
105

Chapter 4

Overfitt ing Avoidance in Regression

Trees

This chapter describes several approaches that try to avoid overfitting of the training data

with too complex trees. In the context of tree-based models these strategies are known as

pruning methods. Overfitting avoidance within tree-based models is usually achieved by

growing an overly large tree and then pruning its “unreliable” branches (also known as

post-pruning). Post-pruning can be regarded as a search problem, where one looks for the

“best” pruned tree. The pruning techniques we present in this chapter follow the same

general strategy as the one used in system CART (Breiman et al.,1984). These techniques

proceed in two separate stages, where initially a sequence of alternative pruned trees is

generated, and then a tree selection process is carried out to obtain the final model.

Compared to CART pruning we describe new methods of generating sequences of trees

that proved to be advantageous on our benchmark data sets. Moreover, we describe a new

tree-matching procedure that extends the applicability of the cross validation selection

method used in CART. We extend the use of m estimates (Karalic & Cestnik, 1991) by

deriving the m estimate of the mean absolute deviation, which allows the use of these

estimators with LAD trees. We also derive the standard errors of the m estimates of both

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES106

the mean squared error and the mean absolute deviation, which allows the use of the 1-SE

rule (Breiman et al.,1984) with these estimators. We present a new error estimator for LS

regression trees based on the sampling distribution properties of the mean squared error.

During a systematic experimental comparison of different methods of pruning by tree

selection, this new method together with our new algorithms for generating sequences of

pruned trees, proved to be among the most competitive on our benchmark data sets.

Finally, we have compared our most promising pruning methods with current state-of-the-

art algorithms for pruning regression trees. This comparison revealed that our methods

usually lead to more accurate trees in most of our benchmark data sets. However, this

advantage is usually associated with larger trees compared to some of the other algorithms.

Apart from accuracy gains, one of our new pruning methods has significant advantage in

terms of computation efficiency, turning it into a good choice when dealing with large data

sets.

4.1 Introduction

The methods described in the previous chapter obtain a tree using an algorithm that

recursively divides the given training set. As a consequence of this, the selection of the

best splits is based on increasingly smaller samples as the tree grows. The split choices at

the lower levels of the tree do often become statistically unreliable although the

resubstitution error estimate37 keeps decreasing. It is usually considered unlikely that this

error estimate generalises to unseen cases and the tree is said to overfit the training data.

This means that the tree is capturing regularities of the training sample and not of the

domain from which the sample was obtained. This is usually taken as the motivation for

pruning tree models. However, as Schaffer (1993a) pointed out, pruning can not be

regarded as a statistical mean to improve the true prediction error. In effect, it is easy to

find real world domains where pruning is actually harmful with respect to predictive

37 The estimate obtained with the training data, which is used during tree growth.

4.1 INTRODUCTION 107

accuracy on independent and large test samples38. On the contrary, as suggested by

Schaffer (1993a), pruning should be regarded as a preference bias over simpler models.

Understanding the biases of the different pruning methods will provide useful indications

on the strategies that suit best the user’s preferences.

Post-pruning is the process by which a large tree is grown and then reliable evaluation

methods are used to select the “right-sized” pruned tree of this initial model. Post-pruning

methods are computationally inefficient in the sense that it is not unusual to find domains

where an extremely large tree with thousands of nodes is post-pruned into few hundred

nodes. This clearly seems a waste of computation. An alternative consists of stopping the

tree growth procedure as soon as further splitting is considered unreliable. This is

sometimes known as pre-pruning a tree. Pre-pruning has obvious computational

advantages when compared to post-pruning. In effect, we may stop the tree growth sooner,

and moreover, we avoid the post-pruning process. However, this method incurs the danger

of selecting a sub-optimal tree (Breiman et al.,1984) by stopping too soon and because of

this the usual method of avoiding overfitting is post-pruning.

This chapter starts with an overview of existing techniques of pruning regression trees.

We then address a particular type of pruning methodology that works by tree selection

from a set of candidate alternative models. We claim that these techniques are more

advantageous from an application perspective. We describe several new techniques of

pruning by tree selection. Among these we remark two new methods of generating sets of

pruned trees based on heuristic estimates of error reliability that we conjecture as being

advantageous from a predictive accuracy perspective. We also describe a new error

estimation method that we hypothesise as being competitive with resampling estimators

with the advantage of being computationally less demanding.

38 Empirical evidence supporting this observation is given in Section 4.4 (Figure 4.23).

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES108

4.2 An Overview of Existing Approaches

Post-pruning is the most common strategy of overfitting avoidance within tree-based

models. This method consists of trying to obtain a sub-tree of the initial overly large tree,

excluding its lower level branches that are estimated to be unreliable. As it was mentioned

by Esposito et al. (1993) pruning can be seen as a search problem. From this perspective

two main issues arise when searching for the best pruned tree. The first is the method used

to explore the large space of all possible pruned trees, and the second is how to evaluate

the different alternatives considered during this process. In this section we briefly describe

the main existing methods of pruning regression trees.

4.2.1 Error-Complexity Pruning in CART

CART (Breiman et al., 1984) prunes a large regression tree Tmax using a two-stage

algorithm called Error-Complexity39 pruning (Breiman et al.,1984, p.233). This method is

based on a measure of a tree called error-complexity ()TECα , which is defined as,

() () TTErrTEC
~

#×α+=α (4.1)

where,
Err(T) is the resubstitution error estimate of tree T;

T
~

is the cardinality of the set T
~

containing the leaves of the tree T;
and α is called the complexity parameter and defines the cost of each leaf.

Depending on the cost of each additional leaf (i.e. the α value) different sub-trees of Tmax

minimise the error-complexity measure. Breiman and his colleagues proved that although

α can run through a continuum of values there is a sequence of pruned trees such that each

element is optimal for a range of α, and so there is only a finite number of “ interesting” α

values. Furthermore, they developed an algorithm that generates a parametric family of

pruned trees T(α) = <T0, T1,…,Tn>, such that each Ti in the sequence is characterised by a

different value αi. They proved that each tree Ti in this sequence is optimal from the EC

39 For classification trees this algorithm is known as Minimal Cost-Complexity.

4.2 AN OVERVIEW OF EXISTING APPROACHES 109

perspective within the interval [αi ..αi+1). Using this algorithm, CART generates a

sequence of pruned trees by successively pruning the node t such that the following

function is minimised,

() () ()
1

~
#

,
−

−
=

t

t

T

TErrtErr
Ttg (4.2)

where,
Tt is the sub-tree of T rooted at node t;

and tT
~

is the number of leaves of this sub-tree.

The successive g function values form the sequence of “ interesting” α values. For each of

these values a new tree results as the minimising error-complexity tree. We should note

that there is no theoretical justification for preferring this set of pruned trees to any other.

However, Breiman and his colleagues prove that if one wishes to characterise a tree by a

linear combination of its error and a cost for each of its leaves, then this sequence is

optimal. By optimal it is meant that for any hypothetical cost per leaf value (α), the sub-

tree of Tmax that would minimise the expression of Equation 4.1 is included in the sequence

generated by this algorithm. However, this does not mean that the sequence of trees T(α)

includes the best possible sub-trees of Tmax from the perspective of true prediction

accuracy, as pointed out by Gelfand et al. (1991) and Gelfand & Delp (1991).

The second stage of the Error Complexity pruning method consists of estimating the

predictive accuracy of each of the trees in the sequence T(α), and selecting one of the trees

based on these estimates. Breiman and his colleagues suggest using a resampling strategy

(either a holdout or a cross validation process) to estimate the error of each tree in the

sequence. When using k-fold Cross Validation (CV), CART divides the given training data

into k disjoint folds, each containing approximately the same number of observations. For

each fold v an overly large tree vTmax is learned using the remaining k-1 folds. For each of

these k large trees CART generates a parametric family of pruned trees ()αvT , using the

method mentioned earlier. Reliable estimates of the error of the trees in each of the k

sequences are obtained using the fold that was left out of the respective training phase.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES110

This means that for each tree in the k sequences we have an α value plus a reliable estimate

of its prediction error. The goal of this CV process is to estimate the prediction error of the

trees in the initial sequence T(α). CART obtains the error estimate of each tree ()α∈TTi

by a tree-matching procedure that finds its k “most similar” trees in the k sequences, and

defines the error estimate of Ti as the average of the error estimates of these k trees. CART

heuristically asserts similarity between trees using their α values. The main danger of this

tree-matching process results from the fact that these trees with similar α value are

different. Moreover, the tree Tmax is obtained with a larger training set and this may lead to

a larger set of pruned trees, T(α). Still, CART obtains the k most similar trees of ()α∈TTi

as follows: let 1+αα=α′ iii ; define the k most similar pruned trees in the k sequences

()αvT as the trees with α value most similar to iα′ . There is no theoretical justification for

this heuristic tree-matching process as it was mentioned by Esposito et al. (1997).

The other alternative method of obtaining reliable error estimates in CART is using

the holdout method. Given a training set a proportion of cases is left aside and the tree Tmax

is obtained using the remaining cases. The separate set of cases (the holdout set) is then

used to obtain unbiased estimates of the prediction error of the trees in the respective

sequence T(α).

Breiman and his colleagues describe two alternatives for the final tree selection based

on the obtained error estimates. Either to select the tree with lowest estimated error or to

choose the smallest tree in the sequence, whose error estimate is within the interval

()bb rrEESrrE ˆ..ˆ + , where brrÊ is the lowest error estimate and ()brrEES ˆ.. is the standard

error of this estimate. This latter method is usually known as the 1-SE rule, and it is known

to favour simpler trees although possibly leading to lower predictive accuracy (e.g.

Esposito et al., 1997).

4.2.2 Pruning based on m estimates in RETIS

RETIS (Karalic & Cestnik,1991; Karalic, 1992) uses a pruning method based on the

Niblett & Bratko (1986) algorithm. Contrary to CART pruning algorithm, this method

4.2 AN OVERVIEW OF EXISTING APPROACHES 111

proceeds in a single-step by running in a bottom-up fashion through all nodes of Tmax. At

each inner node t ∈ Tmax the Niblet & Bratko algorithm (N&B) compares the error of t and

the weighed error of the sub-tree rooted at t (Tt). The weights are determined by the

proportion of cases that go to each branch of t. If the error of t is less than the error of Tt

the tree Tmax is pruned at t.

One of the crucial parts of this pruning algorithm is how to obtain the error estimates.

Bayesian methods can be used to obtain reliable estimates of population parameters (Good,

1965). An example of such techniques is the m-estimator (Cestnik, 1990). This bayesian

method estimates a population parameter using the following combination between our

prior and posterior knowledge,

() () ()θπ
+

+θζ
+

=θ
mn

m

mn

n
mEst (4.3)

where,
()θζ is our posterior observation of the parameter (based on a size n sample);
()π θ is our prior estimate of the parameter;

and m is a parameter of this type of estimators.

Cestnik and Bratko (1991) used this method to estimate class probabilities in the context of

post-pruning classification trees using the N&B pruning algorithm. Karalic and Cestnik

(1991) extended this framework to the case of least squares (LS) regression trees. These

authors have used m-estimators to obtain reliable tree error estimates during the pruning

phase. Obtaining the error of an LS tree involves calculating the mean squared error at

each leaf node. The resubstitution estimates of the mean and mean squared error obtained

with a sample consisting of the cases in leaf l are given by,

() () ()()∑∑
==

−==
ll n

i
li

l
ly

n

i
i

l
l Dyy

n
DMSEy

n
Dy

1

2

1

1
and

1
(4.4)

where,
{ }lyD iil ∈= ,x ;

and nl = #Dl.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES112

Karalic and Cestnik (1991) have derived m-estimates of these two statistics. Priors are

usually difficult to obtain in real-world domains. The standard procedure to overcome this

difficulty consists of using all training set as the source for obtaining the priors. This means

that the priors for the mean and the MSE are obtained by estimating their values using all

training data. Using equation 4.3 we can obtain the m estimate of the mean in a leaf l by,

() () ()

() ∑∑

∑∑

== +
+

+
=

=
+

+
+

=

=π
+

+ζ
+

=

n

i
i

l

n

i
i

l

D
i

lD
i

ll

l

ll

l

y
mnn

m
y

mn

y
nmn

m
y

nmn

n

y
mn

m
y

mn

n
ym

l

l

11

1

11

Est

(4.5)

and for the mean squared error,

() ()() ()()

()

()() ()

()() ()

()

()()

()

() ()() ()()

() ()()2

1

2

1

2

22

1

2

1

2

11

2

1

2

1

2

1

2

1

2

1

2

1

2

22

Est
1

Est2Est
1

11
Est2

Est

1

1
Est2Est

1
Est2Est

1

Est
1

Est
1

Est

ymy
mnn

m
y

mn

ymymy
mnn

m
y

mn

y
nmn

m
y

nmn

n
ym

mn

m

mn

n
ym

y
mnn

m
y

mn

y
n

ymym
mn

m

y
n

ymym
mn

n

y
mnn

m
y

mn

ymy
nmn

m
ymy

nmn

n
MSEm

n

i
i

l

n

i
i

l

n

i
i

l

n

i
i

l

n

i
i

l

n

i
i

ll

l

ll

l

n

i
i

l

n

i
i

l

n

i
i

l

n

i
i

ll

l

n

i
i

l

n

i
i

l

D
i

lD
i

ll

l
y

l

l

l

l

l

l

l

−
+

+
+

=

−+
+

+
+

=

+

+
+

×−

−

+

+
+

+

+
+

+
+

=

 ×−

+
+

+

×−

+
+

+
+

+
+

=

−
+

+−
+

=

∑∑

∑∑

∑∑

∑∑

∑

∑

∑∑

∑∑

==

==

==

==

=

=

==

(4.6)

♦

4.2 AN OVERVIEW OF EXISTING APPROACHES 113

From a computational point of view, obtaining the m estimate for the MSE in any leaf

demands calculating ∑∑
==

n

i
i

n

i
i yy

1

2

1

 and for the cases at the leaf and for the whole training set,

besides determining nl , n and m. These values can be easily obtained during tree growth

without significant increase in the computation. Thus the computational cost of obtaining

m-estimates for LS trees reduces to simple arithmetic calculations.

A crucial aspect of m-estimates is the value of the parameter m. Karalic & Cestnik

(1991) mention that the best value of this parameter is domain dependent. However,

resampling strategies can be used to automatically tune m by evaluating a set of

alternatives and choosing the one that obtained best estimated predictive accuracy.

4.2.3 MDL-based pruning in CORE

CORE (Robnik-Sikonja,1997; Robnik-Sikonja and Kononenko, 1998) also uses the N&B

pruning algorithm mentioned in the previous section. However, instead of comparing the

error estimates of each node t and its sub-tree Tt, CORE uses the Minimum Description

Length principle to guide the decision regarding whether or not to prune any node of a tree.

Classical coding theory (Shannon and Weaver, 1949; Rissanen and Langdon, 1981)

tells us that any theory T about a set of data D can be used to encode the data as a binary

string. The main idea behind the use of the Minimum Description Length (MDL) principle

(Rissanen, 1982) is that “the simplest explanation of an observed phenomena is most likely

to be the correct one” (Natarajan, 1991). Mitchell (1997) describes the MDL principle as a

preference for the theory Th such that,

() ()ThDLThLTh
THTh

+=
∈
minarg (4.7)

where,
Th is a theory belonging to the space of theories TH;
D is a data set;
and L(.) represents the binary description length.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES114

This formalisation shows how this theoretical framework provides a way of trading off

model complexity for accuracy. In effect, according to this principle we may prefer a

shorter theory that makes few errors on the training data to a large theory that perfectly fits

the data. Thus this principle can be regarded as a method for guiding overfitting avoidance

within inductive learning.

Robnik-Sikonja & Kononenko (1998) describe a coding schema for regression trees40

that allows using this principle to prune the trees. This coding determines the binary code

length of a tree-based model. The binary code of a regression tree consists of the code of

the model and of its errors. The pruning algorithm used in CORE runs through the tree

nodes using the N&B algorithm and at each node t compares its binary code length with the

code length of its sub-tree Tt. If the latter is larger the tree Tmax is pruned at t.

4.2.4 Pruning in M5

M5 (Quinlan, 1992; Quinlan, 1993) uses a bottom-up method similar to the N&B

algorithm. M5 can use multivariate linear models in the tree leaves. Because of this, the

pruning decision is guided by a criterion different from the ones used in either RETIS or

CORE. For each node t, M5 builds a multivariate linear model using the cases in the node

and including only the attributes tested in the sub-tree Tt. M5 calculates the Mean Absolute

Deviation of this linear model using the cases in t. This value is then multiplied by a

heuristic penalisation factor, () ()vnvn tt −+ , where nt is the number of cases in t, and v is

the number of attributes included in the linear model. The resulting error estimate is then

compared with the error estimate for the sub-tree Tt, and if the latter is larger the sub-tree is

pruned.

40 Full details on this schema can be found in an appendix at the end of this chapter.

4.3 PRUNING BY TREE SELECTION 115

4.3 Pruning by Tree Selection

Given an overly large tree Tmax , the set of all sub-trees of this model is usually too large

for exhaustive search even for moderate size of Tmax. We have seen in the previous section

examples of two different approaches to this search problem. The first one considers

pruning as a two-stage process. In the first stage a set of pruned trees of Tmax is generated

according to some criterion, while in the second stage one of such trees is selected as the

final model. This is the approach followed in CART (Breiman et al.,1984). The second

type of pruning methods uses a single-step procedure and is more frequent. These latter

algorithms run through the tree nodes either in a bottom-up or top-down fashion, deciding

at each node whether to prune it according to some evaluation criterion. These two distinct

forms of pruning a tree influence the evaluation methods used in the pruning process.

When considering two-stage methods, the evaluation of the trees can be seen as a model

selection problem, due to the fact that we want to compare alternative pruned trees with the

aim of selecting the best one. On the contrary, single-step methods use evaluation at a local

level, i.e. they need to decide at each node whether to prune it or not. Moreover, two-stage

methods have an additional degree of flexibility that we claim to be relevant from the

perspective of the practical use of tree-based regression. In effect, they can output the

sequence41 of alternative tree models generated in the first stage together with their

evaluation (either an estimate of their prediction error or other criterion like their binary

description length). These trees can be regarded as alternative models with different trade-

off between model complexity and evaluation score. The system selects one of these trees

according to some bias (e.g. the lowest estimated error), but without any additional

computation cost we can allow the user to inspect and select any other tree that better suits

his application needs. We think that this is a very important advantage from an application

point of view and because of this the new pruning methods presented in this chapter all

follow this two-stage framework.

41 Or part of it as suggested by Breiman et al. (1984, p. 310).

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES116

Within pruning methods based on tree selection we can make a further distinction,

depending on the methods used to generate the set of pruned trees. Optimal pruning

algorithms (Breiman et al.,1984) produce a set of trees decreasing in size by one node,

ensuring that each tree in the sequence is the tree with highest accuracy of all possible

pruned trees with the same size. Breiman and his colleagues mentioned that an efficient

backward dynamic programming algorithm existed but they have not provided it. Bohanec

and Bratko (1994) independently developed an algorithm (OPT) also based on dynamic

programming that is able to produce a sequence of optimal pruned trees. This algorithm is

based on the approach suggested by Breiman et al. (1984, p.65). Almualli m (1996)

recently presented an improvement of Bohanec and Bratko’s algorithm, called OPT-2 that

improves the computational efficiency of OPT. Both algorithms were designed for

classification trees and domains without noise (Bohanec & Bratko, 1994). According to

Bohanec & Bratko (1994) the expected gains in accuracy of optimal algorithms in noisy

domains are not high when compared to non-optimal algorithms. We have re-implemented

OPT-2 and confirmed this observation. For this reason we do not consider this algorithm in

further comparative studies reported in this chapter.

Nested pruning algorithms generate a sequence of trees where each tree is obtained by

pruning the previous element in the sequence at some node. These algorithms are

obviously more eff icient as their search space is smaller, which means that they may miss

some good trees found by an optimal algorithm. The main difference between nested

pruning algorithms is in the methods used for choosing the next node to prune.

In the following sections we describe in detail the main components of pruning by tree

selection algorithms: the generation of a sequence of candidate trees; the evaluation of

these candidate models; and the final selection of the tree resulting from the pruning

process. Moreover, we will present our novel proposals to both tree generation and

evaluation, and describe the results of an extensive experimental comparison of different

alternative methods of pruning by tree selection.

4.3 PRUNING BY TREE SELECTION 117

4.3.1 Generating Alternative Pruned Trees

In this section we address methods for generating a sequence <T0, T1, …, Tn> of nested

pruned trees of an overly large tree Tmax. We describe two existing methods (Error-

Complexity and MEL) and present our two proposals for this task (MCV and LSS).

The generation of a sequence of trees is the first step of pruning by tree selection. We

have already seen in Section 4.2.1 that CART (Breiman et al., 1984) uses an algorithm

called Error-Complexity (ErrCpx) to generate a sequence of nested pruned trees. Error

Complexity is an iterative algorithm that starts with the tree Tmax, which is taken as the first

element in the sequence (T0), and generates the first pruned tree by finding the node

maxTt ∈ that minimises,

() ()

−

−
1

~
#

min
t

t

t T

TErrtErr
(4.8)

where,
Tt is the sub-tree of T rooted at node t;

and tT
~

is the number of leaves of this sub-tree.

The following pruned trees are obtained using the same method applied to the previous

pruned tree in the sequence until a tree consisting only of the root node is reached. Finding

the node t at each step involves running through all tree nodes of the current tree, which

can be computationally heavy depending on the size of the trees. However, Breiman et al.

(1984, p.293) have developed an efficient algorithm that avoids running through all tree

nodes to find the node to prune at each step. This turns the Error Complexity into an

eff icient algorithm having an average complexity of ()TTO
~

#log
~

, and a worst case

complexity of ()2~
#TO according to Bohanec & Bratko (1994).

A simpler method to generate a sequence of nested pruned trees was used in a series of

comparisons carried out by Bohanec and Bratko (1994). This method consists of selecting

the node t that will lead to the lowest increase of resubstitution error. This notion can be

formally stated as finding the node t minimising,

() ()()t
t

TErrtErr −min (4.9)

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES118

We wil l refer to this method as the Minimal Error Loss (MEL) algorithm. This method is

quite similar to the Error-Complexity algorithm, the single difference being that MEL uses

a slightly different function to select the next node to prune. Due to this similarity the

eff icient algorithm described by Breiman and his colleagues can also be used with this

method.

As we have mentioned before, one of the motivations for pruning trees is the

observation that estimates based on small samples are potentially unreliable. By

unreliability we mean that the true error of a tree node can be quite far from the value

estimated with such small samples. The precision of an estimate is measured by the

standard error of the estimate, as we will see in Section 4.3.2.1. This statistic measures the

expected variabil ity if more estimates were obtained using other samples of the same

population. According to statistical estimation theory, a consistent estimator should get

more precise (i.e. have lower standard error) as the sample size grows. Motivated by these

considerations we propose the following method for generating a sequence of nested

pruned trees. Given a tree T generate a pruned tree by eliminating the node whose error

estimate is potentially least reliable. This will lead to a pruned tree of T that is optimal

from the perspective of the variabil ity of its estimated error. Now the question is how to

determine the potential unreliabil ity of the error in a node. We propose two alternative

methods for quantifying the unreliabil ity of the error estimate in a node. The first is

motivated by the fact that the standard error of estimators is inversely proportional to the

sample size from which the estimates were obtained. It consists of pruning, at each

iteration of the algorithm that generates pruned trees, the node t minimising,

()t
t

nmin (4.10)

where, nt is the training sample size in node t.

This can be seen as a naïve form of estimating the unreliability of estimates. We wil l call

this the Lowest Statistical Support (LSS) algorithm. Apart from its simplicity this method

has some computational advantages when compared to other sequence-based methods

4.3 PRUNING BY TREE SELECTION 119

described here. In effect, the order in which the nodes will be pruned can be obtained with

a single pass through the tree42. Pruning a particular node does not change this ordering, as

the number of cases in the remaining nodes stays the same. This means that to generate a

sequence of pruned trees with the LSS algorithm we only need to obtain a list of the nodes

arranged in ascending order of sample size, and then prune each node in this ordered list to

obtain the next pruned tree.

We have analysed another method of estimating the unreliability of the error estimates

at each node. The standard procedure in statistics for estimating variability is to use a

measure of the spread of the sample. An example of such type of measures is the

Coefficient of Variation (e.g. Chatfield, 1983), which is given by,

Y

s
CV Y= (4.11)

where,
sY is the sample standard deviation of Y;
and Y is the average Y value.

Using this statistic we can compare the expected variability in the error estimates of

different nodes. Having these values we can generate a sequence of nested pruned trees, by

pruning at each step of the generation process, the node t with largest coefficient of

variation of the mean squared error, that is,

()()
()

tMSE

tMSEES
t

..
max (4.12)

where,
MSE can be obtained by any of the estimators that will be described in Section
4.3.2.1.

We will refer to this method as the Maximal Coefficient of Variation (MCV) algorithm.

Are the four methods of generating sequences of trees (ErrCpx, MEL, LSS and MCV)

significantly different from each other, i.e. do they entail different preference biases that

42 Actually, it can even be obtained during the tree growth phase.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES120

can be considered useful for different applications? In order to try to answer this question

we have carried out the following experiment. For different training samples we have

generated a large tree Tmax and four different sequences of pruned trees with each method.

The goal of this experiment is to compare these sequences. For each sequence we have

calculated the average true prediction error over all trees in the sequence, and the lowest

true prediction error achieved by one of the trees in the sequence. As we do not know the

true regression function for our benchmark domains, we have estimated the true prediction

error using large independent test sets. The larger the sets, the more reliable the results of

our experiment.

In this experiment we have used the following benchmark domains43:

Table 4.1. The basic characteristics of the used benchmark domains.

Data Set Basic Characteristics
Ailerons 13750 cases; 40 continuous variables
Elevators 16559 cases; 18 cont. vars.
2Dplanes 40768 cases; 10 cont. vars.
Mv 40768 cases; 3 nominal vars.; 7 cont. vars.
Kinematics 8192 cases; 8 cont. vars.
CompAct 8192 cases; 22 cont. vars.
CompAct(s) 8192 cases; 8 cont. vars.
Census(16H) 22784 cases; 16 cont. vars.
Census(8L) 22784 cases; 8 cont. vars.
Fried 40768 cases; 10 cont. vars.
Pole 9065 cases; 48 cont. vars.

Ailerons and Elevators are two domains with data collected from a control problem,

namely flying a F16 aircraft. 2Dplanes is an artificial domain described in Breiman et al.

(1984, p.238). Mv is an artificial domain containing several variables that are highly

correlated. Kinematics is concerned with the forward kinematics of an 8 link robot arm.

The CompAct domains deal with predicting CPU times from records of computer activity

in a multi-user university department. The two domains differ in the attributes used to

describe the cases. The Census domains were designed on the basis of data provided by US

43 Full details of the benchmark domains used throughout the thesis can be found in Appendix A.2.

4.3 PRUNING BY TREE SELECTION 121

Census Bureau (1990 US census). The data sets are concerned with predicting the median

price of houses in a region based on demographic composition and a state of housing

market in the region. They differ in the kind of indicators (variables) used to described the

cases. The Fried domain is an artificial data set used in Friedman (1990). Finally, the Pole

domain contains data from a telecommunications problem and was used in a work by

Weiss & Indurkhya (1995).

For each of the domains we have repeated the experiment 50 times for different

training sample sizes. The results presented are averages of these 50 random samples for

each size. Figure 4.1 shows the results of the four methods in terms of lowest “true” error

achieved by one of the trees in each sequence, for different training sample sizes.

256

0.92

0.94

0.96

0.98

1

1.02

1.04

Aile
ro

ns

Com
pA

ct

2D
Plan

es

Com
pA

ct(
s)

Elev
ato

rs
Frie

d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

ati
cs Mv

Pole

512

0.92

0.94

0.96

0.98

1

1.02

1.04

Aile
ro

ns

Com
pA

ct

2D
Plan

es

Com
pA

ct(
s)

Elev
ato

rs
Frie

d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

ati
cs Mv

Pole

2048

0.92

0.94

0.96

0.98

1

1.02

1.04

Aile
ro

ns

Com
pA

ct

2D
Plan

es

Com
pA

ct(
s)

Elev
ato

rs
Frie

d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

ati
cs Mv

Pole

4096

0.92

0.94

0.96

0.98

1

1.02

1.04

Aile
ro

ns

Com
pA

ct

2D
Plan

es

Com
pA

ct(
s)

Elev
ato

rs
Frie

d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

ati
cs Mv

Pole

Figure 4.1 - Comparison of the four methods for generating sequences of sub-Trees.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES122

For space reasons the results regarding the average error in each sequence are presented in

the Appendix B.4. To be able to present the results for all data sets together, we have

normalised each result by dividing it by the average score of the four methods. The results

can thus be seen as a kind of ratios with respect to the average score of the four methods.

These experiments show that with the exception of the Elevators domain, the LSS

method generates the more accurate pruned trees from the four methods. Moreover, with

the exception of Elevators, Mv and Kinematics, the methods we have proposed generate

better pruned trees than the ErrCpx and MEL methods. With respect to the average error of

all trees within each sequence, our experiments show that few differences exist between

the four methods (c.f. Appendix B.4).Given these results, we can be reasonably confident

on the “quality” of the sequences of pruned trees produced by our two methods (LSS and

MCV). Still, generating sequences of trees that include better models does not mean that in

the second phase of pruning the existing tree selection methods will be able to choose

them. This experiment was carried out under the “ideal” conditions of having access to the

“true” prediction error. In Section 4.3.4.1 we will again compare these methods of

generating sequences of trees, but now in conjunction with “real” selection methods. Still,

based on the results of the experiments presented above, we can say that if we have a

reliable method of selecting trees from a sequence it can be advantageous (or certainly not

detrimental) to use the sequences generated by both the LSS and the MCV algorithms,

when compared to existing methods.

4.3.2 Methods for Comparing Alternative Pruned Trees

In this section we address the second stage of pruning by tree selection: comparing the

generated pruned trees. We will discuss two main methodologies for comparing tree-based

models. The first is based on reliable estimates of the error of the models, while the second

is based on the minimum description length principle. With respect to error-based selection

we described three main strategies for obtaining reliable estimates of the error: methods

4.3 PRUNING BY TREE SELECTION 123

based on resampling; bayesian estimation; and estimates based on the sampling properties

of the error estimates.

4.3.2.1 Comparing Trees using Prediction Error Estimates

An estimator is a function that takes a sample of observations and uses it to estimate an

unknown value of a statistical parameter θ. The estimator θ̂ is a random variable with a

probability distribution function usually known as the sampling distribution of the

estimator. An estimator is said to be unbiased if its expected value is equal to the true value

of the parameter being estimated (i.e. () θθ =ˆE). This means that with repeated sampling

we should obtain the true value of the population parameter by averaging over the different

sample estimates. Although being unbiased is an important property of an estimator it does

not indicate how precise a particular estimate is. In effect, we can have two different

unbiased estimators of a parameter θ, one being preferable to the other because its

sampling distribution is more tightly spread around the true value of θ. This notion can be

captured by a statistic of spread applied to the estimates. The resulting statistic is usually

known as the standard error of an estimator, S.E.()θ̂ . Another important property of an

estimator is consistency. This property states that with increasing size of the samples our

estimates should improve. In summary, we are interested in consistent, minimum variance

(i.e. precise) and unbiased estimators of the prediction error. In the following sections we

describe several estimators of the prediction error of regression trees.

Resampling Methods

The main idea behind resampling methods is to use a separate set of data to obtain the

reliable estimates. We have already seen a possible way of using these estimators within

pruning when we have discussed CART pruning algorithm (Section 4.2.1). Resampling

methods can also be used to tune parameters of a learning system. An example of such

application consists of finding the “optimal” values of learning parameters to better tune a

system to a particular domain (e.g. John,1997). This is particularly useful whenever the

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES124

“optimal” values of these parameters depend on the domain under consideration. In a way

the estimation phase of CART pruning can be seen as tuning the cost per leaf node (the α

value) parameter, to ensure the highest estimated predictive accuracy. These techniques

can also be used within the pruning method used in RETIS for obtaining the “best” value

of m, and within CORE pruning method to find the “optimal” precision coeff icients used in

the MDL coding schema.

Our study will be centred on two particular resampling techniques, the Holdout and

the Cross-Validation. Another frequently used resampling technique is the bootstrap

(Efron,1979; Efron & Tibshirani, 1993) and its variants like the .632 bootstrap or the e0

bootstrap (see for instance Weiss & Kulikowski, 1991 or Kohavi, 1995). The bootstrap

method is known to be particular suitable for small samples. With the rapid growth of

computational power and the widespread of information technology, the size of data sets is

growing at a very fast rate. Research fields like Knowledge Discovery in DataBases

(KDD) put a particular emphasis on large data sets, which we share. This was the main

motivation for not including the bootstrap method in our study.

Cross Validation Error Estimates

A k-fold cross validation (CV) estimate is obtained by randomly dividing the given

training sample in k disjoint folds D1,...,Dk, each containing approximately the same

number of observations. For each fold Df a regression model is constructed using as

learning sample D\Df , obtaining the model rf(β, x). This model is then tested on the fold

Df. The same process is repeated for all folds. Finally, the CV error estimate is obtained by

averaging the errors of these k models, i.e.

{ }
∑ ∑

= ∈
=

k

f D
ikCV

fi

Err
n

rrE
1

1ˆ
x

(4.13)

where,

() ()()2,or , iiiiii ryErrryErr xx β−=β−= , depending on the type of

error measure we are using to evaluate our model.

4.3 PRUNING BY TREE SELECTION 125

A particular case of this formula occurs when k is set to n. This leads to what is usually

known as Leave-One-Out Cross Validation (LOOCV) where n models are constructed

using n-1 training cases. This method is computationally expensive so it is used only with

very small data sets. The most common set-up in current research within ML is 10-fold

CV.

As mentioned by Breiman et al. (1984, p.307) it is not clear how to obtain standard

error (SE) estimates for the CV estimator since the errors are not independent due to the

overlap of the k training sets. If we ignore this dependence we reach a heuristic formulation

for the SE of this estimator,

() ()
{ }

∑ ∑
= ∈

−=
k

f D
kCVikCV

fi

rrEErr
n

rrEES
1

2ˆ1ˆ..
x

(4.14)

The use of CV estimators with tree-based models presents some diff iculties. For instance,

we have to repeat the learning process k times, which brings additional computation costs.

Another problem is how to use the CV estimate to select the best pruned tree. We have

seen in Section 4.2.1 that Breiman et al. (1984) use the cost per leaf node (the α values) to

perform a tree-matching process that allows the use of CV estimates in the pruning

process. This method is strongly tied to the error-complexity sequence generation

algorithm. It does not make sense to use the α values to perform tree matching with other

sequences of trees, because Breiman and his colleagues proved that the optimal sequence is

the one provided by the Error-Complexity algorithm. Motivated by the fact that we have

studied other algorithms for obtaining sets of pruned trees we have devised an alternative

tree-matching method.

The Error-Complexity algorithm produces a parametric sequence of nested trees T(α)

= < T0, …, Tn>. Associated with each tree in the sequence there is a α value. Let us denote

a tree belonging to this sequence as T(αi) to reinforce this association between the trees and

the respective α values. As we have mentioned in Section 4.2.1, when using k-fold cross

validation error estimates, CART also produces k parametric sequences () ()αα kTT ,...,1 .

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES126

For each tree in these sequences we have a reliable estimate of its error obtained with the

respective fold. The tree matching procedure of CART estimates the error of the tree T(αi)

of the main sequence as the average of the error estimates of the trees

() ()11
1 ,..., ++ αααα ii

k
ii TT , where T(αr) is the tree belonging to the sequence T(α) with α

value most similar to αr. The assumption behind this procedure is that the trees

() ()11
1 ,..., ++ αααα ii

k
ii TT have the same true prediction error as T(αi). In other words,

trees with a similar cost per leaf will have similar true prediction error. As mentioned by

Esposito et al. (1997) there is no theoretical justification to support this.

We now describe an alternative tree-matching method that allows using cross

validation error estimates for any sequence of nested pruned trees. Let us assume that trees

obtained with samples with approximately the same size will have similar predictive

accuracy. Under this assumption it seems reasonable to consider that the error estimate of

overly large tree Tmax obtained with all training data, should be calculated with the error

estimates of the trees kTT max
1
max ,..., (i.e. the overly large trees of the k folds). Moreover, as

the training sets in the k folds are samples of the same population it is reasonable to assume

that they will have the same variance. Based on this argument we can estimate the error of

the tree consisting of a single leaf, using the similar trees in the sequences ()αvT 44.

Linear polynomials obtained through the least squares method are usually evaluated

by the proportion of variance they explain. This statistic is obtained by,

() () ()rRE
s

rErrs
r

Y

Y −=
−

=ρ 1
2

2
2 (4.15)

where,
r is a regression model;
Err(r) is the mean squared error of the model;

2
Ys is the sample variance of Y;

and RE(r) is usually known as the relative error of r.

44 Because the error of a tree consisting of a single leaf is given by the variance (2
Ys) of the training sample

(i.e. () 2
Yn sTErr =).

4.3 PRUNING BY TREE SELECTION 127

We can calculate similar ρ2 values for any tree in a sequence. These values range from a

maximum value for the tree Tmax (which is the first element in the sequence, T0), until the

value zero, relative to the tree consisting of a single leaf. These values decrease as the trees

get smaller because the trees are nested and have increasing value of resubstitution error

(i.e. they explain less variance of the training sample). This means that we can look at our

sequence of trees as a parametric family () () () ()22
1

2
0

2 ,...,, nTTTT ρρρ=ρ , where

22
1

2
0 ... nρ>>ρ>ρ and 02 =ρn . Without loss of generality we may re-scale these values to

cover the interval [1..0], using a simple linear transformation consisting of dividing the 2
iρ

values by 2
0ρ (i.e. by the maximum value of 2

iρ). This leads to the following statistic,

() ()
() ()0

2
0

2
2

TErrTErr

TErrTErr

n

ini
i −

−
=

ρ
ρ

=ϑ (4.16)

where, 1...1,10 and ,0,1 22
1i

222
0 −=<ϑ<ϑ>ϑ=ϑ=ϑ + niiin .

The starting point of our proposed tree matching procedure is a sequence of nested pruned

trees, () () () ()22
1

2
0

2 ,...,, nTTTT ϑϑϑ=ϑ , and the k cross validation sequences

() ()221 ,..., ϑϑ kTT . Our tree-matching method consists of using the 2ϑ values to assert

similarity between trees in these sequences. Namely, the error estimate of tree ()2
iT ϑ is

obtained as an average of the error estimates of the k trees () ()221 ,..., i
k

i TT ϑϑ . The

underlying assumption behind this tree matching procedure is that trees explaining the

same proportion of variance of the given training sample, are likely to have similar true

prediction error on future samples of the same population.

We have compared our tree-matching proposal with the method used in CART. Using

the same sequence of trees (the one produced by CART Error-Complexity algorithm) and

the same error estimation technique (5-fold CV), we have compared the selected trees in

the main sequence for each of the two tree-matching methods. Figure 4.2 shows the sign

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES128

and the statistical significance of the difference in MSE between the two alternatives,

estimated using the DELVE experimental methodology45.

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
pla

ne
s

Po
le

Ele
va

to
rs

Aile
ro

ns M
v

Kine
mati

cs

Com
pA

ct

Com
pA

ct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Fr
ied

256 512 1024 2048 4096

C
A

R
T

 m
at

ch
in

g
O

ur
 p

ro
po

sa
l

Figure 4.2 - Our tree-matching proposal vs. CART method.

As Figure 4.2 shows there are no statistically significant46 differences between the choices

entailed by the use of the two alternative tree-matching methods. In spite of a tendency for

the differences being favourable to our method, we cannot discard with high confidence

the hypothesis that both alternatives achieve the same accuracy. Still, we should recall that

the single motivation for the introduction of our method was to allow the use of CV

estimates with other methods of generating sequences of pruned trees apart from the

method used in CART. This is a relevant issue because we have shown in Section 4.3.1

45 Details concerning the experimental methodology and the information described in the figures can be

found in Annex A. The complete tables of results of this experiment can be found in Annex B.5.
46 We consider an observed difference statistically significant if there is at least 95% confidence that the two

methods will not achieve similar accuracy on other samples of the same population. Furthermore, if the

confidence reaches the 99% level we consider the difference highly significant.

4.3 PRUNING BY TREE SELECTION 129

that it is possible to obtain better results with other sequence generation methods that do

not produce the same sequence as the Error-Complexity algorithm.

Another relevant issue when applying CV estimators is the number of folds to use.

Smaller numbers make the size of the folds larger leading to more reliable estimates.

However, as fewer cases are left for training, this also affects adversely the “quality” of the

model and thus its error, and hence there is a trade-off between the two factors. Moreover,

for large data sets the value of k strongly influences the computation time. We have not

carried out any systematic experiment to determine the optimal number of folds. In our

experiments we have used the value 5 on the basis of empirical observations and also

because it is commonly used within ML.

The Holdout Method

With the Holdout method the given training cases are randomly divided into two separate

samples. One of the samples is used for training and the other (the holdout sample) to

obtain unbiased estimates of the models learned. The usual way data is used by this method

in the context of regression trees (e.g. system CART by Breiman et al.,1984) is described

by the Figure 4.3:

Figure 4.3 - The Holdout Method.

A Holdout estimate is the average prediction error of the model on the cases in the holdout,

Given
Data

Training
Data

Holdout
Sample Used for Obtaining

Unbiased Estimates

Used for Growing
the Trees

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES130

∑
=

=
Hldn

i
i

Hld
Hld Err

n
rrE

1

1ˆ (4.17)

where,
nHld is the number of cases in the Holdout sample;
and Erri is the prediction error of the model r(β,x) for case ii y,x .

We are trying to estimate the “true” mean error of a regression model. Assuming that the

holdout sample is drawn from the same population as the learning sample, we can say that

the Holdout is an unbiased estimator of the mean error of the model. In effect, it is well

known that the average is an unbiased estimator of a population mean, and the holdout

estimates are obtained by averaging the errors of the model in the holdout sample. With

respect to the standard error of the holdout estimates statistical theory tells us that if X1, …,

Xn is a random sample of a distribution with mean µ and variance σ2 the variance of the

average estimator of the mean is given by,

n
X

2

Var
σ= (4.18)

This means that the standard error of the holdout estimates is given by,

()
n

rrEES E
Hld

2

ˆ..
σ

= (4.19)

where,
2
Eσ is the variance of the error Err;

and n is the size of our sample (in this case the size of the holdout).

Using the sample variance estimate47 we get the following operational formula,

()
1

1ˆ..

2

11

2

−

−

=
∑∑

==

n

ErrErrn

n
rrEES

n

i
i

n

i
i

Hld (4.20)

47
()

()1

22
2

−
−

= ∑∑
nn

XXn
sX

4.3 PRUNING BY TREE SELECTION 131

The two alternative ways of defining the Erri's mentioned before (squared or absolute

differences) tell us that less credit should be given to the standard error estimates when

using the MSE criterion, as we will have powers of four48, which can be extremely

variable. This can be seen as another advantage of LAD regression trees. Equation 4.20 is

slightly different from the formula derived by Breiman et al. (1984, p.226). The difference

results from the fact that the authors have used the biased estimate of the variance, where

the denominator is n instead of n-1. This approximation is known to underestimate the true

population variance (Chatfield,1983), which means that the values obtained by their

formula should be over-optimistic compared to ours.

An important issue when using these estimates is the size of the holdout. This method

requires the two samples to be independent which means that we will decrease the number

of cases available for training. While one wants a suff iciently large pruning set (holdout),

one does not want to remove too many cases from the training set, so as not to harm the

quality of the learned trees. The first obvious observation that one can make about this

method is that it is clearly inadequate for small samples. In effect, as Weiss and

Kulikowski (1991) pointed out, for moderately sized samples this method usually leaves

one with insuff icient number of cases either for training or pruning. The authors have

suggested that a holdout sample with around 1000 observations should be sufficient for

most cases. We have experimentally confirmed on our benchmark data sets that this is a

reasonable assumption. Using larger holdouts brings little increased precision and, in

effect, ends up harming the accuracy of the tree model, because too many cases have been

“removed” from the learning sample. In our experiments with the holdout method we have

used a similar heuristic, by setting the size of the holdout as follows,

()1000,%30min nnHld ×= (4.21)

where n is the training sample size.

48 Because for the MSE criterion ()()2, iii ryErr xβ−= .

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES132

This means that for instance, if the sample size is 500 cases, then we have that

min(30%×500,1000) = 150, and thus 150 cases will be left out as holdout while the

remaining 350 will be used as training set. On the contrary, if the sample size is 50000, we

have that min(30%×50000,1000) = 1000, thus only 1000 cases will be left out as holdout.

m-Estimates

As we have mentioned in Section 4.2.2, Karalic and Cestnik (1991) have presented m

estimators for the mean and variance of a variable, which can be used to obtain reliable

estimates of the error of LS regression trees. Although the authors have used m-estimates

with the Niblett & Bratko (N&B) pruning algorithm, these estimates can also be used to

compare alternative regression trees. For instance, given a sequence of trees such as the

one produced by the Error-Complexity algorithm used in CART, m-estimates could be

used to select the final model instead of the resampling techniques used in CART. We will

use this method in our experimental comparisons. Moreover, we have extended the work

of Karalic and Cestnik (1991) by deriving the standard error associated with these

estimators. This allows the use of the 1-SE selection rule (Breiman et al., 1984) with m-

estimates leading to large benefits in terms of tree size of the selected model.

According to Kendall and Stuart (1969, vol. 1) the standard error of the sample mean

squared error is given by,

() () ()

 −−−= ∑ ∑

= =

n

i

n

i
iiy yy

n
yy

nn
MSEES

1

2

1

24 111
.. (4.22)

The standard error is a statistic of the sampling distribution of a population parameter.

Using Equation 4.3, we have developed the m-estimate of the standard error associated

with the sample MSE, which is given by the following equation,

4.3 PRUNING BY TREE SELECTION 133

()()

()() ()()

()() ()()

 −−−

+

+

−−−

+

=

∑ ∑

∑ ∑

= =

= =

n

i

n

i
ii

l

n

i

n

i
i

l
i

lll

l

y

ymy
n

ymy
nnmn

m

ymy
n

ymy
nnmn

n

MSEESm

l l

1

2

1

24

1

2

1

24

Est
1

Est
11

Est
1

Est
11

..Est

(4.23)

The expressions inside the squared roots can be expanded using the following equality

()() ()()

() ()() () ()()22
112

2
2

2
234

1

2

1

24

Est
4

Est
41

Est4Est4
1

Est
1

Est
11

yms
n

ymss
n

s
n

ymsymss
n

ymy
n

ymy
nn

n

i

n

i
ii

−+−+−

=

 −−−∑ ∑

= = (4.24)

where,

∑∑∑∑
====

====
n

i
i

n

i
i

n

i
i

n

i
i ysysysys

1

4
4

1

3
3

1

2
2

1
1 ,,, .

Calculating these s factors brings no significant computational cost as this can be carried

out during tree growth. Using the expression given in Equation 4.24 the m-estimate of the

standard error of the sample MSE can be calculated in an efficient manner.

We have also extended the use of m-estimates to least absolute deviation (LAD)

regression trees. To grow LAD trees we need estimates of the median and of the mean

absolute deviation to the median. We have derived m-estimates for these two statistics.

Regarding the priors we have followed the same procedure of estimating them at the root

of the tree (i.e. using all training data). Using Equation 4.3 we can obtain the m estimate of

the median in a leaf l as,

() () ()n
l

l
l

l D
mn

m
D

mn

n
m ν

+
+ν

+
=νEst (4.25)

where,
()lDν and ()nDν are the resubstitution estimates of the medians obtained with the

cases in the leaf and root nodes, respectively;
and nl is the size of training sample in leaf l.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES134

With respect to the mean absolute deviation to this median we have,

() () ()

() () ()∑∑

∑∑

ν−
+

+ν−
+

=

ν−
+

+ν−
+

=ν

nl

nl

D
i

lD
i

l

D
i

lD
i

ll

l

my
mnn

m
my

mn

my
nmn

m
my

nmn

n
MADm

EstEst
1

Est
1

Est
1

Est

using the equation derived in Section 3.3.1 for the SAD of a set of observations we get,

() ()

() () ()

×ν+−

+

+

×ν+−

+
=

∑∑

∑∑

−+

−+

n
D

i
D

i
l

l
D

i
D

i
l

DODDmyy
mnn

m

DODDmyy
mn

nn

ll

#Est

#Est
1

(4.26)

The formula derived above needs a pass trough all training data for each estimate of the

MAD, as we need to obtain the sums of the Y values greater and smaller than the m

estimate of the median. As this estimate is different for each leaf, this needs to be done for

all leaves. Thus m estimates for LAD trees have a cost proportional to O(#T
~ × n), where

T
~

is the set of leaves of the tree T. We can reduce this cost by obtaining the two

summations in an incremental fashion. In effect, during the tree growth these sums get

calculated for the resubstitution estimate of the median. Moreover, we already have the

observations in two AVL trees D+ and D- (see Section 3.3.1). The m-estimate of the

median is either bigger or smaller than the resubstitution estimate. Thus we only need to

update the two sums with the cases in the interval between these two values. This will lead

to a complexity proportional to O(#T
~ × k), where k is much smaller than n.

We now address the issue of obtaining the m estimate of the standard error associated

with the estimate of the mean absolute deviation given above. Kendall and Stuart (1969,

vol. 1) refer that the standard error associated with the sample mean deviation about a

value ν is given by,

() () ()()2221
.. νν δ−µ−ν+σ=

n
MADES (4.27)

4.3 PRUNING BY TREE SELECTION 135

where,
()ν−=δν iyE , i.e. the expected value of the mean absolute deviation.

Using the sample estimates of the 2σ and νδ statistics we get,

() () ()

 ν−−−ν+−= ∑∑

==
ν

2

1

2

1

2 111
..

n

i
i

n

i
i y

n
yyy

nn
MADES (4.28)

We have developed the m estimate of this standard error which is given by the following

equation,

()()

()() () ()() ()

()() () ()() ()

 ν−−−ν+−

+

+

ν−−−ν+−

+

=

∑∑

∑∑

==

==

ν

2

1

2

1

2

2

1

2

1

2

Est
1

EstEstEst
11

Est
1

EstEstEst
11

..Est

n

i
i

n

i
i

l

n

i
i

l

n

i
i

lll

l

my
n

ymmymy
nnmn

m

my
n

ymmymy
nnmn

n

MADESm

ll

Once again we can try to obtain a computationally more efficient formula for the

expressions inside the squared roots leading to,

()() () ()() ()

2
5

2
2542

2
4532

2
312

2
2112

2
1

2

1

2

1

2

12121
222

1

Est
1

EstEstEst
11

kk
n

kkk
n

k
n

kkk
n

k
n

knknkkssnk
n

my
n

ymmymy
nn

n

i
i

n

i
i

−+−+−−+−+

=

 ν−−−ν+− ∑∑

==

where,
the s factors are defined as before;
and () () ()DODDkykykmkymk

D
i

D
i #,,,Est,Est 54321 ===ν== ∑∑

−+

.

Although this formula increases the efficiency of the calculation of the standard error, there

are still some factors (k3 and k4) that need two passes through the data to be obtained. This

is the same efficiency problem mentioned when presenting the m estimates of the MAD.

However, as these factors are already calculated to obtain the m estimates of the MAD, the

calculation of the standard error of these estimates brings no additional computation effort.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES136

Estimates based on Sampling Distribution Properties

Statistical estimation theory is concerned with obtaining unbiased estimates of population

parameters. Point estimates provide a unique number for the parameter value. Together

with this number we are interested in obtaining a standard error of the estimate. Equations

4.22 and 4.27 calculate the standard error associated with both the mean squared error and

the mean absolute deviation to the median. Interval estimates, on the other hand, provide

an interval were we can be sure that in x% of the cases the true population parameter lies

in. Interval estimates can be obtained if we know the sampling distribution of the

parameter being estimated. For instance, the central limit theorem tells us that

irrespectively of the distribution of a random variable, the sampling distribution of its mean

is normal. This allows us to obtain confidence intervals for the location of the true

population mean based on the mean estimated with a single random sample. In the case of

regression trees we are interested in obtaining estimates of the true error in each leaf. In

our study we have used as error measures either the MSE or the MAD.

For the MSE criterion, the error associated with a leaf can be seen as an estimate of the

variance of the cases within it. Statistical estimation theory tells us that the sampling

distribution of the variance is the χ2 distribution (e.g. Bhattacharyya & Johnson, 1977), if

the original variable follows a normal distribution. According to the properties of the χ2

distribution, a 100×(1-α)% confidence interval for the true population variance based on a

sample of size n is given by,

() ()
()

χ
−

χ
−

−α−−α
2

1,21

2

2

1,2

2 1
,

1

n

Y

n

Y snsn
(4.29)

where,
2
Ys is the sample variance (obtained in a particular tree leaf);

and 2
,nαχ is the tabulated value of the χ2 distribution for a given confidence level α

and n degrees of freedom.

This formulation is based on an assumption of normality of the distribution of the variable

Y. In most real-world domains we cannot guarantee a priori that this assumption holds. If

4.3 PRUNING BY TREE SELECTION 137

that is not the case we may obtain too narrow intervals for the location of the true

population variance. This means that the true error in the leaf can be outside of the interval

boundaries. However, in the context of pruning by tree selection, we are not particularly

interested in the precision of the estimates, but in guaranteeing that they perform a correct

ranking of the candidate pruned trees.

The χ2 distribution is not symmetric, meaning that the middle point of the interval

defined by Equation 4.29 does not correspond to the sample point estimate of the variance

(Bhattacharyya & Johnson, 1977). In effect, the middle point of this interval is larger than

the point estimate. The difference between these two values decreases as the number of

degrees of freedom grows, because it is known that the χ2 distribution approximates the

normal distribution49 when the number of degrees of freedom is sufficiently large. This

means that as the sample size (which corresponds to the number of degrees of freedom)

grows, the middle point of the interval given in Equation 4.29 will tend to approach the

point estimate obtained with the sample. This is exactly the kind of bias most pruning

methods rely on. They “penalise” estimates obtained in the leaves of large trees (with few

data points) when compared to estimates at higher levels of the trees. Being so, we propose

using the middle point of the interval in Equation 4.29 as a more reliable estimate of the

variance of any node, which leads to the following estimator of the MSE in a node t,

()() ()
()

χ
+

χ
×

−
×=

−α−−α
2

1,21

2

1,2

11

2

1

tt nn

tn
tMSEtMSEChiEst (4.30)

where,

()

χ
+

χ
×

−

−α−−α
2

1,21

2

1,2

11

2

1

tt nn

tn
 can be seen as a correcting factor of the MSE in a

node t.

49 Which is symmetric.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES138

This is a heuristic method of obtaining an estimate of the true mean squared error in a tree

node, obtained through the use of a “correcting” factor on the resubstitution estimate of the

MSE. This factor is a function of the number of cases from which the resubstitution error

was obtained and of the sampling distribution properties of the mean squared error. A

similar strategy is followed in C4.5 (Quinlan, 1993a) for classification trees, which applies

a “correcting” factor to the resubstitution error rate, based on the binomial distribution.

Figure 4.4 shows the value of the correcting factor for different sample sizes and

confidence levels of the χ2 distribution.

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Sample size

C
or

re
ct

in
g

fa
ct

or

F(.95) F(.975) F(.999)

Figure 4.4 –Different values of the “ correcting factor” used in the ChiEst estimator.

As it can be seen the larger the confidence level the higher the value of the correcting

factor penalising small samples. This means that the higher the confidence level the

stronger the preference bias for smaller trees.

Regarding the use of the 1-SE rule we can calculate the standard error of these

estimates using Equation 4.22.

4.3 PRUNING BY TREE SELECTION 139

We were not able to find the sampling distribution of the Mean Absolute Deviation to

the median. Being so, we decided not to use this type of estimators with our LAD

regression trees.

4.3.2.2 Comparing Trees using their Binary Description Length

Most existing work on pruning is solely guided by reliable estimates of the prediction

error. Still , pruning inevitably leads to smaller and thus less complex trees. Pruning has an

important effect on model complexity and interpretabil ity as it was pointed out by several

authors (e.g. Bohanec and Bratko, 1994; Kononenko, 1989). In effect, there is a strong

resistance to “black box” models by many human experts. As a result of this some authors

have tried to incorporate both the notions of simplicity and prediction accuracy in the

preference bias guiding the overfitting avoidance process. Breiman et al. (1984) have

added a complexity cost to the error estimates leading to the error-complexity pruning

method used in their CART system. Still, this measure is only used for generating the set

of alternative trees considered during the pruning process, while the final selection is solely

guided by the minimisation of the estimated error. Both m-estimates and ChiEst indirectly

incorporate a bias for smaller trees by penalising estimates obtained with small samples.

The Minimum Description Length (Rissanen, 1978) principle is based on a sound

theoretical framework that can incorporate the notions of model complexity and accuracy.

This work gave rise to studies of binary coding of tree-based models which is now a well-

studied subject. Coding of classification trees was explored for instance by Quinlan &

Rivest (1989) and Wallace & Patrick (1993). The work of Kramer (1996) seems to be the

first attempt which involves using MDL for selecting a good candidate from a set of

different regression trees. This author described the SRT system that learns a particular

type of regression trees using a least squares error criterion. The particularity of SRT

resides on the use of a relational language for the tests in the nodes of the trees. In effect,

the final tree can be translated into a set of relational clauses. SRT builds several trees

using different stopping criteria and uses MDL to select the best one. Kramer (1996)

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES140

describes somewhat vaguely the coding used in SRT. He refers that the length of a tree

encoding consists of the sum of the encoding of the tree model plus the encoding of its

errors on the training data. The errors are real numbers and are encoded using the method

proposed by Rissanen (1982). As for the tree model the author just mentions that he

encodes the choices made in each node from all possible literals. As we have seen in

Section 4.2.3, Robnik-Sikonja and Kononenko (1998) also use MDL for pruning LS

regression trees in the CORE system. The coding schema50 provided by these authors can

be used to obtain the binary description length of any regression tree. We use this code

length to compare different pruned trees in the context of pruning by tree selection.

4.3.3 Choosing the Final Tree

This section addresses the final step of pruning by tree selection. After an initial stage

consisting of generating a set of alternative pruned trees, we evaluate these alternatives by

means of any of the methods described in Section 4.3.1. The goal of these evaluation

methods is to provide information that allows choosing one of such models as the final tree

obtained by the learning algorithm. Different strategies can be used in this final step of

pruning by tree selection.

If we compare the alternative pruned trees using estimates of their true prediction

error, the “natural” method of selecting a tree is to choose the model with lowest estimated

error. However, Breiman et al. (1984) suggested an alternative method biased toward

simpler models. This alternative consists of selecting the smallest tree within the interval

()ll rrEESrrE ˆ..ˆ + , where lrrÊ is the lowest error estimate and ()lrrEES ˆ.. is the standard

error of this estimate. This method, usually known as the 1-SE rule, can be generalised to a

k-SE rule with k ≥ 0 51.

50 Full detail s regarding this coding schema can be found in the appendix at the end of this chapter.
51 Notice that with k = 0 this rule resumes to selecting the tree with lowest error.

4.3 PRUNING BY TREE SELECTION 141

If the trees in the sequence are compared in terms of their binary description length,

the application of the Minimum Description Length principle leads to the selection of the

model with shortest binary code.

4.3.4 An Experimental Comparison of Pruning by Tree Selection Methods

In this section we describe a set of experiments that compare different approaches to

pruning by tree selection. These experiments provide a better understanding of the

different biases of the alternative pruning methods we have considered in the previous

sections. The conclusions of these experiments allow us to claim that depending on the

preference criteria of the user, some methods will be preferable to others in domains with

similar characteristics.

4.3.4.1 Comparing Methods of Generating Sets of Pruned Trees

In Section 4.3.1 we have described two new methods of generating sequences of nested

pruned trees (LSS and MCV). In this section we compare these methods with existing

alternatives using different ways of selecting the best pruned tree.

Figure 4.5 shows the sign and statistical significance of the estimated MSE difference

between our two proposals (MCV and LSS) and other existing sequence generation

methods (MEL and ErrCpx). In this experiment we have used ChiEst with a confidence

level of 95%, as the method of selecting one tree from the sequence. All sequence

generation algorithms use as “starting point” the same tree Tmax.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES142

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
pla

ne
s

Po
le

Ele
va

to
rs

Aile
ro

ns M
v

Kine
mati

cs

Com
pA

ct

Com
pA

ct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Fr
ied

256 512 1024 2048 4096

L
S

S
M

EL

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
pla

ne
s

Po
le

Ele
va

to
rs

Aile
ro

ns M
v

Kine
mati

cs

Com
pA

ct

Com
pA

ct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Fr
ied

256 512 1024 2048 4096

L
S

S
Er

rC
px

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
pla

ne
s

Po
le

Ele
va

to
rs

Aile
ro

ns M
v

Kine
mati

cs

Com
pA

ct

Com
pA

ct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Fr
ied

256 512 1024 2048 4096

M
EL

M
C

V

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
pla

ne
s

Po
le

Ele
va

to
rs

Aile
ro

ns M
v

Kine
mati

cs

Com
pA

ct

Com
pA

ct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Fr
ied

256 512 1024 2048 4096

Er
rC

px
M

C
V

Figure 4.5 – Comparison of LSS with other sequence generation methods using

ChiEst(95%) as selection method.

These graphs show a clear advantage of both MCV and LSS over existing sequence

generation methods. In effect, we can observe several statistically significant advantages of

our proposals and only with the LSS strategy we have observed a significant loss in the

CompAct(s) domain. These results show that the better potential that we have observed in

the experiments reported in Section 4.3.1 (Figure 4.1), can be capitalised by the ChiEst

selection method.

We have also carried out similar experiments with other tree selection methods. The

results are comparable so we do not include them here for space reasons. They can be

found in the Appendix B.6.

4.3 PRUNING BY TREE SELECTION 143

4.3.4.2 Comparing Methods of Evaluating Trees

Pruning by tree selection includes a stage where a tree is chosen according to some

evaluation criteria. In Section 4.3.1 we have reviewed several possible ways of performing

this evaluation. In this section we show the results of an experimental comparison of these

methods. Here we use as candidate pruned trees the sequence generated with the LSS

algorithm, which as we have seen in the previous section, is a quite good method overall .

Before presenting the results of the comparison we make a few remarks regarding

tuning of the parameters of some tree evaluation strategies. Both m-estimates, ChiEst and

MDL selection require that some parameters are set. All of these parameters reflect certain

preference bias over the accuracy / tree size trade-off. Ideally, one would like to have a

default setting that would “work well” across all domains. Alternatively we can use

resampling-based tuning to find out the parameter setting that maximises the expected

accuracy on our target domain. Obviously, this tuning strategy only makes sense in case

our goal is to maximise predictive accuracy. Still, this is the most common way of

proceeding. We have already seen that CART uses such tuning method to find out which

cost per leaf (α value) leads to higher estimate of predictive accuracy. We have carried out

a set of experiments to obtain a better understanding of the effect of changing the value of

the parameters of the different tree evaluation methods.

Tuning of the ChiEst evaluation method

We start our analysis with the ChiEst tree evaluation method. The parameter of this error

estimator is the confidence level used to obtain the χ2 distribution values. As Figure 4.4

(p.138) shows, different values of the confidence level lead to different penalisation of the

resubstitution estimates. We have carried out a simple experiment to evaluate the effect of

the value of the confidence level on the size of the selected tree. This experiment was

carried out with the Abalone, Pole, CompAct and Elevators data sets. For each domain we

have grown a LS regression tree, generated a set of pruned trees using the LSS algorithm,

and then selected the “best” tree according to a ChiEst evaluation carried out using

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES144

different confidence level values. The result of varying the value of the confidence level

from 0.5 to 1 on the relative size of the selected tree when compared to the initially learned

tree, is shown in Figure 4.6, for the four domains mentioned above.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
5

0.
53

0.
55

0.
58 0.

6

0.
63

0.
65

0.
68 0.

7

0.
73

0.
75

0.
78 0.

8

0.
83

0.
85

0.
88 0.

9

0.
93

0.
95

0.
98 1

Confidence Level

P
ru

ne
d

Tr
ee

 S
iz

e
R

at
io

 w
rt

 T
m

a
x

Abalone Pole Elevators CompAct

Figure 4.6 - The effect of the value of the confidence level on the pruned tree size.

As we can see the larger the confidence level the smaller the selected pruned tree.

However, we can observe that for a wide range of confidence level values the selected tree

is the same. This means that the ChiEst evaluation method is quite robust to variations on

this value. Moreover, we also observe that depending on the domain different levels of

pruning are carried out for the same confidence level value.

As we have mentioned we would like to have a fixed setting of the confidence level

that was adequate over a wide range of data sets, to avoid the computational burden of

having to use resampling-based tuning. We have tried several fixed settings and our

experiments lead us to select the value of 0.95. We have carried out a paired accuracy

comparison between using resampling-based tuning through 5-fold CV and the fixed

setting of 0.95. For CV-based tuning, 16 trial values were used to select the “best” setting.

These values range exponentially from 0.5 to 0.994303 using the generating function

15..0,5.1 22 =×=
−

ieCL
i

i . The results of this experiment are shown in Figure 4.7.

4.3 PRUNING BY TREE SELECTION 145

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
plan

es Pole

Elev
ato

rs

Aile
ro

ns
M

v

Kinem
ati

cs

CompAct

CompAct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Frie
d

256 512 1024 2048 4096

C
hi

Es
t(

95
%

)
C

hi
Es

t(
5-

C
V

)

Figure 4.7 - Significance of MSE difference between ChiEst(95%) and ChiEst(5-CV).

This comparison shows that there is no particular advantage in adopting a resampling-

based tuning of the confidence level when compared to the fixed set-up of 0.95, at least on

these domains. In effect, we have not observed any data set where we could reject with

high confidence the hypothesis that both alternatives achieve similar accuracy. Moreover,

in several data sets there is a tendency for the fixed setting to perform better. Even more

important is the fact that resampling-based tuning is a computationally intensive process,

which can be confirmed in Figure 4.8 that shows the tree size and Cpu time ratios between

ChiEst(CL=95%) and ChiEst with the confidence level tuned by a 5-fold CV process.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Abalo
ne

2D
Pla

nes

CompA
ct

CompA
ct

(s)

Elev
ato

rs
Frie

d

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kine
mati

cs M
v

Pole

S
iz

e
R

at
io

256 512 1024 2048 4096

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Abalo
ne

2D
Pla

ne
s

CompAct

CompAct
(s)

Elev
ato

rs
Frie

d

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kine
mati

cs M
v

Pole

T
im

e
R

at
io

256 512 1024 2048 4096

Figure 4.8 - Tree size and Cpu time ratios between ChiEst(95%) and ChiEst(cv).

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES146

These results reinforce the argument that for these data sets the fixed value of 95% for the

confidence level is the best setting. In effect, not only it has comparable accuracy, but also

leads to smaller trees, taking much less computation time. This experimental result is

consistent with the graph of Figure 4.6, where we observed that few differences in tree size

could be expected for a large range of confidence level values. This may explain why

tuning by CV does not produce significantly different results in terms of accuracy from the

fixed setting.

Tuning of evaluation based on m-estimates

We now focus on tree evaluation using m estimates. With this evaluation mechanism we

need to provide the value of the parameter m. Setting this value strongly influences the

evaluation of candidate trees, thus possibly leading to a different choice of final tree model.

We have carried out the same experiment described above for the ChiEst method, to

observe the behaviour of m estimates in the same four domains, when different values of m

are used. We have varied m from 0.05 to 50 in increments of 0.05. Figure 4.9 shows the

relative sizes of the selected trees compared with the tree Tmax for the different m values.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
5 3

5.
5 8

10
.5 13

15
.5 18

20
.5 23

25
.5 28

30
.5 33

35
.5 38

40
.5 43

45
.5 48

m Value

P
ru

ne
d

Tr
ee

 S
iz

e
R

at
io

 w
rt

T
m

a
x

Abalone Pole Elevators CompAct

Figure 4.9 - Variation of tree size for different m values.

4.3 PRUNING BY TREE SELECTION 147

Figure 4.9 shows that quite different tree sizes can be obtained with slight variations of the

m parameter value (particularly for small m values). Still, the size decreases monotonically

with the increase of m. This type of monotonous relation was already observed with the

coefficient level of ChiEst and it is desirable as it can help the user to find the more

adequate set-up for his application.

We have also carried out a series of experiments with our benchmark data sets to

observe the behaviour of our RT system when using fixed m values. We have tried several

values for m (0.5, 0.75, 1, 2, 3 and 5). Based on the results of these experiments we have

observed that while the accuracy results are somehow comparable, there are obvious

disadvantages in using small m values due to the resulting tree size. Either m = 2 or 3

provide the best compromise between size and accuracy on our benchmark data sets. We

have compared the results of using the value of 2 for m and using 5-fold CV to tune this

value for each domain. Figure 4.10 shows the results of this paired comparison. We use 31

trial values of m from which the “best” value is selected using 5-fold CV. These values

range exponentially from 0.1 to 40.3429 using the generating function

30..0,1.0 5 =×= iem
i

i .

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Aba
lo

ne

2D
pla

ne
s

Po
le

Ele
va

to
rs

Aile
ro

ns M
v

Kine
mati

cs

Com
pA

ct

Com
pA

ct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Fr
ied

256 512 1024 2048 4096

m
(2

)
m

(5
-C

V
)

Figure 4.10 - Significance of MSE difference between m(2) and m(5-CV).

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES148

As it can be seen in Figure 4.10, tuning m by CV leads to significantly more accurate trees

on several domains. The results of this experiment show that we can expect with

reasonable confidence that tuning m by CV is the best strategy for obtaining accurate

regression trees post-pruned with m estimators.

Figure 4.11 shows the results of this comparison in terms of tree size and computation

time ratios. The results in terms of tree size confirm that a fixed value of m can be

completely inadequate for some domains. Some of the ratios even fall outside of the graph

scale (e.g. in the Kinematics domain using the value of 2 leads to a tree 4 times larger than

setting m by CV). On other occasions using the value of 2 originates in too simple trees

that hardly capture the structure of the domain, leading to poor predictive performance (c.f.

with the accuracy results on 2Dplanes, Mv, CompAct, CompAct(s) and Fried in Figure

4.10).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Aba
lone

2D
Plan

es

CompA
ct

CompA
ct(

s)

Elev
ato

rs
Frie

d

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kinem
ati

cs M
v

Pole

S
iz

e
R

at
io

256 512 1024 2048 4096

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Aba
lone

2D
Plan

es

CompA
ct

CompA
ct(

s)

Elev
ato

rs
Frie

d

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kinem
ati

cs M
v

Pole

T
im

e
R

at
io

256 512 1024 2048 4096

Figure 4.11 - Tree size and Cpu time Ratios for m=2 and m(cv) selection.

With respect to computation times the strategy of tuning m by CV has large disadvantage

as the sample size grows, which was expected and already happened with the ChiEst

method.

Tuning of evaluation based on the MDL principle

Finally, we have studied the behaviour of MDL evaluation to identify how it is affected by

certain parameters. Here we have considered the parameters that specify the precision of

4.3 PRUNING BY TREE SELECTION 149

real numbers used for coding the cut-point splits and the errors in the leaves, in accordance

with the coding proposed by Robnik-Sikonja & Kononenko (1998). Again using the same

four data sets we have post-pruned a large tree using different combinations of values of

these two parameters. The size of resulting tree for the different combinations is shown in

Figure 4.12.

abalone

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Errors Precision
0 0.51

1.52
2.53

3.54
4.55

Cont. Attrs. Precision

0
20
40
60
80

100
120

Pruned Tree Size

pole

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Errors Precision
0 0.51

1.52
2.53

3.54
4.55

Cont. Attrs. Precision

40
60
80

100
120
140
160
180

Pruned Tree Size

elevators

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Errors Precision
0 0.51

1.52
2.53

3.54
4.55

Cont. Attrs. Precision

0
50

100
150
200
250
300
350
400
450
500
550

Pruned Tree Size

CompAct

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Errors Precision
0 0.51

1.52
2.53

3.54
4.55

Cont. Attrs. Precision

10
20
30
40
50
60
70
80
90

100
110

Pruned Tree Size

Figure 4.12 - The effect of varying the MDL coding parameters on tree size.

Robnik-Sikonja and Kononenko (1998) claim that the user can easily set the two

parameters, as their meaning is intuitive. Although we agree with their position concerning

the meaning, the graphs presented show that the effect of varying these values on the size

of the resulting selected tree is not always predictable. This is caused by the lack of a clear

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES150

monotonous relation like the one observed with the parameters of m and ChiEst estimators,

and also by the existence of two parameters instead of a single value to tune.

We have compared a single fixed setting of the two parameters with 5-fold CV tuning.

With respect to the fixed setting, after some experimentation, we have selected the value of

0.1 for the precision of the cut-points, and 0.5 for the precision of the errors. This setting

seemed to provide the better overall results on our benchmark data sets. Regarding the

resampling-based tuning we tried 144 alternatives. These alternatives were generated by

exponentially varying the value of the two precision parameters from 0.005 to 7.65 using

the function 11..0,005.0 5.1 =×= iep
i

i . This leads to 12 different precision values per

parameter, which after combining originated in the 144 variants (12×12). Figure 4.13

presents the results of this paired comparison using the trees generated by the LSS

algorithm as source.

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
plan

es
Pole

Elev
ato

rs

Aile
ro

ns
M

v

Kinem
at

ics

CompA
ct

CompA
ct(

s)

Cen
su

s(
16

H)

Cen
su

s(
8L

)
Frie

d

256 512 1024 2048 4096

M
D

L
(0

.1
,0

.5
)

M
D

L
(5

-C
V

)

Figure 4.13 - Significance of MSE difference between MDL(0.1,0.5) and MDL(5-CV).

These results lead to the conclusion that CV-based tuning provides a clear advantage in

terms of accuracy over this fixed setting on several data sets. The results with respect to

tree size and computation time ratios, between MDL with CV-based tuning and the fixed

setting are shown in Figure 4.14.

4.3 PRUNING BY TREE SELECTION 151

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro
ns

Aba
lon

e

2D
Pla

ne
s

Co
mpA

ct

Co
mpA

ct(
s)

Ele
va

tor
s

Fr
ied

Ce
ns

us
(16

H)

Ce
ns

us
(8L

)

Kine
mati

cs M
v

Po
le

S
iz

e
R

at
io

256 512 1024 2048 4096

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro
ns

Aba
lon

e

2D
Pla

ne
s

Co
mpA

ct

Co
mpA

ct(
s)

Ele
va

tor
s

Fr
ied

Ce
ns

us
(16

H)

Ce
ns

us
(8L

)

Kine
mati

cs M
v

Po
le

T
im

e
R

at
io

256 512 1024 2048 4096

Figure 4.14 - Tree size and Cpu time ratios between MDL(0.1,0.5) and MDL(cv5).

The results in terms of tree size are somehow balanced with a slight advantage of the fixed

setting. Regarding computation time we observe that the cost of evaluating the 144

alternatives through 5-fold CV is very high. Still, our experiments indicate that if

computation efficiency is not a major concern the best way of using MDL to post prune

regression trees is by tuning the precision values using cross validation.

Conclusions regarding tuning of tree evaluation methods

The results of this empirical study of different methods of evaluating trees provide the

following indications regarding its use in the context of pruning by tree selection. With

respect to m estimates and MDL, tuning through resampling is essential to obtain good

predictive accuracy in domains with different characteristics. Regarding our ChiEst

evaluation method, the empirical evidence collected indicates that the method is quite

robust to variations on its pruning parameter, and contrary to the other methods we were

able to achieve competitive predictive accuracy over all our benchmark data sets using a

fixed setting. Although we can not guarantee that this will hold for any data set, this

presents an important advantage in terms of computation time as it avoids a costly iterative

evaluation process of different alternatives.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES152

Comparing the best settings

We will now present the results of an experimental study whose goal is to determine

whether any of the tree evaluation methods is superior to the others. For this purpose we

have compared the most promising variants of the different tree evaluation techniques we

have considered. Namely, we have compared 5-fold Cross Validation error estimates, with

m estimates tuned by 5-fold CV, ChiEst with 95% as confidence level, and MDL tuned by

5-fold CV. The comparison was carried out using the sequence generated by the LSS

algorithm as the source for tree selection. Figure 4.15 shows the estimated difference in

MSE between 5-fold CV and the other evaluation methods.

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
b alo

n e

2D p lan e s
Po le

Ele v a to
rs

A
ile

ro
n s

M
v

K in
ema t ic

s

CompA
ct

CompA
ct(s

)

Cen s u s (1
6H)

Cen s u s (8
L)

Frie
d

256 512 1024 2048 4096

5-
fo

ld
 C

V
m

(5
-C

V
)

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
balo

ne

2Dp lan es
Pole

Eleva to
rs

A
ile

ro
ns

M
v

Kin
em

at ic
s

CompA
ct

CompA
ct(s

)

Cen s us (1
6H)

Cen s us (8
L)

Frie
d

256 512 1024 2048 4096

5
-f

ol
d

C
V

C
h

iE
st

(9
5%

)

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
balo

ne

2D
plan

es
Pole

Elev
ato

rs

A
ile

ro
ns

M
v

Kin
em

at
ics

CompA
ct

CompA
ct

(s)

Cen
su

s(
16

H)

Cen
su

s(
8L

)
Frie

d

256 512 1024 2048 4096

5-
fo

ld
 C

V
M

D
L

(5
-C

V
)

Figure 4.15 - Significance of MSE difference between tree selection methods.

With the exception of MDL selection the differences are most of the times statistically

insignificant. Compared to m estimates, 5-fold CV has a slight advantage but there are few

statistically significant differences. With respect to the comparison with ChiEst evaluation,

most of the differences are insignificant, but the ChiEst method is computationally more

4.3 PRUNING BY TREE SELECTION 153

efficient as it is the only strategy that grows only one tree. The other methods take more

time as they generate and prune several trees, particularly MDL selection tuned by 5-fold

CV that needs to evaluate 144 trials (c.f. Section 4.3.2.2). Regarding tree size Figure 4.16

shows the ratios between 5-fold CV and the other methods.

C v 5 vs. m (cv5)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Abalo
ne

2D
Pla

ne
s

Com
pA

ct

Com
pA

ct(
s)

Ele
va

to
rs

Fr
ied

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kine
mati

cs M
v

Po
le

S
iz

e
R

at
io

Cv5 vs. ChiEst(95%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Abalo
ne

2D
Pla

ne
s

Com
pA

ct

Com
pA

ct(
s)

Ele
va

to
rs

Fr
ied

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kine
mati

cs M
v

Po
le

S
iz

e
 R

a
tio

Cv5 vs. Mdl(cv5)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Aile
ro

ns

Aba
lone

2D
Pla

nes

CompA
ct

CompA
ct(

s)

Ele
vato

rs
Fr

ied

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kinem
ati

cs M
v

Po
le

S
iz

e
R

at
io

Figure 4.16 - Tree Size Ratio comparison among Selection Methods.

The graphs of this figure show that the preference biases of selection by 5-fold CV

estimates and by m estimates tuned with CV are very similar. In effect, Figure 4.15 shows

that both methods achieve similar accuracy, and Figure 4.16 indicates that the size of the

selected trees is also similar. As the computation time of both methods is also comparable

there seems to be no particular advantage of one method over the other, at least for the

domains considered here. When compared to the ChiEst method, 5-fold CV achieves

similar accuracy (Figure 4.15), but with trees that are frequently larger as we can observe

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES154

in Figure 4.16. Moreover, ChiEst is much more efficient in terms of computation time as

we have already mentioned. This means that for these data sets, both 5-fold CV and ChiEst

selection have comparable accuracy, but the latter is biased towards smaller trees and it is

computationally more efficient. Finally, when compared to MDL selection, 5-fold CV

leads to trees that are significantly more accurate in several domains. However, the trees

selected by MDL are much smaller as shown in Figure 4.16 (notice the different scale).

With respect to computation time CV is preferable, as MDL selection needs to evaluate

many trial parameter settings.

4.3.5 Summary

The experimental comparisons carried out in this section have shown that our proposed

sequence generation methods (LSS and MCV) produce more accurate pruned trees (c.f.

Figure 4.1). Moreover, the tree selection methods we have considered are able to capitalise

on this advantage. Thus the use of our tree generation methods proved to be the best form

of achieving higher accuracy in pruning by tree selection.

With respect to the evaluation methods we have observed that m estimators, ChiEst

and 5-fold CV have quite similar biases regarding predictive accuracy. However, our

ChiEst method achieves similar accuracy with smaller trees and much less computation

time, which represents an important advantage for large training samples. Regarding

selection by MDL we have observed significant losses in predictive accuracy in several

domains. Moreover, the method requires a costly tuning process which results in much

longer computation times than those of the other methods. However, trees selected by the

MDL principle do tend to be significantly smaller, although we can not consider this an

advantage in cases where it leads to significant accuracy losses. In effect, looking at these

two factors together, we can only consider very interesting the results of MDL selection in

both the Census(16H) and Elevators domains.

Summarising, we can conclude that with the exception of LSS+m(cv5) and LSS+CV5

that behave in a very similar way in all aspects, most of the methods we have evaluated

4.4 COMPARISONS WITH OTHER PRUNING METHODS 155

have shown some particular advantage that can be considered an useful bias for some

application scenario. Still, when taking the three factors we have considered into account

(accuracy, tree size and computation time), we conclude that any of our tree generation

methods together with ChiEst(95%) evaluation provide the best compromise overall for

pruning by tree selection.

4.4 Comparisons with Other Pruning Methods

In the previous section we have conducted a thorough study of pruning by selecting from a

set of alternative pruned trees. However, as we pointed out in Section 4.2 other pruning

methodologies exist. In this section we compare two of the most promising pruning

methods we have presented with existing methods of avoiding overfitting in regression

trees. Namely, we will compare pruning by tree selection using the LSS algorithm together

with 5-fold CV and ChiEst(95%) evaluation, with CART, RETIS and CORE pruning

methods. To ensure a fair comparison of the pruning methodologies all algorithms were

applied on the same overly large tree Tmax. This was made possible because our RT system

implements all these pruning variants. With respect to CART pruning we have used as tree

selection a 5-fold CV process. For RETIS pruning we have tuned the value of the m

parameter using a 5-fold CV process to select from 31 alternatives ranging exponentially

from 0.1 to 40.3429 using the generating function 30..0,1.0 5 =×= iem
i

i . Finally, the

precision values used in CORE pruning were tuned using 5-fold CV to select from 144

variants obtained using all combinations of 12 values defined by

11..0,005.0 5.1 =×= iep
i

i .

We start by the comparison between our LSS+5CV and the other 3 pruning algorithms.

Figure 4.17 shows the sign and significance of the observed differences in MSE between

our proposal and the others.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES156

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
balo

ne

2Dplan es
Po le

Elev
ato

rs

A
ile

ro
ns

M
v

Kin
em

atic
s

CompA
ct

CompA
ct(s

)

Cens us (1
6H)

Cens us (8
L)

Frie
d

256 512 1024 2048 4096

L
S

S
+5

C
V

C
A

R
T

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
b alo

n e

2Dp lan es
Po le

Ele
v a to

rs

A
ile

ro
n s

M
v

K
in

em
at ic

s

Com
pA

ct

Com
pA

ct(s
)

Ce n s u s (1
6H

)

Ce n s u s (8
L)

Frie
d

256 512 1024 2048 4096

L
S

S
-5

C
V

R
E

T
IS

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
balo

ne

2D
plan

es
Pole

Elev
at

ors

A
ile

ro
ns

M
v

Kinem
ati

cs

CompAct

CompAct
(s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Frie
d

256 512 1024 2048 4096

L
S

S
-5

C
V

C
O

R
E

Figure 4.17 - Significance of MSE difference between LSS+5CV and other pruning
algorithms.

With the exception of the Elevators domain, these graphs show that our pruning method

achieves excellent predictive accuracy results when compared to the other pruning

strategies. In effect, when considering only the differences that can be regarded as

statistically significant, all favour our method. Compared to CART pruning, our method

achieves clearly better results in the 2Dplanes, Census (16H and 8L) and Fried domains.

The conclusions of the comparison with RETIS pruning are similar although the advantage

of our method is more marked and is extended to other domains. In effect, in 39 of the 4752

experimental set-ups the estimated accuracy difference is favourable to our strategy. With

respect to CORE pruning, our method has advantage in 37 of the 47 set-ups, with high

statistical significance in several domains. On the contrary, CORE pruning was never

found statistically significantly superior to our method, although it achieved better results

in both the Abalone and Elevators domains.

52 Only 47 because from the 12 domains used in our experiments, some of them do not have enough data to

carry out the experiments for all sizes we have considered.

4.4 COMPARISONS WITH OTHER PRUNING METHODS 157

Regarding tree sizes the results of the comparison are shown in Figure 4.18.

LSS+Cv5 vs CART

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Aile
ro

ns

Aba
lon

e

2D
Pla

nes

CompA
ct

CompA
ct(

s)

Elev
ato

rs
Frie

d

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Kinem
ati

cs M
v

Pole

S
iz

e
R

at
io

LSS+Cv5 vs RETIS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Aile
ro

ns

Aba
lon

e

2D
Plan

es

Com
pA

ct

Com
pA

ct
(s

)

Elev
at

or
s

Frie
d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

at
ics M

v
Pole

S
iz

e
R

at
io

LSS+Cv5 vs CORE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Aile
ro

ns

Aba
lon

e

2D
Plan

es

Com
pA

ct

Com
pA

ct
(s

)

Elev
at

or
s

Frie
d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

at
ics M

v
Pole

S
iz

e
R

at
io

Figure 4.18 - Tree size ratios between LSS+CV5 and other pruning algorithms.

The results of the comparison on tree size indicate that both CORE and CART pruning are

clearly biased towards smaller trees. However, we have seen that this benefit comes with a

loss of predictive accuracy in several domains, particularly in the case of CORE pruning.

With respect to RETIS pruning, our LSS+5CV method has quite similar bias regarding tree

size with the exception of the Elevators domain. The comparison of computation times

revealed similar costs of LSS+5CV, CART and RETIS pruning methods. CORE pruning,

however, has significantly larger computation time due to the amount of pruning set-up

trials.

With respect to our LSS+ChiEst(95%) pruning method, the accuracy comparison with

the other three pruning algorithms is shown in Figure 4.19.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES158

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
b alo

n e

2D
pla

n es
Po le

Elev a to
rs

A
ile

ro
n s

M
v

Kin
emat ic

s

CompA
ct

CompA
ct(s

)

Cen s u s (1
6H

)

Cen s u s (8
L)

Frie
d

256 512 1024 2048 4096

L
S

S
+

C
h

iE
st

(9
5

%
)

C
A

R
T

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
b alo

n e

2D
p lan e s

Po le

Elev a to
rs

A
ile

ro
n s

M
v

Kin
ema t ic

s

CompA
c t

CompA
c t(s

)

Cen s u s (1
6H

)

Cen s u s (8
L)

Frie
d

256 512 1024 2048 4096

L
S

S
+

C
h

iE
st

(9
5

%
)

R
E

T
IS

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
b alo

n e

2D
p la

n e s
Po le

Ele
v a to

rs

A
ile

ro
n s

M
v

K
in

ema t ic
s

Com
pA

c t

Com
pA

c t(s
)

Cen s u s (1
6H

)

Cen s u s (8
L)

Frie
d

256 512 1024 2048 4096

L
S

S
+

C
h

iE
st

(9
5

%
)

C
O

R
E

Figure 4.19 - Significance of the MSE difference between LSS+ChiEst(95%) and
other pruning algorithms.

Our LSS+ChiEst(95%) method also compares quite favourably with the other existing

pruning techniques in terms of predictive accuracy on our benchmark domains. Compared

to CART pruning, LSS+ChiEst(95%) has some difficulties in the CompAct(s) domain,

although the difference is not statistically significant. It shows advantage in 2Dplanes,

Census(16H and 8L), Ailerons, Elevators and Fried domains, often with high significance.

Compared to RETIS pruning, the results of our method are even more favourable as it is

also significantly better on the Mv domain. Finally, compared to CORE pruning, our

method has an overall advantage in terms of predictive accuracy with the exception of the

Abalone data set.

With respect to tree sizes the results of the comparison are shown in Figure 4.20.

4.4 COMPARISONS WITH OTHER PRUNING METHODS 159

Chi(95%) vs CART

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Aile
ro

ns

Aba
lon

e

2D
Plan

es

Com
pA

ct

Com
pA

ct
(s

)

Elev
at

or
s

Frie
d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

at
ics M

v
Pole

S
iz

e
R

at
io

Chi(95%) vs RETIS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Aile
ro

ns

Aba
lon

e

2D
Plan

es

Com
pA

ct

Com
pA

ct
(s

)

Elev
at

or
s

Frie
d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

at
ics M

v
Pole

S
iz

e
R

at
io

Chi(95%) vs CORE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Aile
ro

ns

Aba
lon

e

2D
Plan

es

Com
pA

ct

Com
pA

ct
(s

)

Elev
at

or
s

Frie
d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

at
ics M

v
Pole

S
iz

e
R

at
io

Figure 4.20 - Tree size ratios between LSS+ChiEst(95%) and other pruning algorithms.

Our LSS+ChiEst(95%) method is more competitive in terms of tree size than LSS+5CV.

Still, we continue to observe some disadvantage over CART and CORE pruning in this

aspect. Compared to RETIS pruning, LSS+ChiEst(95%) has a clear advantage in terms of

tree size. Regarding computation time, LSS+ChiEst(95%) has an overwhelming advantage

as it does not need to learn and prune several trees to tune pruning parameters.

4.4.1 A Few Remarks Regarding Tree Size

In the experiments reported in the previous section our methods clearly did not match the

performance of either CART or CORE with respect to tree size. The pruning algorithms of

these two systems have a preference bias that favours smaller trees. However, a similar

preference bias can be obtained with our methods with the help of the k-SE selection rule.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES160

For all the selection methods described in Section 4.3.1 we have given standard error

estimates. These allow the use of the k-SE rule (Section 4.3.3). The use of this rule will

make our methods competitive with CORE and CART pruning in terms of tree size.

However, such preference for smaller trees will entail some accuracy loss, as it was the

case of CORE and CART pruning. To illustrate this point we present an accuracy

comparison of ChiEst(95%) using the 0.5-SE and 1-SE rules with CORE pruning.

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

A
b alo

n e

2D
p lan es

Po le

Elev a to
rs

A
ile

ro
n s

M
v

Kin
emat ic

s

CompA
ct

CompA
ct(s

)

Cen s u s (1
6H)

Cen s u s (8
L)

Frie
d

256 512 1024 2048 4096

L
S

S
+

C
h

iE
st

(9
5

%
,0

.5
S

E
)

C
O

R
E

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
pla

ne
s

Po
le

Ele
va

to
rs

Aile
ro

ns M
v

Kine
mati

cs

Com
pA

ct

Com
pA

ct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Fr
ied

256 512 1024 2048 4096

L
S

S
+C

hi
Es

t(
95

%
,1

S
E)

C
O

R
E

Figure 4.21 - Significance of MSE difference between ChiEst with the k-SE rule and

CORE.

Comparing the results to those in Figure 4.19, we confirm the loss of some of the accuracy

advantage of our method over CORE pruning. However, the use of this rule can overcome

some of the limitations in terms of tree size, as shown in Figure 4.22.

Chi(95%,0.5-SE) vs CORE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Aba
lon

e

2D
Plan

es

Com
pA

ct

Com
pA

ct
(s

)

Elev
at

or
s

Frie
d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

at
ics M

v
Pole

S
iz

e
R

at
io

Chi(95%,1SE) vs CORE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Aile
ro

ns

Aba
lon

e

2D
Plan

es

Com
pA

ct

Com
pA

ct
(s

)

Elev
at

or
s

Frie
d

Cen
su

s(
16

H)

Cen
su

s(
8L

)

Kine
m

at
ics M

v
Pole

S
iz

e
R

at
io

Figure 4.22 - The effect on tree size of the k-SE rule when compared to CORE.

4.4 COMPARISONS WITH OTHER PRUNING METHODS 161

Comparing to the results of Figure 4.20 (notice the different scale) we can see that our

method achieves much more competitive results in terms of tree size when employing the

SE rule.

4.4.2 Comments Regarding the Significance of the Experimental Results

In this section we have compared two of the most promising pruning by tree selection

methods we have presented, with the three most well known methods of pruning regression

trees. With respect to predictive accuracy the experiments have shown that our pruning

methods achieve better performance on a large set of experimental scenarios. In the light of

the arguments of Schaffer (1993a), one may question if it is not the case that the used data

sets are just more suited to the preference biases of our methods (i.e. are the used domains

somehow representative?). In order to answer this reasonable doubt we have carried out a

simple experiment in which we obtained a large unpruned tree and compared its accuracy

with the accuracy of the tree resulting from pruning it with the CART method. The goal of

this experiment is to observe the kind of effect pruning has on all our benchmark domains.

The results of this experiment are shown in Figure 4.23.

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Abalo
ne

2D
plan

es
Pole

Elev
ato

rs

Aile
ro

ns
M

v

Kinem
ati

cs

CompAct

CompAct(
s)

Cen
su

s(1
6H

)

Cen
su

s(8
L)

Frie
d

256 512 1024 2048 4096

N
ot

 P
ru

ni
ng

C
A

R
T

 p
ru

ni
ng

Figure 4.23 - Significance of MSE difference between CART and not pruning.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES162

This graph shows that the “pruning challenges” of our benchmark data sets are quite

diverse. In effect, while there are data sets where pruning is clearly beneficial, there are

others where that is not so evident (e.g. with the Pole domain we would do better by not

pruning at all !). These results are in agreement with the claims of Schaffer (1993a) on

considering pruning as a mere preference bias and not as a statistical mean of achieving

higher accuracy. Moreover, the issue whether pruning is beneficial changes with the size of

the training samples for several domains. These results indicate that there is a large variety

of pruning requirements on our benchmark domains, which increases the confidence on the

significance of the accuracy advantages we have observed with our pruning methods. Still ,

there will obviously exist domains were our methods will perform worse than other

pruning algorithms.

4.5 Conclusions

In this chapter we have carried a thorough study of overfitting avoidance within regression

trees. We have described the major existing pruning algorithms and presented our

approaches to pruning based on tree selection.

We have described several approaches to the generation of sequences of pruned trees

and presented two novel methods (LSS and MCV). Our methods are based on the idea of

progressively eliminating nodes where the available sample size does not insure reliable

error estimates. The use of this strategy has proven advantageous in our experimental

comparisons with existing methods using other strategies, like for instance Error-

Complexity sequence generation. We have also studied several techniques for choosing

one of such pruned trees. Regarding resampling-based tree selection we have presented a

new method of tree-matching, which extends the use of Cross Validation estimates. With

respect to selection using m estimates we have obtained the standard error of the MSE

estimates, which allows the use of the k-SE selection rule. Moreover, we have extended the

applicabil ity of m estimates to LAD regression trees. Finally, we have introduced a new

4.5 CONCLUSIONS 163

method of estimating the error of a LS tree (ChiEst) by using the properties of the sampling

distribution of the mean squared error.

We have carried out a systematic experimental evaluation of different ways of

generating alternative pruned trees and of selecting the most appropriate one. We have

observed that both our two new methods of generating pruned trees and our two new

methods of evaluating trees achieved quite competitive results on our benchmark domains.

These results are caused by a conjunction of two important factors. Namely, the

observation that our generation methods produce more accurate sub-trees and the fact that

our tree evaluation methods are able to capitalise on this advantage by correctly ranking

the trees according to their estimated prediction error.

We have also compared our most promising pruning algorithms with the three most

well known pruning methods. These experiments revealed a marked advantage of our

methods in terms of predictive accuracy on several domains. Moreover, we seldom

observed the opposite. These advantages need to be weighed with the cost of larger trees.

However, through the use of the k-SE rule we can minimise this drawback. We have also

observed a clear superiority of our method based on the ChiEst evaluation in terms of

computation time.

4.5.1 Open Research Issues

According to Schaffer (1993a) one of the key research issues within pruning methods is to

understand under which conditions are all these techniques beneficial. In particular we

would like to know which are the domain characteristics that determine the success of

pruning in terms of improving predictive accuracy. In effect, this argument could be

extended to learning algorithms in general and not only to pruning methods. One possible

path to the solution of this dilemma is to use some kind of meta-learning based on

empirical experience with pruning on domains with different characteristics in a similar

way as it was done by Brazdil et al. (1994). With the obtained meta-knowledge, a pruning

algorithm could determine, on the basis of the characteristics of a new domain, which

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES164

pruning bias would be more adequate. Another possible way is to carry out a theoretical

study of the properties of the different pruning methods that would provide better

understanding of their applicability. Still, we think that without strong restrictions on the

distribution properties of the data sets it will probably be difficult to carry out such study

with such highly non-parametric methods as regression trees. Nevertheless, this is clearly

an open research question.

APPENDIX 165

APPENDIX.

In this appendix we describe the coding schema proposed by Robnik-Sikonja and

Kononenko (1998). These authors code a tree as a sequence of bits encoding each of the

tree nodes. For each node they code its type (either a leaf or a split node) and the contents

of the node (either the split or the model in the leaf). The code length of a regression tree is

the number of bits of this sequence. To code the type of node we only need a single bit

indicating if the node is a split node or a leaf. The coding of the node contents depends on

the type of node. The binary code of a leaf node consists of the coding of the model (e.g.

the average Y value) followed by the coding of the errors committed by that model. Both

the model and its errors are real numbers. For instance, suppose that in a leaf of a LS

regression tree we have a set of training cases with the following Y values: { 25, 30, 60, 70

}, corresponding to an average of 46.25. The number of bits necessary to code this leaf is

equivalent to the length of the encoding of the following real numbers,

() () () ...3025.462525.4625.46 +−+−+ CodeLenCodeLenCodeLen

The coding of real numbers is done following Rissanen (1982). The real number is divided

by the required precision ε, and the resulting integer is then coded as a binary string. The

code length of the bit string corresponding to a given integer is determined according to the

following formulae,

 CodeLen(0) = 1

 CodeLen(n) = 1 + log2(n) + log2(log2(n)) + ... + log2(2.865064)

where the summation includes only the positive terms.

The computational complexity of calculating the binary description length of a leaf appears

large as we need to run through all cases in the leaf to calculate their prediction error and

the corresponding code length. However, this can be done with almost no computation

cost, during the learning phase. In effect, during this stage we need to run through all cases

when creating the nodes and calculating the resubstitution errors, so we can use these

cycles to calculate the binary code lengths.

CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSION TREES166

With respect to split nodes their coding depends on the type of split. The first part of

the code makes this distinction, while the following bits correspond to the coding of the

split. Robnik-Sikonja and Kononenko (1998) describe the coding for several types of split

nodes. For instance, to code nominal splits with the form Xi ∈ S, where S is a set of values

belonging to χ i, we have to code information regarding which attribute is being tested and

of the set of values in the split. This set of values can easily be represented by a bit string

with length corresponding to the possible number of values of the attribute. This leads to

the following code length for a nominal split,

() () ii ASXCodeLen χ+=∈ ##log 2 (4.31)

where A is the set of attributes.

For continuous variable splits the reasoning is similar but instead of the subset of values it

is necessary to code a cut-point within the range of values of the attribute being tested.

This leads to the following code length,

() () ()

+=≤

ε
i

i

Xrange
AVXCodeLen 22 log#log (4.32)

where,
range(Xi) is the range of values of the variable Xi ;
and ε is the wanted precision for the cut-points.

Robnik-Sikonja and Kononenko (1998) also describe the coding of splits consisting of

conjunctions of conditions and of linear formulae.

The coding schema described above has two parameters, namely the precision used to

code the errors at the leaves and the cut-points of continuous splits. The authors suggest

using different precision values for these numbers. Robnik-Sikonja and Kononenko (1998)

claim that setting these parameters is intuitive for the user depending on his application.

Still, CORE is able to use a cross validation process to automatically tune the parameters

from a large set of alternative values, selecting the values that ensure better estimated

predictive accuracy.

