Chapter 4

Overfitting Avoidance in Regression

Trees

This chapter describes sveral approadies that try to avoid overfitting of the training data
with too complex trees. In the cntext of treebased models these strategies are known as
pruning methods. Overfitting avoidance within treebased models is usually achieved by
growing an overly large tree ad then pruning its “unreliable” branches (also known as
post-pruning). Post-pruning can be regarded as a seach problem, where one looks for the
“best” pruned tree The pruning techniques we present in this chapter follow the same
general strategy as the one used in system CART (Breiman et al.,1984). These techniques
proceeal in two separate stages, where initially a sequence of alternative pruned trees is
generated, and then a tree selection process is caried out to obtain the final model.
Compared to CART pruning we describe new methods of generating sequences of trees
that proved to be alvantageous on our benchmark data sets. Moreover, we describe anew
treematching procedure that extends the goplicability of the aoss validation seledion
method used in CART. We extend the use of m estimates (Karalic & Cestnik, 1991 by
deriving the m estimate of the mean absolute deviation, which allows the use of these

estimators with LAD trees. We also derive the standard errors of the m estimates of both
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106 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSON TREES

the mean squared error and the mean absolute deviation, which allows the use of the 1-SE
rule (Breiman et al.,1984) with these estimators. We present a new error estimator for LS
regression trees based on the sampling distribution properties of the mean squared error.
During a systematic experimental comparison of different methods of pruning by tree
selection, this new method together with our new agorithms for generating sequences of
pruned trees, proved to be among the most competitive on our benchmark data sets.
Finally, we have compared our most promising pruning methods with current state-of-the-
art algorithms for pruning regression trees. This comparison revealed that our methods
usually lead to more accurate trees in most of our benchmark data sets. However, this
advantage is usually associated with larger trees compared to some of the other algorithms.
Apart from accuracy gains, one of our new pruning methods has significant advantage in
terms of computation efficiency, turning it into a good choice when dealing with large data

sets.

4.1 Introduction

The methods described in the previous chapter obtain a tree using an algorithm that
recursively divides the given training set. As a consequence of this, the selection of the
best splits is based on increasingly smaller samples as the tree grows. The split choices at
the lower levels of the tree do often become datistically unreliable although the
resubstitution error estimate® keeps decreasing. It is usually considered unlikely that this
error esimate generalises to unseen cases and the tree is said to overfit the training data.
This means that the tree is capturing regularities of the training sample and not of the
domain from which the sample was obtained. This is usually taken as the motivation for
pruning tree models. However, as Schaffer (1993a) pointed out, pruning can not be
regarded as a gtatistical mean to improve the true prediction error. In effect, it is easy to

find real world domains where pruning is actually harmful with respect to predictive

3" The estimate obtained with the training data, which is used during tree growth.
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acaracy on independent and large test samples®®. On the mntrary, as suggested by
Schaffer (19933), pruning should be regarded as a preference bias over simpler models.
Understanding the biases of the different pruning methods will provide useful indications
on the strategies that suit best the user’ s preferences.

Post-pruning is the processby which a large treeis grown and then reliable evaluation
methods are used to seled the “right-sized” pruned treeof this initial model. Post-pruning
methods are computationally inefficient in the sense that it is not unusual to find domains
where an extremely large tree with thousands of nodes is post-pruned into few hundred
nodes. This clealy seems a waste of computation. An alternative mnsists of stopping the
tree growth procedure & soon as further splitting is considered unreliable. This is
sometimes known as pre-pruning a tree Pre-pruning has obvious computational
advantages when compared to post-pruning. In effect, we may stop the tree growth sooner,
and moreover, we avoid the post-pruning process However, this method incurs the danger
of seleding a sub-optimal tree (Breiman et al.,1984) by stopping too soon and because of
this the usual method of avoiding overfitting is post-pruning.

This chapter gtarts with an overview of existing techniques of pruning regresson trees.
We then address a particular type of pruning methodology that works by tree selection
from a set of candidate alternative models. We claim that these techniques are more
advantageous from an applicaion perspedive. We describe several new tedniques of
pruning by treeseledion. Among these we remark two new methods of generating sets of
pruned trees based on heuristic estimates of error reliability that we conjedure & being
advantageous from a predictive acaorracy perspedive. We also describe a new error
estimation method that we hypothesise @ being competitive with resampling estimators
with the advantage of being computationally lessdemanding.

38 Empirical evidence supporting this observation is given in Section 4.4 (Figure 4.23).
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4.2 An Overview of Existing Approaches

Pogt-pruning is the most common strategy of overfitting avoidance within treebased
models. This method consists of trying to obtain a sub-treeof the initial overly large tree
excluding its lower level branches that are estimated to be unreliable. As it was mentioned
by Esposito et al. (1993 pruning can be seen as a seach problem. From this perspedive
two main issues arise when seaching for the best pruned tree The first is the method used
to explore the large space of all possible pruned trees, and the second is how to evaluate
the different alternatives considered duing this process In this dion we briefly describe

the main existing methods of pruning regression trees.

4.2.1 Error-Complexity Pruningin CART

CART (Breiman et al., 1984 prunes a large regression tree Ty USINg a two-stage
algorithm called Error-Complexity®® pruning (Breiman et al.,1984 p.233). This method is

based on a measure of atree céled error-complexity EC, (T), which is defined as,
EC,(T)=Err(T)+a x #T (4.1)

where,
Err(T) isthe resubstitution error estimate of tree T;

#T isthe cadinality of the set T contai ning the leaves of the treeT;
and a is called the mmplexity parameter and defines the st of each leaf.

Depending on the s of each additional leaf (i.e. the a value) different sub-trees of Tpax
minimise the eror-complexity measure. Breiman and his colleagues proved that although
o can run through a continuum of values there is a sequence of pruned trees such that eat
element is optimal for arange of a, and so there is only a finite number of “interesting” a
values. Furthermore, they developed an algorithm that generates a parametric family of
pruned trees T(a) = <Ty, Ty,...,Tp>, such that ead T; in the sequence is charaderised by a
different value a;. They proved that ead treeT; in this squence is optimal from the EC

39 For classfication trees this algorithm is known as Minimal Cost-Complexity.
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perspedive within the interval [a; ..0i.). Using this algorithm, CART generates a
sequence of pruned trees by successively pruning the node t such that the following
function is minimised,

g(t.T)= E"(;)TZ ir () (4.2)

where,
T: isthe sub-treeof T rooted at nodet;

and #‘E is the number of leaves of this sib-tree

The successive g function values form the sequence of “interesting” a values. For ead of
these values a new tree results as the minimising error-complexity tree We should note
that there is no theoretical justification for preferring this st of pruned trees to any other.
However, Breiman and his colleagues prove that if one wishes to charaderise atreeby a
linea combination of its error and a s for ead of its leaves, then this squence is
optimal. By optimal it is meant that for any hypothetical cost per leaf value (a), the sub-
tree of Trmax that would minimise the expression of Equation 4.1 is included in the sequence
generated by this algorithm. However, this does not mean that the sequence of trees T(a)
includes the best possble sub-trees of Ty from the perspedive of true prediction
acarracy, as pointed out by Gelfand et al. (1991) and Gelfand & Delp (1997).

The second stage of the Error Complexity pruning method consists of estimating the
predictive acairacy of each of the trees in the sequence T(a), and seleding one of the trees
based on these estimates. Breiman and his colleagues s1ggest using a resampling strategy
(either a holdout or a aoss validation procesg to estimate the eror of each treein the
sequence. When using k-fold CrossValidation (CV), CART divides the given training cata
into k digjoint folds, each containing approximately the same number of observations. For
each fold v an overly large tree T, is leaned using the remaining k-1 folds. For ead of
these k large trees CART generates a parametric family of pruned trees TV(CX), using the
method mentioned ealier. Reliable estimates of the aror of the trees in each of the k

sequences are obtained using the fold that was left out of the respedive training phase.
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This meansthat for ead treein the k sequences we have an a value plus areliable estimate
of its prediction error. The goal of this CV processis to estimate the prediction error of the
trees in the initial sequence T(a). CART obtains the aror estimate of each tree T, DT(O()
by a treematching procedure that finds its k “most similar” trees in the k sequences, and
defines the eror estimate of T; as the average of the eror estimates of these k trees. CART
heuristically asserts similarity between trees using their a values. The main danger of this
treematching process results from the fad that these trees with similar a value ae
different. Moreover, the tree Tray IS Obtained with a larger training set and this may lead to
alarger set of pruned trees, T(a). Still, CART obtains the k most similar treesof T, OT(a)
as follows: let a) = \/m; define the k most similar pruned trees in the k sequences
TY(a) asthetrees with a value most similar to a!. There is no theoretical justification for
this heuristic treematching processas it was mentioned by Esposito et al. (1997).

The other alternative method of obtaining reliable eror estimates in CART is using
the holdout method. Given atraining set a proportion of cases is left aside and the tree T
is obtained using the remaining cases. The separate set of cases (the holdout set) is then
used to obtain unbiased estimates of the prediction error of the trees in the respedive
sequence T(a).

Breiman and his colleagues describe two aternatives for the final tree seledion based
on the obtained error estimates. Either to seled the treewith lowest estimated error or to
choose the smallest tree in the sequence, whose eror etimate is within the interval
Errb + S.E.(Errb), where Errb is the lowest error estimate and S.E.(Errb) is the standard
error of this estimate. This latter method is usually known as the 1-SE rule, and it is known
to favour simpler trees although possibly leading to lower predictive acaracy (e.g.

Esposito et al., 1997).

4.2.2 Pruning based on m estimatesin RETIS

RETIS (Karalic & Cestnik,1991;, Karalic, 1992 uses a pruning method based on the
Niblett & Bratko (1986 agorithm. Contrary to CART pruning algorithm, this method
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proceeds in a single-step by running in a bottom-up fashion through all nodes of Ty At
each inner node t [ Tha the Niblet & Bratko algorithm (N&B) compares the error of t and
the weighed error of the sub-tree rooted at t (T;). The weights are determined by the
proportion of cases that go to each branch of t. If the error of t is less than the error of T;
the tree Tax IS pruned at t.

One of the crucial parts of this pruning algorithm is how to obtain the error estimates.
Bayesian methods can be used to obtain reliable estimates of population parameters (Good,
1965). An example of such techniques is the m-estimator (Cestnik, 1990). This bayesian
method estimates a population parameter using the following combination between our

prior and posterior knowledge,

mEst() = fmz(e)+ - Tm ) (4.3)

where,
Z(G) is our posterior observation of the parameter (based on a size n sample);

n(0) is our prior estimate of the parameter;
and mis a parameter of this type of estimators.

Cestnik and Bratko (1991) used this method to estimate class probabilities in the context of
post-pruning classification trees using the N&B pruning algorithm. Karalic and Cestnik
(1991) extended this framework to the case of least squares (LS) regression trees. These
authors have used mestimators to obtain reliable tree error etimates during the pruning
phase. Obtaining the error of an LS tree involves calculating the mean squared error a
each leaf node. The resubgtitution estimates of the mean and mean squared error obtained
with a sample consisting of the casesin leaf | are given by,
H0)= 5y ad MsE ()= 5 (v -5(0) (@4

where,
D, :{(xi,yi>DI};
and n = #D,.
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Karalic and Cestnik (1991) have derived m-estimates of these two datistics. Priors are
usually difficult to obtain in real-world domains. The standard procedure to overcome this
difficulty consists of using all training set as the source for obtaining the priors. This means
that the priors for the mean and the MSE are obtained by estimating their values using all
training data. Using equation 4.3 we can obtain the m estimate of the mean in aleaf | by,

mES(9)= o 2(9) )=

n, 1 m 1
— L+ — = 4.5
- nlgly. n|+mngy. (4.5)

_ 1 g m .
_n|+m;yi * n(n|+m);yi
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From a computational point of view, obtaining the m estimate for the MSE in any leaf

demands calculating z Y, andz y? for the cases at the leaf and for the whole training set,
1=1 1=1

besides determining n; , n and m. These values can be eaily obtained duing tree growth
without significant increase in the computation. Thus the computational cost of obtaining

mrestimates for LS trees reduces to simple aithmetic calculations.

A crucial asped of mrestimates is the value of the parameter m. Karalic & Cestnik
(1991 mention that the best value of this parameter is domain dependent. However,
resampling strategies can be used to automatically tune m by evaluating a set of
alternatives and choosing the one that obtained best estimated predictive acaracy.

423 MDL-based pruning in CORE

CORE (Robnik-Sikonja, 1997 Robnik-Sikonja and Kononenko, 1998 also uses the N&B
pruning algorithm mentioned in the previous sdion. However, instead of comparing the
error esimates of each node t and its sub-tree T;, CORE uses the Minimum Description
Length principle to guide the decision regarding whether or not to prune any node of atree

Classicd coding theory (Shannon and Weaver, 1949 Rissanen and Langdon, 1981
tells us that any theory T about a set of data D can be used to encode the data a a binary
string. The main ideabehind the use of the Minimum Description Length (MDL) principle
(Rissanen, 1982 isthat “the simplest explanation of an observed phenomena is most likely
to be the arrect one” (Natargjan, 1991). Mitchell (1997 describes the MDL principle & a
preference for the theory Th such that,

Th =argmin L(Th)+ L(D[Th) (4.7)
ThOTH
where,
This atheory belonging to the spaceof theories TH;
D isadata s;
and L(.) represents the binary description length.
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This formalisation shows how this theoretical framework provides a way of trading off
model complexity for accuracy. In effect, according to this principle we may prefer a
shorter theory that makes few errors on the training data to a large theory that perfectly fits
the data. Thus this principle can be regarded as a method for guiding overfitting avoidance
within inductive learning.

Robnik-Sikonja & Kononenko (1998) describe a coding schema for regression trees™
that allows using this principle to prune the trees. This coding determines the binary code
length of a tree-based model. The binary code of a regression tree consists of the code of
the model and of its errors. The pruning algorithm used in CORE runs through the tree
nodes using the N&B algorithm and at each node t compares its binary code length with the

code length of its sub-tree T:. If the latter is larger the tree Thu iS pruned at t.

424 Pruningin M5

M5 (Quinlan, 1992; Quinlan, 1993) uses a bottom-up method similar to the N&B
algorithm. M5 can use multivariate linear models in the tree leaves. Because of this, the
pruning decision is guided by a criterion different from the ones used in either RETIS or
CORE. For each node t, M5 builds a multivariate linear model using the cases in the node
and including only the attributes tested in the sub-tree T;. M5 calculates the Mean Absolute
Deviation of this linear model using the cases in t. This value is then multiplied by a
heuristic penalisation factor, (n, +Vv)/(n, —v), where ny is the number of casesint, and v is
the number of attributes included in the linear model. The resulting error eimate is then
compared with the error estimate for the sub-tree T;, and if the latter is larger the sub-tree is

pruned.

9" Full details on this schema can be found in an appendix at the end of this chapter.
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4.3 Pruning by Tree Selection

Given an overly large tree Trmax , the set of all sub-trees of this model is usually too large
for exhaustive search even for moderate size of Trax. We have seen in the previous section
examples of two different approaches to this search problem. The first one considers
pruning as a two-stage process. In the first stage a set of pruned trees of T IS generated
according to some criterion, while in the second stage one of such trees is selected as the
final model. This is the approach followed in CART (Breiman et al.,1984). The second
type of pruning methods uses a single-step procedure and is more frequent. These latter
algorithms run through the tree nodes either in a bottom-up or top-down fashion, deciding
at each node whether to prune it according to some evaluation criterion. These two distinct
forms of pruning a tree influence the evaluation methods used in the pruning process.
When considering two-stage methods, the evaluation of the trees can be seen as a model
selection problem, due to the fact that we want to compare alternative pruned trees with the
aim of selecting the best one. On the contrary, single-step methods use evaluation at alocal
level, i.e. they need to decide at each node whether to prune it or not. Moreover, two-stage
methods have an additional degree of flexibility that we claim to be relevant from the
perspective of the practical use of tree-based regression. In effect, they can output the
sequence® of alternative tree models generated in the first stage together with their
evaluation (either an estimate of their prediction error or other criterion like their binary
description length). These trees can be regarded as alternative models with different trade-
off between model complexity and evaluation score. The system selects one of these trees
according to some bias (e.g. the lowest estimated error), but without any additional
computation cost we can allow the user to inspect and select any other tree that better suits
his application needs. We think that this is a very important advantage from an application
point of view and because of this the new pruning methods presented in this chapter all

follow this two-stage framework.

“1 Or part of it as suggested by Breiman et al. (1984, p. 310).
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Within pruning methods based on tree seledion we @n make afurther distinction,
depending on the methods used to generate the set of pruned trees. Optimal pruning
algorithms (Breiman et al.,1984) produce a set of trees deaeasing in size by one node,
ensuring that ead treein the sequence is the tree with highest acaracy of all possible
pruned trees with the same size Breiman and his colleagues mentioned that an efficient
badward dynamic programming algorithm existed but they have not provided it. Bohanec
and Bratko (1994 independently developed an algorithm (OPT) also based on dynamic
programming that is able to produce a sequence of optimal pruned trees. This algorithm is
based on the gproach suggested by Breiman et al. (1984, p.65). Almuallim (1996
recaitly presented an improvement of Bohanec and Bratko’s algorithm, called OPT-2 that
improves the computational efficiency of OPT. Both algorithms were designed for
classificaion trees and domains without noise (Bohanec & Bratko, 1994). According to
Bohanec & Bratko (1994 the expeded gains in accuracy of optimal algorithms in noisy
domains are not high when compared to non-optimal algorithms. We have re-implemented
OPT-2 and confirmed this observation. For this reason we do not consider this algorithm in
further comparative studies reported in this chapter.

Nested pruning algorithms generate asequence of trees where e&h treeis obtained by
pruning the previous element in the sequence & some node. These algorithms are
obviously more efficient as their search spaceis snaller, which means that they may miss
some good trees found by an optimal algorithm. The main difference between nrested
pruning algorithms is in the methods used for choosing the next nodeto prune.

In the following sedions we describe in detail the main components of pruning by tree
seledion algorithms. the generation of a sequence of candidate trees; the evaluation of
these @ndidate models; and the final seledion of the tree resulting from the pruning
process Moreover, we will present our novel proposals to both tree generation and
evaluation, and describe the results of an extensive experimental comparison of different

alternative methods of pruning by treeseledion.
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431 Generating Alternative Pruned Trees

In this sedion we aldress methods for generating a sequence <Ty, Ty, ..., Tp> of nested
pruned trees of an overly large tree T We describe two existing methods (Error-
Complexity and MEL) and present our two proposals for thistask (MCV and LSS).

The generation of a sequence of trees is the first step of pruning by tree selection. We
have alrealy seen in Sedion 4.2.1 that CART (Breman et al., 1984) uses an algorithm
called Error-Complexity (ErrCpx) to generate a sequence of nested pruned trees. Error
Complexity is an iterative algorithm that starts with the tree T, Which is taken as the first
element in the sequence (Ty), and generates the first pruned tree by finding the node
tOT, . that minimises,

, Err(t)—Err(Tt)
mtlnE #_E 1 E (4.8)

where,
T: isthe sub-treeof T rooted at nodet;

and #‘E is the number of leaves of this sub-tree

The following pruned trees are obtained using the same method applied to the previous
pruned treein the sequence until atreeconsisting only of the root node is reached. Finding
the node t at ead step involves running through all tree nodes of the arrent tree, which
can be computationally heavy depending on the size of the trees. However, Breiman et al.
(1984 p.293 have developed an efficient algorithm that avoids running through all tree
nodes to find the node to prune & ead step. This turns the Error Complexity into an
efficient algorithm having an average cmplexity of O(#‘Flog#f), and a word case
complexity of O(#‘FZ) acording to Bohanec & Bratko (1994).

A simpler method to generate a sequence of nested pruned trees was used in a series of
comparisons caried out by Bohanec and Bratko (1994). This method consists of seleding
the node t that will lead to the lowest increase of resubstitution error. This notion can be
formally stated as finding the node t minimising,

min (Err (t)- Err(T;)) (4.9)
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We will refer to this method as the Minimal Error Loss (MEL) algorithm. This method is
quite similar to the Error-Complexity algorithm, the single difference being that MEL uses
a dlightly different function to seled the next node to prune. Due to this similarity the
efficient algorithm described by Breiman and his colleagues can also be used with this
method.

As we have mentioned before, one of the motivations for pruning trees is the
observation that estimates based on small samples are potentially unreliable. By
unreliability we mean that the true error of a tree node can be quite far from the value
estimated with such small samples. The precision of an estimate is measured by the
standard error of the estimate, as we will seein Sedion 4.3.2.1. This gatistic measures the
expected variability if more estimates were obtained using other samples of the same
population. According to datisticd estimation theory, a consistent estimator should get
more precise (i.e. have lower standard error) as the sample size grows. Motivated by these
considerations we propose the following method for generating a sequence of nested
pruned trees. Given a tree T generate a pruned tree by eliminating the node whose eror
estimate is potentially least reliable. This will lead to a pruned tree of T that is optimal
from the perspedive of the variability of its estimated error. Now the question is how to
determine the poatential unreliability of the eror in a node. We propose two alternative
methods for quantifying the unreliability of the aror estimate in a node. The firgt is
motivated by the fact that the standard error of estimators is inversely proportional to the
sample size from which the estimates were obtained. It consists of pruning, a ead
iteration of the algorithm that generates pruned trees, the node t minimising,

min (n,) (4.10

where, n; isthe training sample sizein nodet.

This can be seen as a naive form of estimating the unreliability of estimates. We will cal
this the Lowest Satistical Support (LSS) algorithm. Apart from its simplicity this method
has ©me mputational advantages when compared to other sequence-based methods
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described here. In effect, the order in which the nodes will be pruned can be obtained with
asingle pass through the tree*. Pruning a particular node does not change this ordering, as
the number of cases in the remaining nodes stays the same. This means that to generate a
sequence of pruned trees with the LSS algorithm we only need to obtain a list of the nodes
arranged in ascending order of sample size, and then prune each node in this ordered list to
obtain the next pruned tree.

We have analysed another method of estimating the unreliability of the error estimates
a each node. The standard procedure in statistics for estimating variability is to use a
measure of the spread of the sample. An example of such type of measures is the

Coefficient of Variation (e.g. Chatfield, 1983), which is given by,
cv = (4.12)
Y

where,
Sy isthe sample standard deviation of Y;

and Y isthe average Y value.

Using this statistic we can compare the expected variability in the error estimates of
different nodes. Having these values we can generate a sequence of nested pruned trees, by
pruning at each step of the generation process, the node t with largest coefficient of

variation of the mean squared error, that is,

max E(ME()) E (4.12)
r MSE(t)
where,
MSE can be obtained by any of the estimators that will be described in Section
4.3.2.1.

We will refer to this method as the Maximal Coefficient of Variation (MCV) agorithm.
Are the four methods of generating sequences of trees (ErrCpx, MEL, LSS and MCV)

significantly different from each other, i.e. do they entail different preference biases that

42 Actually, it can even be obtained during the tree growth phase.
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can be considered useful for different applications? In order to try to answer this question
we have carried out the following experiment. For different training samples we have
generated a large tree Thax and four different sequences of pruned trees with each method.
The goal of this experiment is to compare these sequences. For each sequence we have
calculated the average true prediction error over al trees in the sequence, and the lowest
true prediction error achieved by one of the trees in the sequence. As we do not know the
true regression function for our benchmark domains, we have estimated the true prediction
error using large independent test sets. The larger the sets, the more reliable the results of
our experiment.

In this experiment we have used the following benchmark domains®:

Table4.1. The basic characteristics of the used benchmark domains.

Data St Basic Characteristics

Ailerons 13750 cases; 40 continuous variables
Elevators 16559 cases; 18 cont. vars.

2Dplanes 40768 cases; 10 cont. vars.

Mv 40768 cases; 3 nominal vars.; 7 cont. vars,
Kinematics 8192 cases; 8 cont. vars.

CompAct 8192 cases; 22 cont. vars.

CompAct(s) 8192 cases; 8 cont. vars.

Census(16H) 22784 cases; 16 cont. vars.

Census(8L) 22784 cases; 8 cont. vars.

Fried 40768 cases; 10 cont. vars.

Pole 9065 cases; 48 cont. vars.

Ailerons and Elevators are two domains with data collected from a control problem,
namely flying a F16 aircraft. 2Dplanes is an artificial domain described in Breiman et al.
(1984, p.238). Mv is an artificial domain containing several variables that are highly
correlated. Kinematics is concerned with the forward kinematics of an 8 link robot arm.
The CompAct domains deal with predicting CPU times from records of computer activity
in a multi-user university department. The two domains differ in the attributes used to

describe the cases. The Census domains were designed on the basis of data provided by US

3 Full details of the benchmark domains used throughout the thesis can be found in Appendix A.2.
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Census Bureau (1990US census). The data sets are mncerned with predicting the median
price of houses in a region based on demographic composition and a state of housing
market in the region. They differ in the kind of indicators (variables) used to described the
cases. The Fried domain is an artificial data set used in Friedman (1990. Finally, the Pole
domain contains data from a telecommunicaions problem and was used in a work by
Weiss & Indurkhya (1995.

For eat of the domains we have repeaed the experiment 50 times for different
training sample sizes. The results presented are averages of these 50 random samples for
each size Figure 4.1 shows the results of the four methods in terms of lowest “true” error
achieved by one of the trees in each sequence, for different training sample sizes.
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Figure 4.1 - Comparison of the four methods for generating sequences of sub-Trees.
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For spacereasons the results regarding the average aror in each sequence ae presented in
the Appendix B.4. To be &le to present the results for al data sets together, we have
normalised each result by dividing it by the average score of the four methods. The results
can thus be seen as a kind of ratios with resped to the average score of the four methods.
These experiments iow that with the exception of the Elevators domain, the LSS
method generates the more acarrate pruned trees from the four methods. Moreover, with
the exception of Elevators, Mv and Kinematics, the methods we have proposed generate
better pruned trees than the ErrCpx and MEL methods. With resped to the average eror of
al trees within each sequence our experiments $ow that few differences exist between
the four methods (c.f. Appendix B.4).Given these results, we can be reasonably confident
on the “quality” of the sequences of pruned trees produced by our two methods (LSS and
MCV). Still, generating sequences of trees that include better models does not mean that in
the second phase of pruning the eisting tree seledion methods will be ale to choose
them. This experiment was caried out under the “ideal” conditions of having access to the
“true” prediction error. In Section 4.3.4.1 we will again compare these methods of
generating sequences of trees, but now in conjunction with “real” seledion methods. Still,
based on the results of the experiments presented above, we @n say that if we have a
reliable method of seleding trees from a sequence it can be alvantageous (or certainly not
detrimental) to use the sequences generated by both the LSS and the MCV algorithms,

when compared to existing methods.

4.3.2 Methodsfor Comparing Alternative Pruned Trees

In this sedion we aldress the second stage of pruning by tree seledion: comparing the
generated pruned trees. We will discusstwo main methodologies for comparing treebased
models. The first is based on reliable estimates of the aror of the models, while the second
is based on the minimum description length principle. With resped to error-based seledion
we described three main strategies for obtaining reliable estimates of the eror: methods
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based on resampling; bayesian estimation; and estimates based on the sampling properties

of the aror estimates.

4321 Comparing Trees using Prediction Error Estimates

An estimator is a function that takes a sample of observations and uses it to estimate an
unknown value of a statistical parameter 6. The estimator 6 is a random variable with a
probability distribution function usually known as the sampling distribution of the
estimator. An estimator is said to be unbiased if its expeded value is equal to the true value
of the parameter being estimated (i.e. E(é): 6). This means that with repeaed sampling
we should obtain the true value of the population parameter by averaging over the different
sample estimates. Although being unbased is an important property of an estimator it does
not indicate how precise a particular estimate is. In effect, we can have two different
unhbiased estimators of a parameter 6, one being peferable to the other because its
sampling distribution is more tightly spread around the true value of 6. This notion can be
cgptured by a statistic of spread applied to the estimates. The resulting statistic is usually
known as the standard error of an estimator, S.E. (é) Another important property of an
estimator is consistency. This property states that with increasing size of the samples our
estimates should improve. In summary, we ae interested in consistent, minimum variance
(i.e. precise) and unbiased estimators of the prediction error. In the following sedions we

describe several estimators of the prediction error of regression trees.
Resampling Methods

The main idea behind resampling methods is to use a separate set of data to obtain the
reliable estimates. We have already seen a possible way of using these estimators within
pruning when we have discussed CART pruning algorithm (Sedion 4.2.1). Resampling
methods can also be used to tune parameters of a leaning system. An example of such
application consists of finding the “optimal” values of learning parameters to better tune a

system to a particular domain (e.g. John,1997). This is particularly useful whenever the
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“optimal” values of these parameters depend on the domain under consideration. In a way
the estimation phase of CART pruning can be seen as tuning the cost per leaf node (the a
value) parameter, to ensure the highest estimated predictive acaracy. These techniques
can also be used within the pruning method used in RETIS for obtaining the “best” value
of m, and within CORE pruning method to find the “optimal” precision coefficients used in
the MDL coding schema.

Our study will be cetred on two particular resampling techniques, the Holdout and
the Cross-Validation. Another frequently used resampling tednique is the bootstrap
(Efron,1979 Efron & Tibshirani, 1993 and its variants like the .632 bootstrap or the €
bootstrap (see for instance Weiss & Kulikowski, 1991 or Kohavi, 1995. The bootstrap
method is known to be particular suitable for small samples. With the rapid growth of
computational power and the widespread of information technology, the size of data setsis
growing a a very fast rate. Reseach fields like Knowledge Discovery in DataBases
(KDD) put a particular emphasis on large data sets, which we share. This was the main

motivation for not including the bootstrap method in our studly.

Cross Validation Error Estimates

A k-fold cross validation (CV) estimate is obtained by randomly dividing the given
training sample in k digoint folds D,,...,D,, ead containing approximately the same
number of observations. For ead fold D; a regression model is constructed using as
leaning sample D\D; , obtaining the model r«(8, xX). This model is then tested on the fold
D:. The same processis repeded for al folds. Finaly, the CV error esimate is obtained by

averaging the erors of these k models, i.e.

~ 1 K
Err., == Err, (4.13
“ n Zl { XiZDf }

where,
Err, =]y, -r(B,x)]| or  Err, =(y, —r(B,x,))?, depending on the type of
error measure we ae using to evaluate our model.
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A particular case of this formula occurs when k is st to n. This leads to what is usually
known as Leave-One-Out Cross Validation (LOOCV) where n models are onstructed
using n-1 training cases. This method is computationally expensive so it is used only with
very small data sets. The most common set-up in current reseach within ML is 10-fold
CV.

As mentioned by Breiman et al. (1984, p.307) it is not clea how to obtain standard
error (SE) etimates for the CV estimator since the arors are not independent due to the
overlap of the k training sets. If we ignore this dependence we reach a heuristic formulation

for the SE of this estimator,

S.E.(Errkcv):% \/ 2 { Z (Erri ~Errg, )2 (4.14)

D}

The use of CV estimators with treebased models presents some difficulties. For instance,
we have to repeat the learning processk times, which krings additional computation costs.
Another problem is how to use the CV estimate to seled the best pruned tree We have
seen in Sedion 4.2.1 that Breiman et al. (1984) use the @<t per leaf node (the a values) to
perform a treematching process that alows the use of CV egstimates in the pruning
process This method is drongly tied to the aror-complexity sequence generation
algorithm. It does not make sense to use the a values to perform tree matching with other
sequences of trees, becaise Breiman and his colleagues proved that the optimal sequenceis
the one provided by the Error-Complexity algorithm. Motivated by the fact that we have
studied other algorithms for obtaining sets of pruned trees we have devised an alternative
treematching method.

The Error-Complexity algorithm produces a parametric sequence of nested trees T(a)
=<Ty, ..., Tr>. Associated with each treein the sequencethere isa a value. Let us denote
atreebelonging to this squence & T(a) to reinforcethis asociation between the trees and
the respedive a values. As we have mentioned in Sedion 4.2.1, when using k-fold cross

validation error estimates, CART also produces k parametric sequences T*(a),....T*(a).
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For each tree in these sequences we have a reliable estimate of its error obtained with the
respective fold. The tree matching procedure of CART estimates the error of the tree T(ai)
of the main sequence as the average of the error estimates of the trees
Tl(\/E)...,T X (\/E) where T(a,) is the tree belonging to the sequence T(a) with a
value most similar to a,. The assumption behind this procedure is that the trees
Tl(\/ﬁm)...,Tk (\/E) have the same true prediction error as T(a;). In other words,
trees with a similar cost per leaf will have similar true prediction error. As mentioned by
Esposito et al. (1997) there is no theoretical justification to support this.

We now describe an alternative tree-matching method that allows using cross
validation error estimates for any sequence of nested pruned trees. Let us assume that trees
obtained with samples with approximately the same size will have similar predictive
accuracy. Under this assumption it seems reasonable to consider that the error estimate of
overly large tree Trax Obtained with all training data, should be calculated with the error
estimates of the trees T. ..., TX (i.e. the overly large trees of the k folds). Moreover, as
the training sets in the k folds are samples of the same population it is reasonable to assume
that they will have the same variance. Based on this argument we can estimate the error of
the tree consisting of a single leaf, using the similar trees in the sequences TV(CX)M.

Linear polynomials obtained through the least squares method are usually evaluated
by the proportion of variance they explain. This statistic is obtained by,

pz(r):w =1-RE(r) (4.15)

2

S

where,
r isaregression model;
Err(r) isthe mean squared error of the model;

s? isthe sample variance of Y;
and RE(r) isusually known as the relative error of r.

“4 Because the error of atree consisting of a single leaf is given by thevariance(sf) of thetraining sample

(e Err(T,)=s?).
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We can calculate similar p® values for any tree in a sequence. These values range from a
maximum value for the tree T (Which is the first element in the sequence, To), until the
value zero, relative to the tree consisting of asingle leaf. These values decrease as the trees
get smaller because the trees are nested and have increasing value of resubstitution error
(i.e. they explain less variance of the training sample). This means that we can look at our
sequence of trees as a parametric family T(pz): <T(p§)T(pf)T(pﬁ)> where
pZ>p?>..>p2 and p2 =0. Without loss of generality we may re-scale these values to
cover the interval [1..0], using a simple linear transformation consisting of dividing the p?
values by p; (i.e. by the maximum value of p?). This leads to the following statistic,

52 _p; _Err(r,)-Err(T)
" ps Err(r)-Err(T)

(4.16)

where, 82=1,92=0, 9?>92, and 0<97<1,i=1.n-1.

i+l

The starting point of our proposed tree matching procedure is a sequence of nested pruned
trees, T(SZ): <T(8§)T(8§)T(S§)> and the k cross validation sequences
TY(92)...T*(9). Our treematching method consists of using the 92 values to assert
similarity between trees in these sequences. Namely, the error estimate of tree T(Siz) is
obtained as an average of the error etimates of the k trees T(92)...T*(92). The
underlying assumption behind this tree matching procedure is that trees explaining the
same proportion of variance of the given training sample, are likely to have similar true
prediction error on future samples of the same population.

We have compared our tree-matching proposal with the method used in CART. Using
the same sequence of trees (the one produced by CART Error-Complexity algorithm) and
the same error estimation technique (5-fold CV), we have compared the selected trees in

the main sequence for each of the two tree-matching methods. Figure 4.2 shows the sign
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and the statistical significance of the difference in MSE between the two aternatives,
estimated using the DELVE experimental methodology™.

W 256 0 512 @ 1024 0 2048 B 40%

100%
8% 1 - - -
60% 1 - - -
W% - - -
% 1 - - -

Our proposal

%1 - - |-

CART matching
2

Figure 4.2 - Our tree-matching proposal vs. CART method.

As Figure 4.2 shows there are no statistically significant*® differences between the choices
entailed by the use of the two alternative tree-matching methods. In spite of a tendency for
the differences being favourable to our method, we cannot discard with high confidence
the hypothesis that both alternatives achieve the same accuracy. Still, we should recall that
the single motivation for the introduction of our method was to alow the use of CV
estimates with other methods of generating sequences of pruned trees apart from the
method used in CART. This is a relevant issue because we have shown in Section 4.3.1

“5 Details concerning the experimental methodology and the information described in the figures can be
found in Annex A. The complete tables of results of this experiment can be found in Annex B.5.

“6 We consider an observed difference statistically significant if there is at least 95% confidence that the two
methods will not achieve similar accuracy on other samples of the same population. Furthermore, if the

confidence reaches the 99% level we consider the difference highly significant.
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that it is possible to obtain better results with other sequence generation methods that do
not producethe same sequence & the Error-Complexity algorithm.

Another relevant issue when applying CV estimators is the number of folds to use.
Smaller numbers make the size of the folds larger leading to more reliable estimates.
However, as fewer cases are left for training, this also affeds adversely the “quality” of the
model and thus its error, and hence there is a trade-off between the two fadors. Moreover,
for large data sets the value of k strongly influences the mmputation time. We have not
caried out any systematic experiment to determine the optimal number of folds. In our
experiments we have used the value 5 on the basis of empirical observations and also

because it is commonly used within ML.

The Holdout Method

With the Holdout method the given training cases are randomly divided into two separate
samples. One of the samples is used for training and the other (the holdout sample) to
obtain unhiased estimates of the models leaned. The usual way data is used by this method
in the mntext of regression trees (e.g. system CART by Breiman et al.,1984) is described
by the Figure 4.3:

- Used for Growing
the Trees
- Training
/ Data
Given
Used for Obtaining
Unbiased Egtimates

Data
Figure 4.3 - The Holdout Method.

I~

A Holdout egtimate is the average prediction error of the model on the cases in the holdout,
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IérrHld -1 Hz Err, (4.17)

Hid 1=1

where,
Nuig 1S the number of cases in the Holdout sample;

and Err; isthe prediction error of the model r([3,x) for case (xi , yi> .

We ae trying to estimate the “true” mean error of a regression model. Asauming that the
holdout sample is drawn from the same population as the leaning sample, we can say that
the Holdout is an unhbiased estimator of the mean error of the model. In effed, it is well
known that the average is an unhiased estimator of a population mean, and the holdout
estimates are obtained by averaging the erors of the model in the holdout sample. With
resped to the standard error of the holdout estimates datistical theory tells us that if X, ...,
X is a random sample of a distribution with mean p and variance o the variance of the
average estimator of the mean is given by,
.

Var X = — (4.18)
n

This meansthat the standard error of the holdout estimatesis given by,

R 2
SE(Erry, )=, 28 (4.19)
n
2

o; isthevarianceof the aror Err;
and n isthe size of our sample (in this case the size of the holdout).

where,

Using the sample variance etimate*’ we get the following operational formula,

nE-Z— nE-g
1 n; r, E; rrID
n n-1

S.E.(ErrHld): (4.20)

a7 §2 _nz Xz_(z X)Z

* n(n-1)
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The two aternative ways of defining the Erri's mentioned before (squared or absolute
differences) tell us that less credit should be given to the standard error estimates when
using the MSE criterion, as we will have powers of four*®, which can be extremely
variable. This can be seen as another advantage of LAD regression trees. Equation 4.20 is
dightly different from the formula derived by Breiman et al. (1984, p.226). The difference
results from the fad that the aithors have used the biased estimate of the variance, where
the denominator is n instead of n-1. This approximation is known to underestimate the true
population variance (Chatfield,1983, which means that the values obtained by their
formula should be over-optimistic compared to ours.

An important isue when using these estimates is the size of the holdout. This method
requires the two samples to be independent which means that we will deaease the number
of cases available for training. While one wants a sufficiently large pruning set (holdout),
one does not want to remove too many cases from the training set, so as not to harm the
quality of the leaned trees. The first obvious observation that one can make about this
method is that it is clealy inadequate for small samples. In effed, as Weiss and
Kulikowski (1997 pointed out, for moderately sized samples this method usually leaves
one with insufficient number of cases either for training or pruning. The aithors have
suggested that a holdout sample with around 1000 observations should be sufficient for
most cases. We have experimentally confirmed on our benchmark data sets that this is a
ressonable asumption. Using larger holdouts brings little increased precision and, in
effed, ends up harming the acaracy of the treemodel, because too many cases have been
“removed” from the learning sample. In our experiments with the holdout method we have
used a similar heuristic, by setting the size of the holdout as follows,

Nyq = Min(30%x n,1000) (4.21)

where n isthe training sample size

% Because for the MSE ariterion Err, = (y, —r(B,x,))’.
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This means that for instance, if the sample size is 500 cases, then we have that
min(30%x500,1000) = 150, and thus 150 cases will be left out as holdout while the
remaining 350 will be used as training set. On the contrary, if the sample size is 50000, we
have that min(30%x%50000,1000) = 1000, thus only 1000 cases will be left out as holdout.

m-Estimates

As we have mentioned in Section 4.2.2, Karalic and Cestnik (1991) have presented m
estimators for the mean and variance of a variable, which can be used to obtain reliable
estimates of the error of LS regression trees. Although the authors have used m-estimates
with the Niblett & Bratko (N&B) pruning algorithm, these estimates can also be used to
compare alternative regression trees. For instance, given a sequence of trees such as the
one produced by the Error-Complexity algorithm used in CART, mrestimates could be
used to select the final model instead of the resampling techniques used in CART. We will
use this method in our experimental comparisons. Moreover, we have extended the work
of Karalic and Cestnik (1991) by deriving the standard error associated with these
estimators. This allows the use of the 1-SE selection rule (Breiman et al., 1984) with m-
estimates leading to large benefits in terms of tree size of the selected model.

According to Kendall and Stuart (1969, vol. 1) the standard error of the sample mean

sguared error is given by,

s.E.(MSEy):J% > (-9 -3

The standard error is a statistic of the sampling distribution of a population parameter.

(v, - 57 HD (4.22)
=T UJ H

Using Equation 4.3, we have developed the m-estimate of the standard error associated
with the sample MSE, which is given by the following equation,
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ﬁjn_fg%g@._mﬂ@)r-ggl o 629
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The expressions inside the squared roots can be expanded using the following equality

|55 6 -mesol 23 s -
(4.24)

i \/ s, - 4s,mEst(y) + 4s, (MEst(y))’ %55 +%SZSImESt(7) _%Sf ey

where,

Calculating these s factors brings no significant computational cost as this can be carried
out during tree growth. Using the expression given in Equation 4.24 the m-estimate of the
standard error of the sample MSE can be calculated in an efficient manner.

We have also extended the use of mrestimates to least absolute deviation (LAD)
regression trees. To grow LAD trees we need estimates of the median and of the mean
absolute deviation to the median. We have derived m-estimates for these two datistics.
Regarding the priors we have followed the same procedure of estimating them at the root
of the tree (i.e. using all training data). Using Equation 4.3 we can obtain the m estimate of

the median in aleaf | as,

mEst(v) = v(D,) (4.25)

where,
v(D,) and v(D,) are the resubstitution estimates of the medians obtained with the

cases in the leaf and root nodes, respectively;
and ny isthe size of training samplein leaf |.
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With respect to the mean absolute deviation to this median we have,

n_]; g |yi _mESt(V)| + ; |yi _mESt(V)|

m 1
n+mn

Iﬂll
n, +m

- }-m S|y -mEst(v)|+ﬁ > |y -mEsi()

mEst(MAD, ) =

using the equation derived in Section 3.3.1 for the SAD of a set of observations we get,

" % Yi Z y; +mEst(v)x ODD(#D, )E

n +mH4 - ]

+

(4.26)
m

— = -+ mEst(v ) x 3
n(nl+m)E;y, gy, Est(v) ODD(#Dn)3

The formula derived above needs a pass trough all training data for each estimate of the
MAD, as we need to obtain the sums of the Y values greater and smaller than the m
estimate of the median. As this estimate is different for each leaf, this needs to be done for
al leaves. Thus m estimates for LAD trees have a cost proportional to O(#‘F x n), where
T is the set of leaves of the tree T. We can reduce this cost by obtaining the two
summations in an incremental fashion. In effect, during the tree growth these sums get
calculated for the resubstitution estimate of the median. Moreover, we already have the
observations in two AVL trees D* and D (see Section 3.3.1). The m-estimate of the
median is either bigger or smaller than the resubstitution estimate. Thus we only need to
update the two sums with the cases in the interval between these two values. This will lead
to a complexity proportional to O(#‘F x K), where k is much smaller than n.

We now address the issue of obtaining the m estimate of the standard error associated
with the estimate of the mean absolute deviation given above. Kendall and Stuart (19609,
vol. 1) refer that the standard error associated with the sample mean deviation about a

valuev isgiven by,

SE(MAD, )= J% (02 +(v-p) - (5, )2) (4.27)
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where,
o, = EQyi —v|), i.e. the expected value of the mean absolute deviation.

\

Using the sample estimates of thea? and 8, statistics we get,

nHh&

We have developed the m estimate of this standard error which is given by the following

SE(MAD, )= JEEE > -9F +b-9F -5 5y @E (4.28)

equation,
mEst(S.E(MAD, )) =

L \/i g (y, - mEst(y))? + (mEst(v) - mEst(y))* - 1 - mEst(v %
J
d

+

[ .|

I"II +m Iﬂll %.II ; I I‘l

m Jg% 5y ~nes(7)f + (res()-mes5)f B 5y -mes)d

n +m

Once again we can try to obtain a computationally more efficient formula for the

expressions inside the squared roots leading to,

J%%i(y.—mm(y»ﬂ(mat( -nes(3)) -y Iy - ”‘ES”@E'

1 1 2 1 2 1
=.|2nk? +s, -2 +nk2 -2nk k —=k2+=k k.k. ——k? + =k k k. —=k?2k?2
n\/ 1 2 S.Lkl 2 2k1n3n235n4n245n25
where,
the sfactors are defined as before
and k, =mEst(y), k, = mEst(v), k, —Zy, 4: , k., =ODD(#D).

Although this formula increases the efficiency of the calculation of the standard error, there
are still some factors (ks and ky) that need two passes through the data to be obtained. This
is the same efficiency problem mentioned when presenting the m estimates of the MAD.
However, as these factors are already calculated to obtain the m estimates of the MAD, the
calculation of the standard error of these estimates brings no additional computation effort.
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Estimates based on Sampling Distribution Properties

Statistical estimation theory is concerned with obtaining unbiased estimates of population
parameters. Point estimates provide a unique number for the parameter value. Together
with this number we are interested in obtaining a standard error of the estimate. Equations
4.22 and 4.27 calculate the standard error associated with both the mean squared error and
the mean absolute deviation to the median. Interval estimates, on the other hand, provide
an interval were we can be sure that in x% of the cases the true population parameter lies
in. Interval estimates can be obtained if we know the sampling distribution of the
parameter being estimated. For instance, the central limit theorem tells us that
irrespectively of the distribution of arandom variable, the sampling distribution of its mean
is normal. This alows us to obtain confidence intervals for the location of the true
population mean based on the mean estimated with a single random sample. In the case of
regression trees we are interested in obtaining estimates of the true error in each leaf. In
our sudy we have used as error measures either the MSE or the MAD.

For the M SE criterion, the error associated with a leaf can be seen as an estimate of the
variance of the cases within it. Statistical estimation theory tells us that the sampling
distribution of the variance is the x? distribution (e.g. Bhattacharyya & Johnson, 1977), if
the original variable follows a normal distribution. According to the properties of the x?
distribution, a 100x(1-a)% confidence interval for the true population variance based on a

sample of size n isgiven by,

Ho- (-9 F )
E X%,n—l X(l—%),n—l E

where,
s¢ isthe sample variance (obtained in a particular tree leaf);

and X2, isthe tabulated value of the x? distribution for agiven confidence level a
and n degrees of freedom.

This formulation is based on an assumption of normality of the distribution of the variable

Y. In most real-world domains we cannot guarantee a priori that this assumption holds. If
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that is not the cae we may obtain too narrow intervals for the locaion of the true
population variance. This means that the true error in the leaf can be outside of the interval
boundaries. However, in the mntext of pruning by tree seledion, we ae not particularly
interested in the precision of the estimates, but in guaranteeing that they perform a corred
ranking of the candidate pruned trees.

The x? distribution is not symmetric, meaning that the middle point of the interval
defined by Equation 4.29 does not correspond to the sample point estimate of the variance
(Bhattadcharyya & Johnson, 1977). In effed, the middle point of this interval is larger than
the point estimate. The difference between these two values deaeases as the number of
degrees of freedom grows, because it is known that the x? distribution approximates the
normal distribution*® when the number of degrees of freedom is sfficiently large. This
means that as the sample size (which corresponds to the number of degrees of freedom)
grows, the middle point of the interval given in Equation 4.29 will tend to approach the
point estimate obtained with the sample. This is exadly the kind of bias most pruning
methods rely on. They “penalise” estimates obtained in the leaves of large trees (with few
data points) when compared to estimates at higher levels of the trees. Being so, we propose
using the middle point of the interval in Equation 4.29 as a more reliable etimate of the

variance of any node, which leads to the following estimator of the MSE in anodet,

n-101 1 F

ChiEst(MSE(t)) = MSE(t)x - - (4.30)
Hopns Koot
where,
ntz_le 5 1 +— 1 E can be seen as a wrrecting fador of the MSE ina
Hopns Koo
nodet.

49 Which is symmetric.
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This is a heuristic method of obtaining an estimate of the true mean squared error in atree
node, obtained through the use of a “correcting” fador on the resubstitution estimate of the
MSE. This fador is a function of the number of cases from which the resubstitution error
was obtained and of the sampling distribution properties of the mean squared error. A
similar strategy is followed in C4.5 (Quinlan, 19933) for clasdfication trees, which applies
a “correding” fador to the resubstitution error rate, based on the binomial distribution.
Figure 4.4 shows the value of the rrecting fador for different sample sizes and

confidence levels of the x? distribution.

F(.95) ------- F(.975) ——F(.999)

Correcting factor

1
P OSSR S P

Q O N N QO O O O N O
S P PP PP S

Sample size

Figure 4.4 -Different values of the “ correding factor” used in the ChiEst estimator.

As it can be seen the larger the confidence level the higher the value of the wrrecting
fador penalising small samples. This means that the higher the confidence level the
stronger the preference bias for smaller trees.

Regarding the use of the 1-SE rule we @n calculate the standard error of these

estimates using Equation 4.22.
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We were not able to find the sampling distribution of the Mean Absolute Deviation to
the median. Being so, we dedded not to use this type of estimators with our LAD

regression trees.

4322 Comparing Trees using their Binary Description Length

Most existing work on pruning is lely guided by reliable estimates of the prediction
error. Still, pruning inevitably leals to smaller and thus less complex trees. Pruning has an
important effed on model complexity and interpretability as it was pointed out by several
authors (e.g. Bohanec and Bratko, 1994 Kononenko, 1989). In effed, there is a strong
resistanceto “bladk box” models by many human experts. As a result of this sme authors
have tried to incorporate both the notions of simplicity and prediction acaracy in the
preference bias guiding the overfitting avoidance process Breiman et al. (1984) have
added a complexity cost to the eror esimates lealing to the error-complexity pruning
method used in their CART system. Still, this measure is only used for generating the set
of alternative trees considered during the pruning process while the final seledion is lely
guided by the minimisation of the estimated error. Both m-estimates and ChiEst indiredly
incorporate abias for smaller trees by penalising estimates obtained with small samples.
The Minimum Description Length (Rissanen, 1978 principle is based on a sound
theoretical framework that can incorporate the notions of model complexity and acairacy.
This work gave rise to studies of binary coding of treebased models which is now a well-
studied subject. Coding of classficaion trees was explored for instance by Quinlan &
Rivest (1989 and Wallace& Patrick (1993. The work of Kramer (1996 seems to be the
first attempt which involves using MDL for seleding a good candidate from a set of
different regression trees. This author described the SRT system that leans a particular
type of regression trees using a least squares error criterion. The particularity of SRT
resides on the use of a relational language for the tests in the nodes of the trees. In effed,
the final tree ca be translated into a set of relational clauses. SRT builds ®veral trees
using different stopping criteria aad uses MDL to seled the best one. Kramer (1996
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describes smewhat vaguely the mding used in SRT. He refers that the length of a tree
encoding consists of the sum of the excoding of the tree model plus the encoding of its
errors on the training data. The arors are red numbers and are encoded using the method
proposed by Rissanen (1982. As for the tree model the aithor just mentions that he
encodes the doices made in each node from all possible literals. As we have seen in
Sedion 4.2.3, Robnik-Sikonja and Kononenko (199) aso use MDL for pruning LS
regression trees in the CORE system. The ading schema™® provided by these aithors can
be used to obtain the binary description length of any regresson tree We use this code

length to compare different pruned treesin the mntext of pruning by treeseledion.

4.3.3 ChoosingtheFinal Tree

This ®dion addresses the final step of pruning by tree seledion. After an initial stage
consisting of generating a set of alternative pruned trees, we evaluate these alternatives by
means of any of the methods described in Sedion 4.3.1. The goa of these evaluation
methods isto provide information that allows choosing one of such models as the final tree
obtained by the leaning algorithm. Different strategies can be used in this final step of
pruning by treeseledion.

If we compare the alternative pruned trees using estimates of their true prediction
error, the “natural” method of seleding atreeisto choose the model with lowest estimated
error. However, Breiman et al. (1984 suggested an aternative method hiased toward
simpler models. This alternative mnsists of selecting the smallest tree within the interval
ErrI + S.E.(ErrI ) where ErrI is the lowest error estimate and S.E.(Errl) is the standard
error of this estimate. This method, usually known as the 1-SE rule, can be generalised to a
k-SE rule with k = 0°%,

%0 Full detail sregarding this coding schema can be found in the appendix at the end o this chapter.

*1 Noticethat with k = 0 this rule resumes to seleding the treewith lowest error.
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If the trees in the sequence ae compared in terms of their binary description length,
the gplication of the Minimum Description Length principle leads to the seledion of the
model with shortest binary code.

4.3.4  An Experimental Comparison of Pruning by Tree Selection M ethods

In this sedion we describe a set of experiments that compare different approades to
pruning by tree seledion. These experiments provide a better understanding of the
different biases of the alternative pruning methods we have nsidered in the previous
sedions. The @nclusions of these experiments allow us to claim that depending on the
preference aiteria of the user, some methods will be preferable to others in domains with

similar charaderistics.

4341 Comparing Methods of Generating Sets of Pruned Trees

In Sedion 4.3.1 we have described two new methods of generating sequences of nested
pruned trees (LSS and MCV). In this sction we cmpare these methods with existing
alternatives using different ways of selecting the best pruned tree

Figure 4.5 shows the sign and statistica significance of the estimated MSE difference
between our two proposals (MCV and LSS and aher existing sequence generation
methods (MEL and ErrCpx). In this experiment we have used ChiEst with a confidence
level of 95%, as the method of selecting one tree from the sequence All sequence

generation algorithms use as “ starting point” the same tree Tpax.
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Figure 4.5 — Comparison d LSSwith ather sequence generation methods using
ChiEst(95%) as €ledion method

These graphs show a clear advantage of both MCV and LSS over existing sequence
generation methods. In effect, we can observe several statistically significant advantages of
our proposals and only with the LSSstrategy we have observed a significant loss in the
CompAct(s) domain. These results show that the better potential that we have observed in
the experiments reported in Section 4.3.1 (Figure 4.1), can be capitalised by the ChiEst
selection method.

We have also carried out similar experiments with other tree selection methods. The
results are comparable so we do not include them here for space reasons. They can be

found in the Appendix B.6.
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4.34.2 Comparing Methods of Evaluating Trees

Pruning by tree selection includes a stage where atree is chosen acwrding to some
evaluation criteria. In Sedion 4.3.1 we have reviewed several possible ways of performing
this evaluation. In this sction we show the results of an experimental comparison of these
methods. Here we use & candidate pruned trees the sequence generated with the LSS
algorithm, which as we have seen in the previous ction, is a quite good method overall.
Before presenting the results of the comparison we make afew remarks regarding
tuning of the parameters of some tree &aluation strategies. Both m-estimates, ChiEst and
MDL seledion require that some parameters are set. All of these parameters refled certain
preference bias over the acaracy / tree size trade-off. Ideally, one would like to have a
default setting that would “work well” across all domains. Alternatively we @n use
resampling-based tuning to find out the parameter setting that maximises the expeded
acaracy on our target domain. Obviously, this tuning strategy only makes $nse in case
our goa is to maximise predictive acaracy. Still, this is the most common way of
procealing. We have already seen that CART uses such tuning method to find out which
cost per led (a value) leads to higher estimate of predictive acaracy. We have caried out
a set of experiments to obtain a better understanding of the effed of changing the value of

the parameters of the different tree evaluation methods.
Tuning of the ChiEst eval uation method

We start our analysis with the ChiEst tree evaluation method. The parameter of this error
estimator is the mnfidence level used to dbtain the x? distribution values. As Figure 4.4
(p.138) shows, different values of the confidence level leal to dfferent penalisation of the
resubstitution estimates. We have caried out a smple experiment to evaluate the effed of
the value of the cnfidence level on the size of the seleded tree This experiment was
caried out with the Abalone, Pole, CompAct and Elevators data sets. For ead domain we
have grown a LS regression treg generated a set of pruned trees using the LSS algorithm,
and then seleded the “best” tree acording to a ChiEst evaluation caried out using
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different confidence level values. The result of varying the value of the mnfidence level
from 0.5to 1ontherelative size of the seleded treewhen compared to the initially leaned

tree, is shown in Figure 4.6, for the four domains mentioned above.
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Figure 4.6 - The effect of the value of the confidence level on the pruned tree size.

As we can see the larger the confidence level the smaller the seleded pruned tree
However, we can observe that for a wide range of confidence level values the seleded tree
is the same. This means that the ChiEst evaluation method is quite robust to variations on
this value. Moreover, we dso observe that depending on the domain different levels of
pruning are caried out for the same confidencelevel value.

As we have mentioned we would like to have afixed setting of the cnfidence level
that was adequate over a wide range of data sets, to avoid the computational burden of
having to use resampling-based tuning. We have tried several fixed settings and our
experiments lead us to seled the value of 0.95. We have caried out a paired acaracy
comparison between using resampling-based tuning through 5-fold CV and the fixed
setting of 0.95. For CV-based tuning, 16 trial values were used to seled the “best” setting.
These values range exponentially from 0.5 to 0.9943@ using the generating function

CL, :1.5><e%2 ,1 =0..15. The results of this experiment are shown in Figure 4.7.
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Figure 4.7 - Sgnificance of MSE difference between ChiEst(95%) and ChiEst(5-CV).

This comparison shows that there is no particular advantage in adopting a resampling-

based tuning of the confidence level when compared to the fixed set-up of 0.95, at least on

these domains. In effect, we have not observed any data set where we could reject with

high confidence the hypothesis that both alternatives achieve similar accuracy. Moreover,

in several data sets there is a tendency for the fixed setting to perform better. Even more

important is the fact that resampling-based tuning is a computationally intensive process,

which can be confirmed in Figure 4.8 that shows the tree size and Cpu time ratios between

ChiEst(CL=95%) and ChiEst with the confidence level tuned by a 5-fold CV process.
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These results reinforce the argument that for these data sets the fixed value of 95% for the
confidence level isthe best setting. In effect, not only it has comparable accuracy, but also
leads to smaller trees, taking much less computation time. This experimental result is
consistent with the graph of Figure 4.6, where we observed that few differences in tree size
could be expected for a large range of confidence level values. This may explain why
tuning by CV does not produce significantly different results in terms of accuracy from the

fixed setting.
Tuning of evaluation based on m-estimates

We now focus on tree evaluation using m estimates. With this evaluation mechanism we
need to provide the value of the parameter m. Setting this value strongly influences the
evaluation of candidate trees, thus possibly leading to a different choice of final tree model.
We have carried out the same experiment described above for the ChiEst method, to
observe the behaviour of m estimates in the same four domains, when different values of m
are used. We have varied m from 0.05 to 50 in increments of 0.05. Figure 4.9 shows the

relative sizes of the selected trees compared with the tree Tn for the different m values.
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Figure 4.9 shows that quite different tree sizes can be obtained with slight variations of the
m parameter value (particularly for small m values). Still, the size deaeases monotonically
with the increase of m. This type of monotonous relation was already observed with the
coefficient level of ChiEst and it is desirable & it can help the user to find the more
adequate set-up for his appli cation.

We have also caried out a series of experiments with our benchmark data sets to
observe the behaviour of our RT system when using fixed m values. We have tried several
values for m (0.5, 0.75, 1, 2, 3 and 5). Based on the results of these experiments we have
observed that while the acarracy results are somehow comparable, there ae obvious
disadvantages in using small m values due to the resulting tree size Either m= 2 or 3
provide the best compromise between size and acaracy on our benchmark data sets. We
have compared the results of using the value of 2 for m and using 5fold CV to tune this
value for ead domain. Figure 4.10 shows the results of this paired comparison. We use 31
trial values of m from which the “best” value is selected using 5-fold CV. These values
range exponentialy from 0.1 to 40342 using the generating function
m =0.1xe’s ,i=0.30.
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Figure 4.10 - Sgnificance of MSE difference between m(2) and m(5-CV).
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Asiit can be seen in Figure 4.10, tuning m by CV leads to significantly more accurate trees
on several domains. The results of this experiment show that we can expect with
reasonable confidence that tuning m by CV is the best strategy for obtaining accurate
regression trees post-pruned with m estimators.

Figure 4.11 shows the results of this comparison in terms of tree size and computation
time ratios. The results in terms of tree size confirm that a fixed value of m can be
completely inadequate for some domains. Some of the ratios even fall outside of the graph
scale (e.g. in the Kinematics domain using the value of 2 leads to atree 4 times larger than
setting m by CV). On other occasions using the value of 2 originates in too simple trees
that hardly capture the structure of the domain, leading to poor predictive performance (c.f.
with the accuracy results on 2Dplanes, Mv, CompAct, CompAct(s) and Fried in Figure
4.10).
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Figure4.11 - Tree size and Cpu time Ratios for m=2 and m(cv) selection.

With respect to computation times the strategy of tuning m by CV has large disadvantage
as the sample size grows, which was expected and already happened with the ChiEst
method.

Tuning of evaluation based on the MDL principle

Finally, we have studied the behaviour of MDL evaluation to identify how it is affected by

certain parameters. Here we have considered the parameters that specify the precision of
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real numbers used for coding the cut-point splits and the errors in the leaves, in accordance
with the coding proposed by Robnik-Sikonja & Kononenko (1998). Again using the same
four data sets we have post-pruned a large tree using different combinations of values of
these two parameters. The size of resulting tree for the different combinations is shown in

Figure 4.12.
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Figure 4.12 - The effect of varying the MDL coding parameters on tree size.

Robnik-Sikonja and Kononenko (1998) claim that the user can easily set the two
parameters, astheir meaning is intuitive. Although we agree with their position concerning
the meaning, the graphs presented show that the effect of varying these values on the size
of the resulting selected tree is not always predictable. This is caused by the lack of a clear
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monotonous relation like the one observed with the parameters of m and ChiEst estimators,
and also by the existence of two parameters instead of a single value to tune.

We have compared a single fixed setting of the two parameters with 5-fold CV tuning.
With respect to the fixed setting, after some experimentation, we have selected the value of
0.1 for the precision of the cut-points, and 0.5 for the precision of the errors. This setting
seemed to provide the better overall results on our benchmark data sets. Regarding the
resampling-based tuning we tried 144 alternatives. These alternatives were generated by
exponentially varying the value of the two precision parameters from 0.005 to 7.65 using
the function p, = 0.005><e%-5 ,1 =0..11. This leads to 12 different precision values per
parameter, which after combining originated in the 144 variants (12x12). Figure 4.13
presents the results of this paired comparison using the trees generated by the LSS

algorithm as source.
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Figure 4.13 - Sgnificance of MSE difference between MDL(0.1,0.5) and MDL(5-CV).

These results lead to the conclusion that CV-based tuning provides a clear advantage in
terms of accuracy over this fixed setting on several data sets. The results with respect to
tree size and computation time ratios, between MDL with CV-based tuning and the fixed
setting are shown in Figure 4.14.
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Figure 4.14 - Tree size and Cpu time ratios between MDL(0.1,0.5) and MDL(cv5).

The results in terms of tree size are somehow balanced with a slight advantage of the fixed
setting. Regarding computation time we observe that the cost of evaluating the 144
aternatives through 5-fold CV is very high. Sill, our experiments indicate that if
computation efficiency is not a major concern the best way of using MDL to post prune

regression trees is by tuning the precision values using cross validation.
Conclusions regarding tuning of tree evaluation methods

The results of this empirical study of different methods of evaluating trees provide the
following indications regarding its use in the context of pruning by tree selection. With
respect to m estimates and MDL, tuning through resampling is essential to obtain good
predictive accuracy in domains with different characteristics. Regarding our ChiEst
evaluation method, the empirical evidence collected indicates that the method is quite
robust to variations on its pruning parameter, and contrary to the other methods we were
able to achieve competitive predictive accuracy over all our benchmark data sets using a
fixed setting. Although we can not guarantee that this will hold for any data set, this
presents an important advantage in terms of computation time as it avoids a costly iterative

evaluation process of different alternatives.
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Comparing the best settings

We will now present the results of an experimental study whose goal is to determine
whether any of the tree evaluation methods is superior to the others. For this purpose we
have compared the most promising variants of the different tree evaluation techniques we
have considered. Namely, we have compared 5-fold Cross Validation error estimates, with
m estimates tuned by 5-fold CV, ChiEst with 95% as confidence level, and MDL tuned by
5-fold CV. The comparison was carried out using the sequence generated by the LSS
algorithm as the source for tree selection. Figure 4.15 shows the estimated difference in
MSE between 5-fold CV and the other evaluation methods.
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Figure 4.15 - Sgnificance of MSE difference between tree selection methods.

With the exception of MDL selection the differences are most of the times statitically
insignificant. Compared to m etimates, 5-fold CV has a slight advantage but there are few
statistically significant differences. With respect to the comparison with ChiEst evaluation,

most of the differences are insignificant, but the ChiEst method is computationally more
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efficient as it is the only strategy that grows only one tree. The other methods take more
time as they generate and prune several trees, particularly MDL selection tuned by 5-fold
CV that needs to evaluate 144 trials (c.f. Section 4.3.2.2). Regarding tree size Figure 4.16
shows the ratios between 5-fold CV and the other methods.
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Figure 4.16 - Tree Sze Ratio comparison among Selection Methods.

The graphs of this figure show that the preference biases of selection by 5-fold CV
estimates and by m estimates tuned with CV are very similar. In effect, Figure 4.15 shows
that both methods achieve similar accuracy, and Figure 4.16 indicates that the size of the
selected trees is also similar. As the computation time of both methods is also comparable
there seems to be no particular advantage of one method over the other, at least for the
domains considered here. When compared to the ChiEst method, 5-fold CV achieves

similar accuracy (Figure 4.15), but with trees that are frequently larger as we can observe
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in Figure 4.16. Moreover, ChiEst is much more efficient in terms of computation time as
we have already mentioned. This means that for these data sets, both 5-fold CV and ChiEst
selection have comparable accuracy, but the latter is biased towards smaller trees and it is
computationally more efficient. Finally, when compared to MDL selection, 5-fold CV
leads to trees that are significantly more accurate in several domains. However, the trees
selected by MDL are much smaller as shown in Figure 4.16 (notice the different scale).
With respect to computation time CV is preferable, as MDL selection needs to evaluate

many trial parameter settings.

435 Summary

The experimental comparisons carried out in this section have shown that our proposed
sequence generation methods (LSS and MCV) produce more accurate pruned trees (c.f.
Figure 4.1). Moreover, the tree selection methods we have considered are able to capitalise
on this advantage. Thus the use of our tree generation methods proved to be the best form
of achieving higher accuracy in pruning by tree selection.

With respect to the evaluation methods we have observed that m estimators, ChiEst
and 5-fold CV have quite similar biases regarding predictive accuracy. However, our
ChiEst method achieves similar accuracy with smaller trees and much less computation
time, which represents an important advantage for large training samples. Regarding
selection by MDL we have observed significant losses in predictive accuracy in several
domains. Moreover, the method requires a costly tuning process which results in much
longer computation times than those of the other methods. However, trees selected by the
MDL principle do tend to be significantly smaller, although we can not consider this an
advantage in cases where it leads to significant accuracy losses. In effect, looking at these
two factors together, we can only consider very interesting the results of MDL selection in
both the Census(16H) and Elevators domains.

Summarising, we can conclude that with the exception of LSStm(cv5) and LSS+CV5
that behave in a very similar way in all aspects, most of the methods we have evaluated
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have shown some particular advantage that can be considered an useful bias for some
application scenario. Still, when taking the three factors we have considered into account
(accuracy, tree size and computation time), we conclude that any of our tree generation
methods together with ChiEst(95%) evaluation provide the best compromise overall for

pruning by tree selection.

4.4 Comparisons with Other Pruning Methods

In the previous section we have conducted a thorough study of pruning by selecting from a
set of alternative pruned trees. However, as we pointed out in Section 4.2 other pruning
methodologies exist. In this section we compare two of the most promising pruning
methods we have presented with existing methods of avoiding overfitting in regression
trees. Namely, we will compare pruning by tree selection using the LSS algorithm together
with 5-fold CV and ChiEst(95%) evaluation, with CART, RETIS and CORE pruning
methods. To ensure a fair comparison of the pruning methodologies all algorithms were
applied on the same overly large tree Trax. This was made possible because our RT system
implements all these pruning variants. With respect to CART pruning we have used as tree
selection a 5-fold CV process. For RETIS pruning we have tuned the value of the m
parameter using a 5-fold CV process to select from 31 alternatives ranging exponentially
from 0.1 to 40.3429 using the generating function m =0.1x e% ,1 =0..30. Finaly, the
precision values used in CORE pruning were tuned using 5-fold CV to select from 144
variants obtained using al combinations of 12 values defined by
D, =0.005xe/%s i =0.11.

We start by the comparison between our LSS+5CV and the other 3 pruning algorithms,
Figure 4.17 shows the sign and significance of the observed differences in MSE between

our proposal and the others.
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Figure 4.17 - Sgnificance of MSE difference between LSS+5CV and other pruning
algorithms.

With the exception of the Elevators domain, these graphs show that our pruning method
achieves excellent predictive accuracy results when compared to the other pruning
strategies. In effect, when considering only the differences that can be regarded as
statistically significant, al favour our method. Compared to CART pruning, our method
achieves clearly better results in the 2Dplanes, Census (16H and 8L) and Fried domains.
The conclusions of the comparison with RETIS pruning are similar although the advantage
of our method is more marked and is extended to other domains. In effect, in 39 of the 47>
experimental set-ups the estimated accuracy difference is favourable to our strategy. With
respect to CORE pruning, our method has advantage in 37 of the 47 set-ups, with high
statistical significance in several domains. On the contrary, CORE pruning was never
found statistically significantly superior to our method, although it achieved better results

in both the Abalone and Elevators domains.

%2 Only 47 because from the 12 domains used in our experiments, some of them do not have enough data to

carry out the experiments for all sizes we have considered.
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Regarding tree sizes the results of the comparison are shown in Figure 4.18.

LSS+Cv5 vs CART LSS+Cv5 vs RETIS
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Figure 4.18 - Tree size ratios between LSS+ CV5 and other pruning algorithms.

The results of the comparison on tree size indicate that both CORE and CART pruning are
clearly biased towards smaller trees. However, we have seen that this benefit comes with a
loss of predictive accuracy in several domains, particularly in the case of CORE pruning.
With respect to RETIS pruning, our LSS+5CV method has quite similar bias regarding tree
size with the exception of the Elevators domain. The comparison of computation times
revealed similar costs of LSS+5CV, CART and RETIS pruning methods. CORE pruning,
however, has significantly larger computation time due to the amount of pruning set-up
trials.

With respect to our LSS+ChiEst(95%) pruning method, the accuracy comparison with
the other three pruning algorithms is shown in Figure 4.19.
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Figure 4.19 - Sgnificance of the MSE difference between LSS+ ChiEst(95%) and
other pruning algorithms.

Our LSS+ ChiEst(95%) method also compares quite favourably with the other existing
pruning techniques in terms of predictive accuracy on our benchmark domains. Compared
to CART pruning, LSS+ChiEst(95%) has some difficulties in the CompAct(s) domain,
although the difference is not statistically significant. It shows advantage in 2Dplanes,
Census(16H and 8L), Ailerons, Elevators and Fried domains, often with high significance.
Compared to RETIS pruning, the results of our method are even more favourable as it is
also significantly better on the Mv domain. Finally, compared to CORE pruning, our
method has an overall advantage in terms of predictive accuracy with the exception of the
Abalone data set.

With respect to tree sizes the results of the comparison are shown in Figure 4.20.



4.4 COMPARISONSWITH OTHER PRUNING METHODS

Chi(95%) vs CART

159

Chi(95%) vs RETIS

5.0 - - - - - - - 5.0 ‘
45+ - 4o ool L L L Lol 454 - 4oL ool L
404 - 5 - - - - - A T S 404 - 5 - - - - - - - T
359 - 0 U R 354 - - o e o S
2304 - 4 - - - - e L - - S 2304 - - - . oL
o] A N 1 h
T 25 . " IR T AT .
) [
L . . . . . . CN 0 .
D 201 - - - - g ot ot = - - - oo - - o - e - - KO e
x ' o' ° . PN o g ) ! \ . .
151 8« g S -
1073177‘7:7‘7.‘7-‘721!7‘777[77‘7.177‘ 10 A R
: A I ‘ L N i iﬁ,!!!% N KRN ¥
054 = 5 - - mm [ Tt Tt [ 0.5 Ai‘n"r'h'rAa ! N
0.0 T T T T T T T ; ; ; ; | 0.0 t t t t t t t t t t t {
o e o X ) o . N D 2] S ] & & o & ) S D N D 2] S ]
& G & E ,§’Y\ gy AR & @ o F S E ,§’Y\ & & NS
PR e S L @ NS ) Y YO N L ¢ RS & &
P> @) oo@ < Q@(\e & & > @) Qo@ < o@(\e & &
Chi(95%) vs CORE
5.0 e
454 - 4o cho it oL L
404 - 4 - 5 - s s m s ps e e e s sy - s
3.5
Q304 - - - - - - - oLl Ll
k] A
C251 - 0 - - s e s s e A=
N . . <
Fool g LI RS R
154 97\ gi‘ o 7A7 \7 B L X 7\ 7.7\ 7'7\7 B 7)(7\ 77777
- L ' m . T el g . z . !
1.0 4 A - - -4 B IR IS + -
a A A N Y
054 - - - - - oo b e L
0.0 T T T T T T T T T T T
o e o X Y & & N D 2] S @
'\Q»@Q 0’900 Q\é\e @Q\?g ‘?‘o& \@0& Q\\e eQ’G?‘ Q"’@V «’\‘&o N QO\
© v QO S L g NS & &
DY (¢ Qo& <& Q@(\e & 4\_\(\
.256 {512 %1024 ¢ 2048 4 4096

Figure 4.20 - Tree size ratios between LSS+ ChiEst(95%) and other pruning algorithms.

Our LSS+ ChiEst(95%) method is more competitive in terms of tree size than LSS+5CV.

Still, we continue to observe some disadvantage over CART and CORE pruning in this

aspect. Compared to RETIS pruning, LSS+ ChiEst(95%) has a clear advantage in terms of

tree size. Regarding computation time, LSS+ ChiEst(95%) has an overwhelming advantage

as it does not need to learn and prune several trees to tune pruning parameters.

441 A Few RemarksRegarding Tree Size

In the experiments reported in the previous section

performance of either CART or CORE with respect

our methods clearly did not match the

to tree size. The pruning algorithms of

these two systems have a preference bias that favours smaller trees. However, a similar

preference bias can be obtained with our methods with the help of the k-SE selection rule.



160 CHAPTER 4. OVERFITTING AVOIDANCE IN REGRESSON TREES

For all the selection methods described in Section 4.3.1 we have given standard error
estimates. These allow the use of the k-SE rule (Section 4.3.3). The use of this rule will
make our methods competitive with CORE and CART pruning in terms of tree size.
However, such preference for smaller trees will entail some accuracy loss, as it was the
case of CORE and CART pruning. To illustrate this point we present an accuracy

comparison of ChiEst(95%) using the 0.5-SE and 1-SE rules with CORE pruning.
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Figure 4.21 - Sgnificance of MSE difference between ChiEst with the k-SE rule and
CORE.

Comparing the results to those in Figure 4.19, we confirm the loss of some of the accuracy
advantage of our method over CORE pruning. However, the use of this rule can overcome

some of the limitations in terms of tree size, as shown in Figure 4.22.
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Figure 4.22 - The effect on tree size of the k-SE rule when compared to CORE.
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Comparing to the results of Figure 4.20 (notice the different scale) we can see that our
method achieves much more competitive results in terms of tree size when employing the

SE rule.

4.42 Comments Regarding the Significance of the Experimental Results

In this section we have compared two of the most promising pruning by tree selection
methods we have presented, with the three most well known methods of pruning regression
trees. With respect to predictive accuracy the experiments have shown that our pruning
methods achieve better performance on alarge set of experimental scenarios. In the light of
the arguments of Schaffer (1993a), one may question if it is not the case that the used data
sets are just more suited to the preference biases of our methods (i.e. are the used domains
somehow representative?). In order to answer this reasonable doubt we have carried out a
simple experiment in which we obtained a large unpruned tree and compared its accuracy
with the accuracy of the tree resulting from pruning it with the CART method. The goal of
this experiment is to observe the kind of effect pruning has on all our benchmark domains.

The results of this experiment are shown in Figure 4.23.

W 256 0512 @ 1024 2048 B 409%6

100%
80% TR -
60% -
40%

CART pruning

20% -
0%
2%t - -
A%t - -
0% | - -

Not Pruning

8% | - -

-100%

Figure 4.23 - Sgnificance of MSE difference between CART and not pruning.
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This graph shows that the “pruning challenges’ of our benchmark data sets are quite
diverse. In effed, while there ae data sets where pruning is clealy beneficial, there ae
others where that is not so evident (e.g. with the Pole domain we would do better by not
pruning at al!). These results are in agreement with the claims of Schaffer (19933) on
considering pruning as a mere preference bias and not as a gatistical mean of achieving
higher acaracy. Moreover, the issue whether pruning is beneficial changes with the size of
the training samples for several domains. These results indicate that there is a large variety
of pruning requirements on our benchmark domains, which increeases the confidence on the
significance of the acairacy advantages we have observed with our pruning methods. Still,
there will obviously exist domains were our methods will perform worse than other

pruning algorithms.

4.5 Conclusions

In this chapter we have caried athorough study of overfitting avoidance within regresson
trees. We have described the major existing pruning algorithms and presented our
approaches to pruning based on treeseledion.

We have described several approaches to the generation of sequences of pruned trees
and presented two novel methods (LSS and MCV). Our methods are based on the idea of
progressively eliminating nodes where the available sample size does not insure reliable
error esimates. The use of this grategy has proven advantageous in our experimental
comparisons with existing methods using aher strategies, like for instance Error-
Complexity sequence generation. We have also studied several techniques for choosing
one of such pruned trees. Regarding resampling-based tree seledion we have presented a
new method of treematching, which extends the use of CrossValidation estimates. With
resped to seledion using m estimates we have obtained the standard error of the MSE
estimates, which allows the use of the k-SE seledion rule. Moreover, we have extended the

applicability of m estimates to LAD regression trees. Finally, we have introduced a new
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method of estimating the error of a LS tree (ChiEst) by using the properties of the sampling
distribution of the mean squared error.

We have carried out a systematic experimental evauation of different ways of
generating alternative pruned trees and of selecting the most appropriate one. We have
observed that both our two new methods of generating pruned trees and our two new
methods of evaluating trees achieved quite competitive results on our benchmark domains.
These results are caused by a conjunction of two important factors. Namely, the
observation that our generation methods produce more accurate sub-trees and the fact that
our tree evaluation methods are able to capitalise on this advantage by correctly ranking
the trees according to their estimated prediction error.

We have also compared our most promising pruning algorithms with the three most
well known pruning methods. These experiments revealed a marked advantage of our
methods in terms of predictive accuracy on several domains. Moreover, we seldom
observed the opposite. These advantages need to be weighed with the cost of larger trees.
However, through the use of the k-SE rule we can minimise this drawback. We have also
observed a clear superiority of our method based on the ChiEst evaluation in terms of

computation time.

451 Open Research Issues

According to Schaffer (1993a) one of the key research issues within pruning methods is to
understand under which conditions are all these techniques beneficial. In particular we
would like to know which are the domain characteristics that determine the success of
pruning in terms of improving predictive accuracy. In effect, this argument could be
extended to learning algorithms in general and not only to pruning methods. One possible
path to the solution of this dilemma is to use some kind of meta-learning based on
empirical experience with pruning on domains with different characteristics in a similar
way as it was done by Brazdil et al. (1994). With the obtained meta-knowledge, a pruning

algorithm could determine, on the basis of the characteristics of a new domain, which
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pruning bias would be more adequate. Another possible way is to carry out a theoretical
study of the properties of the different pruning methods that would provide better
understanding of their applicability. Still, we think that without strong restrictions on the
distribution properties of the data sets it will probably be difficult to carry out such study
with such highly non-parametric methods as regression trees. Nevertheless, this is clearly

an open research question.
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APPENDIX.

In this appendix we describe the coding schema proposed by Robnik-Sikonja and
Kononenko (1998). These authors code a tree as a sequence of bits encoding each of the
tree nodes. For each node they code its type (either a leaf or a split node) and the contents
of the node (either the split or the model in the leaf). The code length of aregression treeis
the number of bits of this sequence. To code the type of node we only need a single bit
indicating if the node is a split node or aleaf. The coding of the node contents depends on
the type of node. The binary code of a leaf node consists of the coding of the model (e.g.
the average Y value) followed by the coding of the errors committed by that model. Both
the model and its errors are real numbers. For instance, suppose that in a leaf of a LS
regression tree we have a set of training cases with the following Y values. { 25, 30, 60, 70
}, corresponding to an average of 46.25. The number of bits necessary to code this leaf is
equivalent to the length of the encoding of the following real numbers,

Codel_en(46.25) + Codelen(46.25 — 25) + Codel_en(46.25 - 30) +...

The coding of real numbers is done following Rissanen (1982). The real number is divided
by the required precision &, and the resulting integer is then coded as a binary string. The
code length of the bit string corresponding to agiven integer is determined according to the
following formulae,

CodelLen(0) =1

Codelen(n) = 1 + logz(n) + logz(logz(n)) + ... + 10g,(2.865064)

where the summation includes only the positive terms.

The computational complexity of calculating the binary description length of a leaf appears
large as we need to run through all cases in the leaf to calculate their prediction error and
the corresponding code length. However, this can be done with almost no computation
cost, during the learning phase. In effect, during this stage we need to run through all cases
when creating the nodes and calculating the resubstitution errors, so we can use these

cyclesto calculate the binary code lengths.
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With respect to split nodes their coding depends on the type of split. The first part of
the code makes this distinction, while the following bits correspond to the coding of the
split. Robnik-Sikonja and Kononenko (1998) describe the coding for several types of split
nodes. For instance, to code nominal splits with the form X; 0 S, where Sis a set of values
belonging to Xi, we have to code information regarding which attribute is being tested and
of the set of values in the split. This set of values can easily be represented by a bit string
with length corresponding to the possible number of values of the attribute. This leads to
the following code length for a nominal split,

CodeLen(X; OS)=log, (#A)+ #X, (4.31)

where A isthe set of attributes.

For continuous variable splits the reasoning is similar but instead of the subset of values it
IS necessary to code a cut-point within the range of values of the attribute being tested.
This leads to the following code length,

CodeLen(X, <V )=log, (#A)+ |ogzér%(xi)é (4.32)

where,
range(X) isthe range of values of the variable X; ;
and ¢ isthe wanted precision for the cut-points.

Robnik-Sikonja and Kononenko (1998) also describe the coding of splits consisting of
conjunctions of conditions and of linear formulae.

The coding schema described above has two parameters, namely the precision used to
code the errors a the leaves and the cut-points of continuous splits. The authors suggest
using different precision values for these numbers. Robnik-Sikonja and Kononenko (1998)
claim that setting these parameters is intuitive for the user depending on his application.
Still, CORE is able to use a cross validation process to automatically tune the parameters
from a large set of alternative values, selecting the values that ensure better estimated

predictive accuracy.



