets instead of 2. Notice that
we still need to “passthrough” all data to obtain the values y(bi), plus a sorting operation
with #B elements. Before presenting the algorithm for discrete splits we provide asimple

example to illustrate this method.

%" The proof of this theorem is given in Sedion 9.4 (p.274) of Breiman et. al. (1984. A much simpler
demonstration based on Jensen’ sinequality can be found in Ripley (1996 p.218).

72 CHAPTER 3. TREE-BASED REGRESSON

EXAMPLE 3.2

Suppose that we have the following instances in anodet :

COLOR Y leading to the averages

green 24 y(green) = (24+29+13)/3=22
red 56 y(red) = (56 +45)/2 =505

green 29 and y(blue) =(120+100)/2 =110
green 13

blue 120

red 45

blue 100

If we sort the values acarding to their respedive arerage Y values we obtain the ordering
<green, red, blue>. According to Breiman’s theorem the best split would be one of the #B-
1 (inthiscase 2 = 3-1) splits, namely X, [0 {green} and X, (I {green, red}.

¢

Having the instances sorted according to the method explained above, we use the following

incremental algorithm similar to the one presented for continuous variables.

Agorithm3.4 - Finding the best subset split for a discrete variable.

Input : n cases, sumof their Yvalues (§), the variable X
Qutput : An ordered set of values of X, and a partition of this set

htai n the average Y val ue associated to each val ue of X,
Sort the val ues of X, according to the average Y associ ated to each val ue
&X=8; S=0
nR=n; nL=0
BestTilINow =0
FOR each val ue b of the obtai ned ordered set of values DO
YB = sumof the Y values of the cases wth X, = b
NB = nuniber of the cases wth X, = b
S=8+¥ KR=%-YB
n=n+N ; nkR=nr- NB
NewSplitValue = (S?/ n) + (S¥/ my
IF(NewsplitValue > BestTill Now) THEN
Best Ti | | Now = Newspl i t Val ue
Best Position = position of b in set of ordered val ues
END F

3.2 LEAST SQUARES REGRESSON TREES 73

The cmmplexity of this algorithm is lower compared to the cae of continuous variables. In
effed, it is dominated by the number of values of the atribute (#B). The exception is the
part of sorting the values acwrding to their average Y value. The sorting in itself is O(#B
log #B) but to obtain the average Y values asociated to ead value b we need to run
through al given instances (O(ny)), which is most probability more complex than the

sorting operation, unlessthere ae almost as different values as there ae instances.

3.24 SomePractical Considerations

The onsiderations on computational complexity described in the previous sdions,
indicate that the key computational issue when huilding least squares regression trees is
sorting. We anfirmed this in pradice by looking at the exeaution profiles of our tree
induction system, RT. We observed that more than 50% of the CPU time was being spent
inside of the Quick Sort function. We have tried ather sorting algorithms like Hegp Sort
(e.g. Presset al., 1992 but no significant differences were observed. The weight of this
sorting operation is © high that even the implementation of the Quick Sort algorithm is a
key issie. In an ealier version of our RT system we used a “standard” reaursive
implementation of this algorithm. This gandard implementation has difficulties when the
datais already almost sorted. When we finally used the implementation given by Presset
al. (199) we have noticed dramatic improvements in the computation time for large data
sets. This means that when dealing with huge data sets the presence of continuous
variables can become overwhelming die to the necessary sorting of their values for finding
the best cut-point. This was already mentioned in Jason Cattlet’s Ph.D. thesis (1991 in the
context of classification trees. The aithor described some techniques that try to overcome
this problem, like atribute discretisation, which is often explored within Machine Learning
(see Dougherty et. al. 1995for a survey), and sub-sampling to avoid sorting all values
(called by the author peepholing).

74 CHAPTER 3. TREE-BASED REGRESSON

We have carried out a simulation study with two artificial data sets (Fried and Mv)? to
observe the behaviour of our RT system with respect to computation time. In this
experiments we have generated training samples with sizes from 1000 to 150000 cases. For
each sample we have generated one LS regression tree, recording the respective CPU
time®® taken to carry out this task. The results for each of the data sets are shown in Figure

3.1

Fried Data Set Mv Data Set
70 354
go| CPUTime= 41850 +0.00042* Neases (R?=0.9918) g0 CPUTime= LE7E-9+0.000187* Neases (R°=09954)
50 25
£ o g »]
2 2 151
O O
20 10
10 5
0- 0-
S S
@@@ep@qu«&p@@g@@@@@ép@ép%@épépép ,\,@ 09@4@@@@@@@@69@69%69696969
Training Sanple Size Training Sanple Size

Figure 3.1 - Computation time to generate a LStree for different sample sizes.

These graphs show a clear linear dependence of the CPU time on the number of training
cases. We also present two linear models obtained with the results of these experiments,
confirming that the proportion of variance explained by the respective linear relations is
very significant (R* > 0.99). This simulation study confirms the validity of the speed-ups
we have proposed to the generation of least squares regression trees. They demonstrate that
our RT system can easily handle large data sets and, moreover, they show a desirable

linear dependence of the necessary computation time on the sample size.

%8 Full details of these data sets can be found in Appendix A.2.

% The experiments were carried out in adual Pentium |1 450MHz machine running Linux.

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 75

3.3 Least Absolute Deviation Regression Trees

In their book on classificaion and regression trees, Breiman and colleagyues (1984
mentioned the possibility of using aleast absolute deviation (LAD) error criterion to obtain
the best split for a node of a regression tree However, a the time the method was not yet
fully implemented (Breiman et al.,1984 p.258), so no agorithms or results were given.
LAD regression trees use & Eledion criterion the minimisation of the ésolute deviation
between the model predictions and the Y values of the caes. The use of this criterion leads
to trees that are more robust with resped to the presence of outliers and skewed
distributions. This is the main motivation for sudying LAD regression trees. Least squares
(LS) regression trees do not have this nice property. In effect, the squared differences
amplify the effea of the aror of an outlier. Moreover, the presence of outliers can strongly
influence the average, thus leading to values in the leaves that are not “representing”
corredly the corresponding training cases.

Building a regression model based on a sample {(xi Y >} using the least absolute

n
i=1

deviation error criterion consists of finding the model parameters that minimise the

estimated mean absolute deviation,
1 n
_Z|Yi —I’(7Xi)| (3.8

1=1

where, r(B,x;) isthe prediction of the model r(B,x) for the cae (x;, ;).

The mnstant k that minimises the estimated mean absolute deviation of the observations
with resped to k, is the median Y value. Minimising the mean absolute deviation to a

constant k corresponds to minimising the statistical expedation of | y; —k |.
THEOREM 3.2

The constant k that minimises the expected value of the absolute deviation to a continuous
random variable Y, with probability density function f(y), is the median of the variable Y,
Vy.

¢

76 CHAPTER 3. TREE-BASED REGRESSON

A formal proof of this theorem can be found in the appendix at the end of this chapter. Asa
consequence of this theorem LAD trees should have medians at the leaves instead of
averages like LS regression trees. The median is a better gatistic of centrality than the
average for skewed distributions. When the distribution is approximately normal the
median and the average are ailmost equivalent. This generality can be seen as an advantage
of LAD trees over LS trees. However, we will see that LAD trees bring additional
computational costs, which can make them less attractive for extremely large data sets.
Growing a LAD regression tree involves the same three major questions mentioned
before with respect to LS trees. a splitting rule; a stopping criterion; and a rule for
assigning a value to all terminal nodes. Moreover, the algorithm driving the induction
process is again the Recursive Partitioning algorithm. With respect to the stopping rule the
same considerations regarding overfitting can be made for LAD trees. In effect, the
overfitting avoidance strategy is independent of the error criterion selected for growing the
trees. We can stop earlier the growth of the tree, or we may post-prune an extremely large
tree. With respect to the value to assign to each leaf, we have seen that it is the median of
the Y values of the cases falling in the leaf. This leads to some differences in the splitting
rule. Using the definition presented in Equation 3.6 for the error of a split, we can define

the best split for anodet using the least absolute deviation criterion as,

DEFINITION 3.4

The best split s isthe split belonging to the candidate set of splits Sthat maximises
AErr(s,t) = Err(t)- Err(s,t)

which using Equations 3.6 and 3.8 turns out to be equivalent to minimising

L -v, | + M o 1 -V
Yi =V, Yi =V,
n n n n
t t 't t tr R

or equivalently minimising ;|yi —vtL| + ;|yi -V,

where, v, and v, arethe medians of the left and right sub-nodes, respectively.

¢

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 77

Thus the best split minimises the sum of the asolute deviations to the respedive medians
of the left and right branches. Obtaining the median of a set of values involves rting
them, the median being the “middle” value after the sorting. Without any computational
simplification thiswould mean that for ead trial split we would need to sort the caes by Y
value in each sub-branch to obtain the medians and then “pass through” the data ayain to
obtain the two sums of absolute deviations. This would have an average wmplexity of
O(n? log n) for ead trial split. Furthermore, this would have to be done for al possible
splits of every variable. For instance, a mntinuous variable has potentially n-1 trial cut-
points, which would lead to a average @mplexity proportional to O(n® log n). This
represents too much computation even for simple problems. We will present algorithms

that overcome this srious limitation of LAD trees.

3.3.1 Splitson Continuous Variables

As we have seen in Algorithm 3.3 the first step before trying all possible splits of a
continuous variable X; is to sort the instances by the values of this variable. According to
Definition 3.4, given a set of cases and a at-point V, we need to adbtain the sum of the
absolute deviations (SAD) of the left and right branches to evaluate the split. For this
purpose we need to know the Y medians of the cases in each branch of the test. Aswe have
seen the median of arandom variable Y with probability density function f(y), is the value
v for which the probability of a value being geder or equal to it is 0.5 (i.e

I_Vw f (y)dy :Jjw f (y)dy). If we have asample of such a variable we gproximate these

probabilities with frequencies. Thus the sample median of a set of n measurements of a
variable 'Y, is the middle value when the observations are aranged in ascending order. If n
is an odd number, there is a unique middle value, otherwise the median is taken as the
average between the two middle points. This means that we need to sort the set of
observations to obtain the median. Figure 3.2 shows an example split (X; < 145) to help
clarifying this task:

78 CHAPTER 3. TREEBASED REGRESSON

X < 145 %2145
A A
- N ™
Xi 100 123 130 131 140 |150 150 170 175 230

Yvalues | 230 200 10 13 53 234 546 43 23 67

Sorted 10 13 53 200 230 |23 43 67 234 546
Y values

V= 53 VR = 67

SADL =407 SADR =708

Figure3.2 - Aspliton X; < 145

The key issue we facewithin LAD trees, is how to efficiently compute the sum of absolute
deviations for anew trial split X; <V’ (with V' > V). Obtaining these SAD values for a new
cut point involves “moving” some caes from the right branch to the left branch. For
instance, in Figure 3.2 if the new trial cut-point is 160 this would mean that 234 and 546
would now belong to the left branch. We would like to avoid having to re-sort the Y values
for ead new trial cut point to obtain the new medians. Moreover, we would also like to
avoid passng again through the data to cdculate the new SAD values. Thus the key to

solve the dficiency problems of LAD trees resumes to the following two related problems:

» Givenaset of points with median v and respedive SAD, how to obtain the new median
v’ and the new SAD', when we adda new set of data pointsto the initial set.

» Givenaset of points with median v and respedive SAD, how to obtain the new median
v’ and the new SAD', when we remove a set of data points from the initial set.

In the remaining of this sction we will describe an efficient method for solving these two
problems. The algorithm we will present obtains the new medians and SADs based on the
values of the previous trial cut point, which largely improves the efficiency of finding the
best LAD split of a mntinuous variable.

Let P be aset containing the ordered Y values of a branch. Let us divide this %t in two
ordered subsets, P" and P*. The set P contains all observations less or equal to the median,

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 79

and P* the remaining observations. For the left branch of the example in Figure 3.2, we
would have P = {10, 13, 53} and P" = {200, 230}. Given the definition of the median it is
easy to seethat the following holds:

HP™ -#P" =0 if #Piseven

3.9
P -#P' =1 if #Pisodd (39)

If the total nhumber of observations in P is even, the median is the average between the
maximum value in P~ and the minimum value in P*, otherwise the median is the maximum
value of P". Adding (or removing) a set of observations to P is equivalent to dbtaining two
new ordered subsets subject to the restrictions given in 3.9. Ordered insertion (removal) in
sorted sets can be achieved with computational efficiency using balanced hinary trees
(AVL trees) (Wirth, 1976. Using these data structures we can efficiently update P and P*
when given a new set of data points B that we wish to add to P. An insertion (removal) in
an AVL tree ca be done in an average time of the order of O(log SzeOfTree. This means
that the addition (removal) of a set of points B can be done in an average time of the order
of O(#B log #P/2). The only problem we faceis that when new points are alded (removed)
the redtrictions given in 3.9 may be violated. We thus may need some alditional
bookkeeping to maintain these congraints. By updating the new subsets subject to the
restrictions given in 3.9, we can easily obtain the new median after the aldition (removal)
of a set of observations.

We now addressthe isaue of obtaining the new sum of absolute deviations, SAD’. Let
d(yi, y2) be defined as

d(ys ¥2) = Y2 — Y1

The sum of absolute deviations of a set of points P with median vp is given by ,

SAD,, = 3 [dly.ve) =3 d(yive)+ 5 dbve.)
=Y VeI VY Y~y Ve =Y Y- v v (P #P7)

(3.10)

Using again the example in Figure 3.2, we can confirm this expression observing that

80 CHAPTER 3. TREE-BASED REGRESSON

SAD, =|d(10,53)+|d(13,53) +|d(53,53) +|d(200,53) +|d(230,53) =
d(10,53) + d(13,53) + d(53,53) + d(53,200) + d(53,230) = 407

or equivalently,

SAD, =(200+ 230)- (10 +13+53)+53x (3—2) = 430 - 76 + 53 = 407

We will now address the problem of what happens to this SAD value when we remove a
set of points from P. Let B be a set of points we want to remove from P, originating the set
R (i.e. R= P\ B). According to 3.10, the sum of absolute deviations of the set R is given
by:
SAD,, = RZ y. - Rz y, +Vo[#R —#R") (3.11)

We will present an alternative formulation for SADr y, based on the value of SADe,y, and
B. This will reduce the computational complexity of obtaining SADg,, from O(#R) to
O(#B log #R/2). Furthermore our solution avoids the second pass through the data, and we
manage to obtain SADR,, as we update the median.

Let us assume that in the set B there are more values smaller than the median ve, than
values above this median. If we denote these two subsets of B as B” and B”, respectively,
this corresponds to saying that #B > #B*. This implies that the new median after the
removal of B will be larger than the previous value, i.e. vg > vp. The following example

clarifies this reasoning.

Vp
P v P
(™~ a I
10 15 21 25 28 35 36 42 45 56 70
_] _J J
B Q VR B+
A = N J
R R*

where,
P isthe set of values smaller or equal to the median of the set P;

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 81

P" isthe set of value greater than this median;

B is the set of points we want to remove from P *°;

B’ isthe subset of B with values smaller or equal to the median of P;

B" isthe subset of B containing the values greater than this median;

R isthe new set resulting from removing B from P;

R isthe subset of R containing the values smaller or equal to the median of R;

R" isthe subset of R with the values greater than this median;

and Q isthe subset of R containing values in the interval between the median of P
and the median of R.

The following set relations hold under the assumption that vg > vp after removing B from
P:

R'=P"-B'-Q

R=P-B+Q

where, Q isthe set containing all points for which d(y; ,vp) < d(Vr ,Vp).

Using these relations we can re-write Equation 3.11 as:

SADR,VR :Zyi _Zyi _Zyi _Zyi +Zyi _Zyi +
P B P B
+v [P —#B +#Q-#P" +#B" +#Q)
= PZ Yi _Zyi + ; Yi _Bzyi _ZZ Yi +VR(#P__#P++#B+_#B_ +2#Q)

Similarly, if we assume that Vg < vp (i.e. #8° < #B"):
R'=P"-B"+Q
R=P-B-Q

This leads to,

SADR,VR :Zyi _Zyi +Zyi _Zyi +Zyi +Zyi +
3 B = B
+v [P —#B —#Q-#P* +#B* —#Q)
= PZ Yi _Zyi + ; Yi _Bzyi +ZZ Yi +VR(#P__#P++#B+_#B_ _Z#Q)

Finaly, if vg = vp (i.e. #B8 = #B"), we have :

% For instance as aresult of anew trial cut-point split (c.f. example of Figure 3.2)

82 CHAPTER 3. TREE-BASED REGRESSON

R+:P+_B+
R=P-B
leading to,
SAD,, = = = : : #P -#B -#P"+#B"
T YUY Zyﬁ;yﬁw(+#B")
= = - = - #P —#P"+#B"-#B~
F‘Zy| Zyl-'-BZyl BZy|+VR(+)

Integrating all three cases into one single formula we get,
SDr, =TV =T VT V=TV e 2V) x2Sy,
W SY N TINREINY (-(ve #vs5)) Y

(3.12)
+VR(#P‘—#P++#B+—#B‘ +(~ (g v,) xz#Q)

This formula looks much more complex than Equation 3.11. However, from a
computational point of view, it is more suitable for the incremental evaluation of the trial
splits. In effect, we are defining the SAD of the new set of points (R) as a function of the
previous set (P) plus some additional calculations with B and Q. Moreover, as we have to
remove the observations in B from the two AVL trees in order to obtain the new median
VR, We can obtain the summations over B a the same time, thus adding no additional
computational cost.

We will now present an algorithm® that given aset P and a subset B, obtains the value
of the SAD in the set resulting from removing B from P. This is one of the steps for the
evaluation of a new trial split based on a previous one, as it was mentioned before. Going
back to the example in Figure 3.2 this algorithm solves the problem of obtaining the SAD
of the right branch of the test X; < 160 based on the SAD of the test X; < 145. In this
example the set B is {234, 546} . The algorithm we present below assumes that we have the

valuesin P stored in two AVL trees P" and P*. Furthermore we must have the values of vp,

Z Y, Z y, , #7" and #P". The algorithm returns the values of vg, Z Y, Z y, , #R, #R"
= P R R

plus the updated AVL trees. According to Equation 3.11 we can use these values to

31 An algorithm with similar objectives was presented in Lubinsky (1995).

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 83

calculate SADR,, To avoid over-cluttering of the algorithm we have omitted some special

cases like when the AV L treesturn empty after removing the cases in B.

Algoith m 3.5 — Updatingt he medianand SAD after removingas et of
points B.

Input
PP - %AVWsco ntainik ngthe eementsin @ thec urmentparti tion
SP,SP - %The sum ofthe Yval uesof thec asesi n eachAVL
NP, NP - %Nunbero f elementsi n eachAVL
Med %The cur entme dianv alue
B %The datapoint s tob e removed

Output

.Theupda tedva luesc haract ensin g the new parttio n
(e.up datedP *upd atedP ,SR ,SR ", NR, NR,and NewMB

SB =SB* =NB" = NB" =SQ =0

FOReach bin B DO %removi ngthe Bcas es
IFlo<= Med) THEN
SB =SB" +b
NB =NB™ +1
P =AVLr emove(bP)
ELSE
SB =SB* +b
NB =NB* +1
P" =AVLr emove(b,P ")
ENDIF
END FOR
NQ=(NB * -NB ") OV2 %DNVst andsf orint egerd ivisio neg . 5DI V2=2
NR =NP* -NB © + NQ %Obtain ingth e numberof cases inthe twon ewAVL's
NR =NP™ -NB ™~ - NQ
IF(NR *>NR)T HEN %Check consis tency wth 3.9
NR =NR* -1
NR =NR™ +1
NQ=NQ - 1
ENDIF
IFNQ> 0)TH EN %Nowmovingt hecas esbel ongngto Q

FOREL TONQ DO
X=AVLm aximum(P)
P =AVldelte(XP)
P =AVLi nset{ XP¥
SQ=8SQ + X
END FCR
ELSEIF (NQ< O)THEN
FOREL TO-NQ DO
X=AVLM i nimum(P")
P" =AVLd elete(XP ")
P =AWl nset{ XP')
SQ=8Q + X
END FOR
ENDIF
IFNR = >NRHTH EN %Calcul atng thene w Median

84 CHAPTER 3. TREE-BASED REGRESSON

NewMED = AVLnaxi mung P)
B.SE
NewMD = (AVLmaxi nun{P) + ALnini nun{P)) / 2
B\DIF
SR =F - B + (-(NewdD # MD)A(NewMD > MD* SQ %Calcul aling theSR’s
SR =P - B + (-(NewMD # MD)) A(NewMD < MDD * SQ

Following a similar reasoning it would be possible to prove that the sum of absolute
deviations of a set A, resulting from adding a set of points B to our original set P can be
obtained by,

= - - - (va>vp)
SADA,VA—PZyi szﬁszyi BZW(Va#zvs)) XZZM

(3.13)
v, [P —#P 4B —#B" + (- (v, £ v,)" x 24Q)

This equation leals to a very similar algorithm that updates the median and SAD when we
add a set of points. In the example mentioned before this algorithm would enable to obtain
the value of the SAD of the left branch of the test X; < 160 based on the SAD of the test X; <
145. Dueto its similarity to Algorithm 3.5 we do not present it here.

The cmmputational complexity of these algorithms is dominated by the operations in
the AVL trees with the caes in B. These operations can ke done in time proportional to
O#B log #P/2). If we oonsider all possible splits of a @ntinuous variable we get to an
average complexity of O(n log n/2), where n is the number of observations in the node.
This number results from the fad that all observations need to be moved from the right
branch to the left branch when we try all possible splits. As we have seen the naive
approach hes an average mmplexity of O(n® log n), which means that our agorithms
provide asignificant computational complexity deaease for the task of finding the best
split of a continuous variable in LAD trees. However, we have seen in Sedion 3.2.2 that
the arresponding complexity in LS regression trees is O(n), which means that even with
our optimisations LAD trees are more complex. Still, both type of trees need a previous
sorting operation on the values of the variable that is done on average in O(n log n), which

turns out to be the major computational burden.

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 85

Having solved the problem of incrementally obtaining the SAD of a new split based on
a previous one, we are now ready to present the algorithm for obtaining the optimal LAD

split for a continuous variable.

Algorith m3.6 - BestLAD splto f acon tinuo usvar i able.

Input ;. ncases;the irmedian,S AD,an d resp eciveAVl's ; the varab le X
Qutput :The bestcu tpon t spi t on X

Sotthe casesaccor dingt o thei r vau e in X,
Initiali seRig htwit h the Input nedaninfor nation(med, sadan d ad s)

SetBto thee nptys et

BestTil Now=0
FORal instan ces i DO
Add y; oB

IF(Xy > X.v)THEN
Leffi=A ddToSet (Left , B)
Right= RemoveFomSet (Righ t B)
RigtSAD= RightR * -Right .R +Ri ghtMe dian* (Righ t.N" - RghtN)
LefiSAD = Left .R -L eftR =~ +Left Mdan* (LeftN = -LefN)
NewSpit Velue = RightSAD+ LefiS AD
IF(New Spitv alue> BestTilNow) THEN
BestTil Now= NewSpli tValue
BestCutP oint= (X«ay + X,v)/ 2
ENDIF
SetBto thee nptys et
ENDIF
ENDFOR

Algorithm 3.6 uses the algorithms we have described before (the call RemoveFromSet is
Algorithm 3.5, while AddToSet is the corresponding algorithm for adding a set). The
values returned by these two algorithms enable us to calculate the SADs of both branches
using Equation 3.11.

We have carried out an experiment with the Fried domain in order to confirm the
validity of our proposed algorithms as a means to allow growing LAD trees within
reasonable computation times. In this experiment we have varied the training sample size
from 1000 to 150000 cases. For each size, we have grown a LAD tree storing the

respective CPU time taken to carry out this task. The results are shown in Figure 3.3:

86 CHAPTER 3. TREE-BASED REGRESSON

Fried Data Set

400 1 CPU Time = 2.5&-8 + 0.00254 *Ncases (R?=0.9815

CPU time

Training Sanple Size

Figure 3.3 - Computation time to grow a LAD treefor different sample sizes
of the Fried domain.

This experiment shows that although LAD trees are computationally more demanding than
LS trees (c.f. Figure 3.1), they still maintain an amost linea dependence of the CPU time
with resped to the training sample size This behaviour clealy confirms that our
algorithms are @le to evaluate all possible splits of continuous variables in a

computationall y efficient way.

3.3.2 Splitson Discrete Variables

The best nominal split of the form X, O {x,,..} can ke efficiently obtained in LS trees due
to a theorem proved by Breiman et al. (1984). This theorem reduces the number of tried
splits from 2%V 1 to #X, — 1. Even for a small number of values of the variable this
reduction is significant. This means that the question whether this theorem also applies to
the LAD error criterion isakey issue in terms of computational efficiency.

According to Definition 3.4 the value of a split is given by the sum of the SADs of the
left and right branches. A theorem equivalent to the one proved by Breiman et. al. (1984)

for the LAD criterion would mean that the following hypothesisistrue:

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 87

HYPOTHESIS 3.1

If P,, P, form a partition resulting from the best split in a discrete variable (i.e. P;, P, isan

optimal partition) and ve, < Vvp, then

D%D%’BZDPZ - Vg <Vg,

If this hypothesis is true, to obtain the best discrete split it would be sufficient to order the
values of the discrete variable by their median and the best split is guaranteed to be
between two of these ordered values. This is exactly the same procedure followed in
Example 3.2 presented in Sedion 3.2.3, but now with medians instead of averages.

To prove Hypothesis 3.1 it is wufficient to demonstrate that if we exchange any two

subsets of the optimal partition we get a worse value of the split. In particular if We, p, is

the sum of the SADs of the optimal partition (i.e. Yp, p, = SADp, + SADp,), B1 = max v,

piOR

and B, = min v, then if we exchange B, with B,, originating the partition N1, N, we
p;OR,

should be able to prove that Ye, p, < Wn, n,- Noticethat,

N;=P;—-B;+B> and N,=P,—-B,+B;

For instance, let X; O {a, b, ¢} be a1 optimal split for the variable X;, with the domain of
the variable being X1 ={a, b, ¢, d, €}. Let P; and P, be the sets containing the respedive Y
values asociated with the division entailed by the split. Furthermore, let us suppose® that
Va> Ve >Vp, and Ve < vg. If By isthe subset of P; containing the Y values of the cases for
which X; = g and B; is the subset of P, containing the Y values of the cases for which X; =
e, we want to prove that SADpcq + SADaqy < SADiapg + SADiag (i.€ that Yioce (ag <

L|J{ ab,c}{ dye}) .

32 y; represents the median of the Y values of the @ses for which the value of the variableisi.

88 CHAPTER 3. TREE-BASED REGRESSON

The derivation of equations for the SAD of the sets N; and N, follows a similar
reasoning used for deriving Equations 3.12 and 3.13. However, the expressions are a bit

more complex. Our goal isto find an expression for Yn, n, asa function of Ye, p,. Namely,

we want an expression of the form

Wy v, = SAD, +SAD,, = SAD, +K, +SAD, +K, (3.14)

If we manage to obtain expressions for K; and K, and to prove that their sum is greater or
equal to zero, we would be able to obtain a demonstration of Hypothesis 3.1. At the end of

this chapter we present a derivation of such an expression for Yn,n, . However, the

expressions we were able to derive for K; and K, are ill too complex for a clear

understanding of the behaviour of Y n, . Still, we were able to prove the falsity of

Hypothesis 3.1 by finding a counter-example through a large-scale simulation study. This
means that its use may lead to the choice of sub-optimal discrete splits for LAD tree nodes.
The question that arises is whether the predictive accuracy of LAD trees is affected by
these potentially sub-optimal splits. In effect, athough we were not able to formally
characterise the cases where sub-optimality occurs, we have experimentally observed that
these are rare events. In most of our simulation experiments using Hypothesis 3.1 leads to
the optimal split. Moreover, if the split is sub-optimal it does not means that the resulting
LAD tree will have lower performance in a separate independent test set. We have
implemented in our RT system both aternative ways of finding the best nominal split:
using Hypothesis 3.1; or trying all possible combinations. Regression data sets with lots of
nominal variables do not abound. In our benchmark data sets only Abalone and Mv include
nominal variables. In all experiments we have carried out with these two domains, we
never observed any difference in terms of accuracy or tree size®, between the two
alternatives. On the contrary, in terms of computation time there is an overwhelming
advantage of using the heuristic method of finding best nominal variable splits outlined by

Hypothesis 3.1. We have carried out an experiment with the Mv artificial domain to

3 Actually the trees were always the same, meaning that the use of the Hypothesis in these data setsis not
leading to sub-optimal splits.

3.3 LEAST ABSOLUTE DEVIATION REGRESSON TREES 89

confirm this advantage. We have varied the training sample size from 1000 to 150000
cases, generating two LAD trees. The first (LAD) was obtained by exploring all possible
combinations of the discrete variable values, when addressing the task of finding the best
sub-set split of a tree node. The latter (LAD, fast) was generated through the use of the
results of Hypothesis 3.1 as a heuristic process of finding the best discrete split of a node.

The computation time taken to grow these two trees is shown in Figure 3.4:

LAD vs. LAD(fast) / Mv Data Set
600 -

CPU Time(LAD,fast) = 2.62E-8 + 0.00263 * Ncases (R = 0.9727)
1 CPU Time(LAD) = 3.34E-8 + 0,00335 * Ncases (R = 0.9768)

CPU time

"’69'\')’69 "1',"69 %"S@ 9696& @§«§%§q§@'§&§@§@§&§
Training Sanple Size

Figure 3.4 - Computation Time of LAD and LAD(fast) trees for different sample sizes.

This experiment confirms the clear computational advantage of using our proposed
heuristic process of finding the best discrete split for the nodes of LAD trees. Moreover,
we should remark that the three discrete variables of the Mv domain, have very few values
(two or three). This means that the cost of evaluating all possible discrete splits is not too
large when compared to our heuristic process. In domains containing discrete variables
with a large set of values (e.g. Costa, 1996) the advantage of our proposal would be even
more evident. Still, we should remark that both aternatives have a nearly linear behaviour

with respect to the relation between CPU time and number of training cases.

90 CHAPTER 3. TREE-BASED REGRESSON

3.4 LAD vs. LS Regression Trees

In the previous edions we have described two methods of growing regression trees. These
alternatives differ in the aiteria used to seled the best split for ead treenode. While LAD
treestry to ensure that the resulting model has the smallest possible deviation from the true
goa variable values, LS trees try to minimise the squared differences between the
predicted and true values. In this sedion we aldressthe question of which type of trees
should we prefer given a new regression task.

The answer to this question is related to the predictive performance measure that will
be used to evaluate the resulting regression models. There ae two major groups of
prediction error gatistics (c.f. Section 2.3.2): one based on absolute differences between
the predicted values and the true Y values of the cases; and the other based on the squared
diff erences between these values. These two forms of quantifying the prediction error of a
model entail different preference biases. In effed, the squared dfferences are more
“influenced” by large prediction errors than the @solute differences. As sich, any
regression model that tries to minimise the squared error will be strongly influenced by this
type of errors and will try to avoid them. This is the cae of LS regression trees whose
splitting criterion revolves around the minimisation of the resulting mean squared error
(c.f. Definition 3.1). On the ntrary, the minimisation of the ésolute differences will
result in a model whose predictions will on average be “nearer” the Y value of the training
cases. This model is not so influenced by large prediction errors as they are not so
“amplified” as when using squared differences. Models obtained by minimising the
absolute differences are expeded to have lower average difference between the true and
predicted values. However, these models will probably commit extreme arors more often
than models built around the minimisation of the squared dfferences. This is the cae of
LAD trees that use a splitting criterion that tries to minimise the ésolute differences (c.f.
Definition 3.4). From this theoretical perspedive we should prefer LAD regresson trees if
we will evaluate the predictions of the resulting model using the Mean Absolute Deviation

(MAD) datistic. On the oontrary, if we ae evaluating the prediction error using the Mean

3.4 LAD vs LSREGRESION TREES 91

Squared Error (MSE) datistic, we should prefer LS regression trees. So, given a new
regression problem, which statistic should we use? In applications where the ability to
avoid large errors is crucial (for instance due to economical reasons), achieving a lower
MSE is preferable as it penalises this type of errors, and thus LS trees are more adequate.
In applications where making a few of such extreme errorsis not as crucial as being most
of the times near the true value, the MAD statistic is more representative, and thus we
should theoretically prefer LAD trees.

We should remark that both types of trees are built using estimates of both the MAD
and MSE prediction error gatistics. Any dtatistical estimator is prone to error. Thus, if
either our estimators are unreliable or our training sample is not representative, the
expected theoretical behaviour described above can be misleading. In these cases, we could
see a LS tree outperforming a LAD tree in terms of MAD, or a LAD tree outperforming a
LS tree in terms of MSE. Still, as we will see by a series of example applications, this is
not the more frequent case.

The first application we describe concerns the environmental problem of determining
the state of rivers and streams by monitoring and analysing certain measurable chemical
concentrations with the goal of inferring the biological state of the river, namely the
density of algae communities*. This study is motivated by an increasing concern as to
what impact human activities have on the environment. Identifying the key chemical
control variables that influence the biological process associated with these algae has
become a crucial sub-task in the process of reducing the impact of man activities. The data
used in this application comes from such a study. Water quality samples were collected

from various European rivers during one year and an analysis was carried out to detect

3 This application was used in the 3 International Competition (http://www.erudit.de/erudit/activiti es/ic-99/)
organised by ERUDIT in conjunction with the new Computational Intelligence and Learning Cluster
(http://www.dcs.napier.ac.uk/coil/). This cluster is a cooperation between four EC-funded Networks of
Excdlence : ERUDIT, EvoNet, MLnet and NEuroNet. Theregression system implementing the ideasin this

thesis (RT) was declared one of the runner-up winners by theinternationa jury of this competition.

92 CHAPTER 3. TREE-BASED REGRESSON

various chemical substances. At the same time, algae samples were collected to determine
the distributions of the algae populations. The dynamics of algae communities is strongly
influenced by the external chemical environment. Determining which chemical factors are
influencing this dynamics represents important knowledge that can be used to control these
populations. At the same time there is also an economical factor motivating this analysis.
In effect, the chemical analysis is cheap and can be easily automated. On the contrary, the
biological part involves microscopic examination, requires trained manpower and is
therefore both expensive and slow. The competition task consisted of predicting the
frequency distribution of seven different algae on the basis of eight measured
concentrations of chemical substances plus some additional information characterising the
environment from which the sample was taken (season, river size and flow velocity).

The first regression problem we analyse concerns the task of predicting the frequency
distribution of one of the algae (Alga 6). Using the 200 available training cases we have
grown a LS regression tree. The resulting model is shown in Figure 3.5. If we test this tree
on the available testing set consisting of 140 test cases we get a Mean Squared Error
(MSE) of 162.286. In dternative, if we evaluate the same model using the Mean Absolute
Deviation (MAD) of the model predictions we obtain a score of 7.328. This latter score is
more intuitive in the sense that it is measured using the same units as the goal variable.
This means that the induced tree (shown in Figure 3.5) makes on average an error of 7.328
in guessing the distribution frequency of the alga.

3.4 LAD vs LSREGRESION TREES 93

MeanNO3N < 28.03
MeanNO3N < 3.00 Y =77.60
season O { winter,spring}

MeanNO3N < 6.19

Y =16.81

MeanOrtPO4 < 21.83 riversz [0 { small,medium}

Y =021 Y =216

Y =32.10 Y =342

MeanNO3N < 3.05
Y =112 Y =5.67 Y =1181

Y =42.70 Y =10.45

Figure 3.5 - A LSregression tree for the Alga 6 problem™.
(MSE = 162.286; MAD = 7.328)

Using the same training data we have also grown a LAD regression tree. The resulting
model is shown in Figure 3.6. The MSE of this tree on the same testing set is 179.244,
which is worse than the MSE of the LS tree shown earlier (MSE = 162.286). However, if
we evaluate this LAD tree using the MAD statistic we obtain a score of 6.146, which is
better than the MAD of the LS tree (MAD = 7.328). With respect to the training times,

both trees are obtained with little computation time due to the small size of the training

3 Left branches correspond to cases were the node test istrue, whileright branches correspond to the

opposite.

94 CHAPTER 3. TREE-BASED REGRESSON

sample. Regarding comprehensibility, both models are acceptable although the LAD treeis

MeanNO3N < 3.00
MeanNO3N < 28.03

Y =77.60

considerably smaller.

Y =0.60 Y =6.90

Figure 3.6 - A LAD regression tree for the Alga 6 problem.
(MSE = 179.244; MAD = 6.146)

This example clearly illustrates our previous position concerning which type of model is
better. This question depends on the goals of the application. In effect, if one is willing to
accept a few exceptionally large errors but give more weight to a model that on average
leads to predictions that are nearer the true frequency distribution of the alga, then we
should prefer the LAD tree. On the contrary, if we consider that extreme errors are
inadmissible because, for instance, they could lead to an environmental disaster, then we
should definitely use the LS model. To support these arguments we show in Figure 3.7 the
absolute difference between the predicted and true values for both trees on all 140 test

cases. Asit can be confirmed, the LAD tree makes several very large errors.

3.4 LAD vs LSREGRESION TREES 95

80

70

60

50

40

30 11

20

10

A

h’.‘

I

ot

AT

L A

——LAD Errors —LS Errors

Figure 3.7 - The absolute difference of the errors committed by the LAD and LStrees.

A closer inspection of the distribution of the error size committed by the two models is

given in Figure 3.8. This histogram confirms that the LAD tree errors are more often

nearer the true value (in 108 of the 140 test casesthe error is less than 10) than those of the

LS model. In effect, looking at the first two error bins that can be seen as the best scores of

both models, we observe that the frequency of errorsis more balanced in the case of the LS

tree, while the LAD tree is clearly skewed into the bin of smallest errors. Moreover, this

histogram also confirms that the LAD tree makes more extreme errorsthan the LS tree.

Frequency

20 ~

18
16
14
12

oN MO

Histogram of Errors

108

© o
=2l 3¢}

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 >80
Error

@ILAD mLS

Figure 3.8 - The histogram of the errors of the LAD and LStrees.

96 CHAPTER 3. TREE-BASED REGRESSON

We have repeated similar experiments with other data sets and we have observed a similar
behaviour. Table 3.1 summarises the results of these experiments in other domains: Alga 2
of the same competition data; the Abalone data set; and the Pole domain. Further details

concerning these problems can be found in Appendix A.2.

Table 3.1. Results of comparisons between LAD and LS trees.

Alga 2 Abalone Pole
200 train cases/140 test cases 3133/ 1044 5000 / 4065

LAD LS LAD LS LAD LS
MSE 109.347 92.431 5.894 5.094 119.342 41.612
MAD 6.232 6.422 1.632 1.639 2.889 2.984
N. Leaves 13 5 51 39 119 97
Error Bins
Frequencies
1% bin 117 102 658 452 1782 1772
2" bin 6 2 162 280 38 91
Last but one 2 0 3 1 11 1
Last bin 1 0 1 0 3 0

We observe that depending on the criteria used to evaluate the models (MSE or MAD),
either the LAD or LS trees achieve the best score. Moreover, the last lines of the table,
showing the frequency distribution of the first two error bins containing the smallest errors
and the last two error bins containing the largest errors, confirm a similar error distribution
exists as the one shown in Figure 3.8.

The experiments described in this section lead to the following conclusions regarding
the applicability of both LS and LAD regression trees. LAD trees are, on average, more
accurate than LS trees, although they also commit extreme errors more often. LS trees, on
the other hand, are less prone to large prediction errors, while achieving less accurate
predictions than LAD trees, on average. Both types of trees are comparable in terms of
comprehensibility of the models, but LAD trees are considerably more demanding in terms
of computation time. Still, this latter observation can only be regarded as relevant for

extremely large training samples.

3.5 CONCLUSONS 97

3.5 Conclusions

In this chapter we have aldressed the issue of growing regression trees. We have described
in detail two aternative methods of tree induction: one based on the least squares (LS)
criterion and the other on the least absolute deviation (LAD) criterion.

Least squares (LS) regression trees had already been described in detail in the book by
Breiman et. al. (1984). Compared to this work we have presented some simplifications of
the splitting criterion that lead to gains in computational efficiency. With these
simplificaions the task of growing a tree is caried out in computation times that are
pradically linear with resped to the training sample size

With resped to LAD regression trees we have presented a detailed description of this
methodology. These trees can be cnsidered more adequate to certain types of applications.
However, they bring additional computational difficulties to the task of finding the best
split of a node. We have presented algorithms that overcome these difficulties for numeric
variables, as confirmed by our experiments. With respect to nominal variables we have
shown that the theorem proved by Breiman et. al. (1984 for subset splits in LS trees does
not hold for the LAD error criterion. Still, we have experimentally observed that the use of
a heuristic based on the “theorem” does not entail any significant loss in predictive
acaracy. Moreover, using this heuristic to find the best discrete split brings very
significant gains in computation time a we have observed through a large experiment with
adomain containing discrete variables.

We have shown through a set of experiments that both types of trees can be useful
depending on the goplicaion goals. LAD trees were found to be more acairate on average,
while being more susceptible to make large arors. If afew of these erors do not present a
problem in the goplicaion under consideration then these trees are dealy preferableto LS
trees. On the ontrary, if extreme arors are unaccetable then LS trees dould be the
choice Moreover, these latter trees are obtained in a mnsiderably smaller computation

time.

98 CHAPTER 3. TREE-BASED REGRESSON

3.5.1 Open Research Issues

A simple formal proof of the falsity of Hypothesis 3.1 would also be useful. This could
provide safe indications of when we should or should not use the hypothesis to find the
best subset split of anominal variable in LAD trees.

A further comparative study between LAD and LS trees would be desirable. As
Breiman et. al. (1984, p.262) mentioned, it is difficult to decide which tree is best. If we
use as measure of accuracy on unseen cases the mean squared error (MSE), LS trees will
usually have better score as they are grown to minimise this error. If we use instead the
mean absolute deviation (MAD) the opposite occurs because LAD trees minimise absolute
errors. Apart from extended experimental comparisons a theoretical study of the properties
of these two types of trees would certainly help to decide which type of model to use in a

new application.

APPENDIX 99

APPENDIX.

PROOF OF THEOREM 3.1.

If Y is a continuous random variable with probability density function f(y), the function that

we want to minimise with respect to k is,

o)=Y -kF]= [Tk 10y asElV]= [Tyt (v)y
=f:(y2 - 2yk + k2)f (y)dy

[Ty)y - Ak[TyEy + ke [C(yy=1
Minimising with respect to k we have,

Is) _ B +00 _ o
5 Pk)=0 < 0-2f yi(y)dy + k=0 < k=[yf(y)dy

which by definition is E[Y], i.e. the mean value of the variable Y.
.

PROOF OF THEOREM 3.2.

The function we want to minimise with respect to k is,
o(k)=E(y-k)= [y =K f(y)ay
(L=t + [k)T ()

k[0y - [y + [Tyilay - k[T fy)dy

,asJ’km f(y)dyzl—fwf(y)dy.

So, we have

10C CHAPTER 3. TREE-BASED REGRESSON

d)=k[0y - k + k[0y - [yt + [TyiO)dy
=kt - k - [LyfO)dy + [y i()dy
=2kF() - k - [LyfOdy + [yi(y)dy

where, F(y) isthe aumulative distribution function of the variable Y.

Now, obtaining the derivative of this function in order to k, and making it equal to zero we

oet,

%(p(k):ZF(k)+2kf(k)—l—kf(k)—k (k) = 2F (k)-1

0 1
, 2 gk)=0 - F(K)==
o, 2 gl ()=

As by definition the aumulative distribution function is equal to ¥ for the median of any
distribution, the proof is complete.

¢

TENTATIVE PROOF OF HYPOTHESIS 3.1.

To prove Hypothesis 3.1 it is sufficient to demonstrate that if we exchange any two subsets

of the optimal partition we get a worse value of the split. In particular if Yp, p, is the sum

of the SADs of the optimal partition (i.e. Yp, p, = SADp, + SADp,), B = max v, and B, =

pi0R

min v, then if we exchange B, with B,, originating the partition N;, Nz, we should be
p;OR,

ableto provethat Yp, p, < Un, n,. Noticethat,
N;=P;—-B;+B> and N,=P,—-B,+B;

In this appendix we derive an expression for i, n, based on the SADs of P; and P,. The

derived expression as the form

APPENDIX 101

Wy,n, = SADp + K, +3AD, +K,

Understanding the sign of K; + Ky, is a fundamental step for the proof of Hypothesis 3.1.
The SAD of the set N; consisting of removing a set B; from a set P; and adding to the
same set the set By, is given by

SA‘DNl,le :gyi_gM"'gYi_;Yi"'%Yi_gYi

(-, g omn)x ZZ gy vy N8 (3.15)

We omit the derivation of this equation, as it is similar to the derivation of Equations 3.12
and 3.13. Aswe need to obtain an expression for the sum of the two SADs (Equation 3.14),
it is necessary to introduce notation for differentiating numbers bigger (smaller) than ve,

from the ones bigger (smaller) than ve,. The following figure illustrates this problem for

the set B; and the adopted notation.

Br BY
(\ra N

. A . . A . A . .

Ve Ve, Ve,
N _/ _ J/
B B
o _/
B, *

The same kind of notation can be used to describe the relation of set B, with both medians.
Using Equation 3.15 and the notation presented above, we can derive an expression for our

target function Y, N,

102 CHAPTER 3. TREE-BASED REGRESSON

= + =
Wy n, = SAD,, +SAD ,

;M‘;M"‘;M‘;M"‘%M_;{M

+(_ (VN1 ¢VP1))(VN1>VH)X2§ Yi +Vy, (#N:L__#Nl+)

+;M‘;M"'%M‘%M+;Yi_;m

+(_(VN2 ¢VP2))(VN2>VP2)XZZ Yi +Vy, (#Nz__#N;)

as it may be confirmed in the figure presented above the following holds,

Y-y Y =-) y ad Yi=) Yi==) VY
ERTEDIE TR TR

- = . d - = i
Bzﬂy. ;y. ;y.an Bzy Bzy Bzy
which leadsto,
Wi N :ZYi_ZYi"'ZYi_ZYi"'

P R P; Py
+2x Yi=) VY H"
PR

+2X% (V ¢V)(Zyl VN PZ)XZyiE‘

+v [N -#N]) +u,, (NG -#N7)

We know that®
Yi =) ¥ vy xODD#P, Yy, - SV +v, xODD(#P.
P P Z Z () ZZ ; p2 (2)

o IHTTN I N T = e~V XODDR) v, x0DD(P)

where,
~ [ifiisodd
ODD(i)=
() E) otherwise

% Notice that dueto the restrictions presented in Equation 3.9, ODD(#P) = #P" - #P".

APPENDIX 103

So, finally we get

LIJNl’NZ - LIJPZL’PZ +

+2X%ZM _Zyi H"
5 By H (3.16)
+2x§— (VN1 ¢VPl))(VN1>VPl)XZYi +(_ (VN2 ¢VP2))(VN2>VP2)XZM E’

+v, ODD(#N,)-v, ODD(#P,)+v, ODD(#N,)-v, ODD(#P,)

This meansthat to prove Hypothesis 3.1 we need to prove that
2X Yi=) VY H"
YT H
+2x E— (v N vpl))(v’“fvpl) x g y + (— (v N, Ve))(VN2>VP2) X Z Y, E» (3.17)

+v, ODD(#N,)~-v,ODD(#P,)+v, ODD{#N,)-v, ODD{#P,) = 0

The analytic proof of the falsity of 3.17 is rather complex as there are too many variants
depending on the relation between the medians and also the cardinalities of the sets
involved (P, P2, B; and B,). Being so, we have decided to present a simple example that
falsifies Hypothesis 3.1.

Let X; be a discrete variable with the following domain : X1 ={a, b, c, d, €}. Let us

further suppose that we have the following set of cases,

X1 Y X1 Y X1 Y X1 Y X1 Y X1 Y

d |-582)| a |-143] c |-356| e |-594| b |-138| b 924
d |-289| a 503 c -94 e [-280| b 98

d |-274) a |-400| c 79 e 231 b 177

d |-226| a |-128| c 562 e 601 b 194

a 568 cC |-995| e |-986| e 711 b 717

104 CHAPTER 3. TREE-BASED REGRESSON

This set of cases leads to the following ordering of the values, based on their respective

medians,
{d, a c, e b} asvq(-281.5) <V, (-128) <V, (-94) < v¢ (-24.5) < v}, (185.5)

Let us consider the split X; O {d,a}. The value of this split is given by the sum of the
two respective SADs and is equal t0 Yiga {cery = 2345 + 7481 = 9826. According to
Hypothesis 3.1, if we exchange a and ¢ we should get a value of the split at most equal to
this value, but never smaller. If we make the necessary calculations we obtain the value of
Widg {aet = 2543 + 7020 = 9563, which proves that the hypothesis is false. This means
that using Hypothesis 3.1 may lead to a sub-optimal nominal split.

