CG - T13 - Curves

L:CC, MI:ERSI
Miguel Tavares Coimbra
(course and slides designed by Verónica Costa Orvalho)

Suggested reading

- Shirley et al., "Fundamentals of Computer Graphics", 3rd Edition, CRC Press
- Chapter 15 - Curves

agenda

1. introduction
2. curves
3. surfaces

what we know so far?

surface modeling using polygon mesh

what we know so far?

surface modeling using polygon mesh

what we know so far?

surface modeling using polygon mesh

windged-edge representation
hard to iterate

what we know so far?

surface modeling using polygon mesh

\downarrow

collection of edges, vertices and faces, where:
. each edge shares at most 2 faces
. a vertex shares at least 2 edges

what we know so far?

surface modeling using polygon mesh

\downarrow

collection of edges, vertices and faces, where:
. each edge shares at most 2 faces
. a vertex shares at least 2 edges

windged-edge representation

hard to iterate

what we know so far?

surface modeling using polygon mesh

how can we represent a curve surface?

2D representation of a curve surface

what we know so far?

surface modeling using polygon mesh

\downarrow

how can we represent a curve surface?
lines
lines strip
triangles

2D representation of a curve surface

what we know so far?

surface modeling using polygon mesh

\downarrow

how can we represent a curve surface?
lines
lines strip triangles

polygon meshs are hard to represent curved surfaces
2D representation of a curve surface

what we know so far?

surface modeling using polygon mesh

\downarrow

how can we represent a curve surface?
linear approximation to curves or surfaces
polygon meshs are hard to represent curved surfaces
2D representation of a curve surface
why using curves and curve surfaces?

1. more compact representation than polygons
why using curves and curve surfaces?
2. more compact representation than polygons
3. scalable geometric primitive
why using curves and curve surfaces?
4. more compact representation than polygons
5. scalable geometric primitive
6. smoother and more continuous primitives than lines and polygons
why using curves and curve surfaces?
7. more compact representation than polygons
8. scalable geometric primitive
9. smoother and more continuous primitives than lines and polygons
10. faster and simpler animation and collision detection

advantage

makes real-time CG applications:

$>$ faster
$>$ simpler to code
$>$ last longer
(survive graphic HW generations)

where we use curves?

model complex object, using simple pieces

DEMO + IMAGES

 in Maya

what is a good curve representation?

. smooth and continuous
. allow local control of shape, so it is easy to create and edit
. stable, no oscillation
. easy to evaluate and render
. easy to compute derivatives

curve representation

1. Explicit
2. Implicit
3. Parametric

curve representation

Explicit: $y=f(x)$
$y=m x+b$

. easy to generate points

curve representation

Explicit: $\mathrm{y}=\mathrm{f}(\mathrm{x})$

$y=m x+b$

. easy to generate points
big limitations
1)
2)

curve representation

$$
\begin{aligned}
& \text { Explicit: } y=f(x) \\
& y=m x+b
\end{aligned}
$$

. easy to generate points

big limitations

. must be represented by 2) multiple curve segments
. is impossible to get
multiple values of y for a unique \boldsymbol{x}

curve representation

Explicit: $y=f(x)$
 $y=m x+b$

. easy to generate points

big limitations

. must be represented by 2$)_{Y}$ multiple curve segments
. is impossible to get multiple values of y for a unique \boldsymbol{x}
. vertical lines are very hard
. a slope of infinity is hard to represent, so vertical $\underset{X}{ }$ tangents are difficult to get

curve representation

Explicit: $y=f(x)$
$y=m x+b$

. easy to generate points

in 3D:

$y=f(x)$ and $y=g(x)$

curve representation

Implicit: $f(x, y, z)=0$

. easy to test if point on the curve
. normals are easy to compute

curve representation

Implicit: $f(x, y, z)=0$

. easy to test if point on the curve
. normals are easy to compute
creating a circle $x^{2}+y^{2}-r^{2}=0$

curve representation

Implicit: $f(x, y, z)=0$

. easy to test if point on the curve
. normals are easy to compute
creating a circle $x^{2}+y^{2}-r^{2}=0$
how do we model half circle?

curve representation

Implicit: $f(x, y, z)=0$

. easy to test if point on the curve . normals are easy to compute
creating a circle $x^{2}+y^{2}-r^{2}=0$
how do we model half circle?
add constraints $x \geqslant 0$

curve representation

Implicit: $f(x, y, z)=0$

. easy to test if point on the curve
. normals are easy to compute

limitations

curve representation

Implicit: $f(x, y, z)=0$

. easy to test if point on the curve
. normals are easy to compute

limitations

. constraints NOT included in implicit eq.
. difficult to determine tangent direction, then it is hard to join curve segments
. one equation might have more than 1 solution
. hard to generate points

curve representation

Parametric: $(x, y, z)=(x(t), y(t), z(t))$

. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with parametric tangent vectors

curve representation

Parametric: $(x, y, z)=(x(t), y(t), z(t))$

. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with parametric tangent vectors

how?

curve representation

Parametric: $(x, y, z)=(x(t), y(t), z(t))$

. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with parametric tangent vectors

how?

A parametric curve describes points using some formula as a function of a parameter t

$$
p(t)=[x(t), y(t), z(t)]^{T}
$$

curve representation

Parametric: $(x, y, z)=(x(t), y(t), z(t))$

. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with parametric tangent vectors

how ?

Each curve segment is given by 3 functions that are a polynomial:

$$
x=x(t) \quad y=y(t) \quad z=z(t)
$$

$$
p(t)=[x(t), y(t), z(t)]^{T}
$$

curve representation

Parametric: $(x, y, z)=(x(t), y(t), z(t))$

. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with parametric tangent vectors

curve representation: summary

Explicit: $y=f(x)$

$$
y=m x+b
$$

. easy to generate points
. limitation: vertical lines, circles

Implicit: $f(x, y, z)=0$

. easy to test if point on the curve
. normals are easy to compute
. hard to generate points
Parametric: $\quad(x, y, z)=(x(u), y(u), z(u))$

$$
p(t)=x(t), y(t), x(t))^{2}
$$

curve representation: summary

Explicit: $y=f(x)$

$$
y=m x+b
$$

. easy to generate points
. limitation: vertical lines, circles

Implicit: $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$

. easy to test if point on the curve
. normals are easy to compute

. hard to generate points

Parametric: $(x, y, z)=(x(u), y(u), z(u))$

$$
p(t)=(t), y(t), z(t))^{2}
$$

parametric curves

use:

. move the viewer or object along a predefined path (changes in position and orientation)
. render hair
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html Hubert Nguyen, William Donnely, Hair Animation and Rendering in the Nalu Demo, NVIDIA Corporation, Ch. 23, GPU Gems 2
http://www.youtube.com/watch?v=ORBqpQhi4X8

© 2005 NVIDIA Corporation.

parametric curves

example:

. assume a camera should move between 2 points in one second.
. rendering 1 frame takes 50 ms
$=>$ we will be able to render 20 frames in one second

parametric curves

example:

. assume a camera should move between 2 points in one second.
. NOW, if 1 frame takes 25 ms , and we are able to render 40 frames in 1 second
$=>$ to how many locations we need to move the camera?

parametric curves

example:

. assume a camera should move between 2 points in one second.
. NOW, if 1 frame takes 25 ms , and we are able to render 40 frames in 1 second
$=>$ to how many locations we need to move the camera?

parametric curves

we conclude

a parametric curve describes points using some formula as a function of a parameter t

parametric curves

we conclude

a parametric curve describes points using some formula as a function of a parameter t
$p(t) \quad \rightarrow \begin{array}{r}\text { returns a point for } \\ \text { each value of } t\end{array}$

$$
p(t)
$$

parametric curves

we conclude

a parametric curve describes points using some formula as a function of a parameter t
$p(t) \quad \begin{gathered}\text { returns a point for } \\ \text { each value of } t\end{gathered}$

$$
\dot{b}=p\left(t_{\text {max }}\right)
$$

${ }_{p(t)}$
$t \in[a, b] \longrightarrow$ domain interval

parametric curves

we conclude

a parametric curve describes points using some formula as a function of a parameter t
$p(t) \quad \rightarrow \begin{array}{r}\text { returns a point for } \\ \text { each value of } t\end{array}$

$t \in[a, b] \rightarrow$ domain interval

$\lambda \Rightarrow 0$ then $p(t+\lambda) \Rightarrow p(t)$
If λ is a very small number, then $p(t)$ and
$p(t+\lambda)$ are two points very close to each other

curves: polynomial interpolation

curves: polynomial interpolation

$1^{\text {st }}$ degree $y=a x+b$
exact fit through 2 points

curves: polynomial interpolation

$1^{\text {st }}$ degree $y=a x+b$
exact fit through 2 points
$2^{\text {nd }}$ degree $y=a x^{2}+b x+c$
exact fit 3 points

curves: polynomial interpolation

$1^{\text {st }}$ degree $y=a x+b$
exact fit through 2 points
$2^{\text {nd }}$ degree $y=a x^{2}+b x+c$ exact fit 3 points
$3^{\text {rd }}$ degree $y=a x^{3}+b x^{2}+c x+d$ exact fit 4 points or constraints
(constrain: point, curvature, angle)

curves: polynomial interpolation

$1^{\text {st }}$ degree $y=a x+b$
exact fit through 2 points
$2^{\text {nd }}$ degree $y=a x^{2}+b x+c$ exact fit 3 points
$3^{\text {rd }}$ degree $y=a x^{3}+b x^{2}+c x+d$ exact fit 4 points or constraints
(constrain: point, curvature, angle)

n - degree $. . . n+1$ constraints

curves: polynomial interpolation

lower degree (eg. $2^{\text {nd }}$ degree - quadratic)
. little flexibility to control the shape of the curve
. changing one control points affects all curve
. few degrees of freedom

curves: polynomial interpolation

lower degree (eg. $2^{\text {nd }}$ degree - quadratic)
. little flexibility to control the shape of the curve
. changing one control points affects all curve
. few degrees of freedom
high degree (eg. $4^{\text {th }}$ degree - quartic)
. required more computation
. too many degrees of freedom, then hard to control, high oscillatory.
which is the best approach?

curves: polynomial interpolation

lower degree (eg. $2^{\text {nd }}$ degree - quadratic)
. little flexibility to control the shape of the curve
. changing one control points affects all curve
. few degrees of freedom
high degree (eg. $4^{\text {th }}$ degree - quartic)
. required more computation
. too many degrees of freedom, then hard to control, high oscillatory.

cubic polynomial

Bézier curves

linear interpolation:

 straight line between 2 points, p_{0} and $p_{1}$$$
\begin{aligned}
p(t) & =p_{0}+t\left(p_{1}-p_{0}\right) \quad t \in[0,1] \\
& =(1-t) p_{0}+t\left(p_{1}\right)
\end{aligned}
$$

Bézier curves

linear interpolation:

 straight line between 2 points, p_{0} and $p_{1}$$$
\begin{aligned}
p(t) & =p_{0}+t\left(p_{1}-p_{0}\right) \quad t \in[0,1] \\
& =(1-t) p_{0}+t\left(p_{1}\right)
\end{aligned}
$$

$p(t)$: controls where on the line the point $p(t)$ will land
$p(0)=p_{0}, p(1)=p_{1}$ and $0<t<1$

Bézier curves

example:

if you would like to move the camera from p_{0} to p_{1} linearly in 20 steps during 1 second which are the values for t ?
$t_{i}=i /(20-1)$
$p\left(t_{i}\right)=\left(1-t_{i}\right) p_{0}+t_{i}\left(p_{1}\right)$

$t_{i} \in[0,1]$
i: frame number

Bézier curves

example:

if you would like to move the camera from p_{0} to p_{1} linearly in 20 steps during 1 second which are the values for t ?
$t_{i}=i /(20-1)$
$p\left(t_{i}\right)=\left(1-t_{i}\right) p_{0}+t_{i}\left(p_{1}\right)$

$t_{i} \in[0,1]$
i: frame number
but, for more points on a path what happens?

Bézier curves

example:

if you would like to move the camera from p_{0} to p_{1} linearly in 20 steps during 1 second which are the values for t ?
$t_{i}=i /(20-1)$
$p\left(t_{i}\right)=\left(1-t_{i}\right) p_{0}+t_{i}\left(p_{1}\right)$

$t_{i} \in[0,1]$
i: frame number

Bézier curves

example:

if you would like to move the camera from p_{0} to p_{1} linearly in 20 steps during 1 second which are the values for t ?
$t_{i}=i /(20-1)$
$p\left(t_{i}\right)=\left(1-t_{i}\right) p_{0}+t_{i}\left(p_{1}\right)$

$t_{i} \in[0,1]$
linearly interpolate
i: frame number repeatedly

Bézier curves

to obtain a smooth curve: interpolate repeatedly

Bézier curves

to obtain a smooth curve: interpolate repeatedly

goal: avoid discontinuity at the joints

Bézier curves

0) curve defined by 3 control points: a, b, c

Bézier curves

$0)$ curve defined by 3 control points: a, b, c

1) we want to find the point on the curve for parameter $t=1 / 3$

Bézier curves

0) curve defined by 3 control points: a, b, c
1) we want to find the point on the curve for parameter $t=1 / 3$
2) linearly interpolation between a and b to get d

Bézier curves

0) curve defined by 3 control points: a, b, c
1) we want to find the point on the curve for parameter $t=1 / 3$
2) linearly interpolation between a and b to get d 3) linearly interpolation between b and c to get e

Bézier curves

0) curve defined by 3 control points: a, b, c

1) we want to find the point on the curve for parameter $t=1 / 3$
2) linearly interpolation between a and b to get d 3) linearly interpolation between b and c to get e 4) the point $p(1 / 3)=f$ is found by interpolating d and e

Bézier curves

0) curve defined by 3 control points: a, b, c
1) we want to find the point on the curve for parameter $t=1 / 3$
2) linearly interpolation between a and b to get d 3) linearly interpolation between b and c to get e 4) the point $p(1 / 3)=f$ is found by interpolating d and e

General: $p(t)=f$

Bézier curves

$$
\begin{aligned}
p(t) & =(1-t) d+t e \\
& =(1-t)[(1-t) a+t b]+t[(1-t) b+t c] \\
& =(1-t)^{2} a+2(1-t) t b+t^{2} c
\end{aligned}
$$

we obtain a parabola, the maximum degree of t is 2 (quadratic)
given $n+1$ control points, the degree of the curve is n

more control points gives the curve more degrees of freedom

Bézier curves

repeated linear interpolation from 5 control points, gives a $4^{\text {th }}$ degree curve (quartic)

Bézier curves

repeated linear interpolation from 5 control points, gives a $4^{\text {th }}$ degree curve (quartic)
at the $1^{\text {st }}$ point the curve is tangent to the line between the $7^{\text {st }}$ and $2^{\text {nd }}$ point. Same to the end of the curve

Bézier curves

repeated linear interpolation from 5 control points, gives a $4^{\text {th }}$ degree curve (quartic)
at the $1^{\text {st }}$ point the curve is tangent to the line between the $7^{\text {st }}$ and $2^{\text {nd }}$ point. Same to the end of the curve
$p_{i}^{k}(t)=(1-t) p_{i}^{k-1}(t)+t p_{i+1}^{k-1}(t)$
$k=1 \ldots \mathrm{n} \quad$ \# of linear interpolations
$i=0 \ldots \mathrm{n}-k \longrightarrow$ \# of control points
$p_{i}^{k} \longrightarrow$ Intermediate control points
$p(t)=p_{0}^{n}(t) \longrightarrow$ describes a point on the curve

Bézier curves

$$
p_{i}^{k}(t)=(1-t) p_{i}^{k-1}(t)+t p_{i+1}^{k-1}(t)
$$

For $k=1 \rightarrow p_{0}^{1}=(1-t) p_{0}^{0}+t p_{1}^{0}$

$$
p_{1}^{1}=(1-t) p_{1}^{0}+t p_{2}^{0}
$$

For $k=2 \rightarrow p_{0}^{2}=(1-t) p_{0}^{1}+t p_{1}^{1}$

read diagram from bottom to top
(quartic, 5 control points)
$k=1 \ldots \mathrm{n} \#$ of linear interpolations

Bézier curves

. control points: $p_{0,} p_{1,} p_{2}, p_{3}$
. $p_{1,} p_{2}$ are used to calculate the tangent
. the curve only pass through the end points

all points of curve inside convex hull of control points

Bézier curve: cubic polynomial

$$
p(t)=(1-t)^{3} p_{0}+3 \mathrm{t}(1-t)^{2} p_{1}+3 \mathrm{t}^{2}(1-t) p_{2}+t^{3} p_{3}
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right)\left(\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right.
$$

cubic blending
function

$$
n=3
$$

Bézier curve: cubic polynomial

some interesting properties:
. you can directly rotate the control points and then compute the curve, instead of computing points on a Bezier and then rotating (MUCH FASTER)
. uses DOT PRODUCT instead of SCALAR operations

Bézier curve: cubic polynomial

downside:

. curve dosen't pass through all the control points

which can be a possible solution?

Bézier curve: cubic polynomial

downside:

. curve dosen't pass through all the control points

which can be a possible solution?

. use a lower degree curve between each pair of subsequent control points.
. check if the piecewise interpolation has high enough degree of continuity.
join curves or curve segments nicely

piecewise polynomials

join curves or curve segments nicely
C^{0} continuity
continuous in position

piecewise polynomials

join curves or curve segments nicely

C^{0} continuity $\quad C^{0} \wedge C^{1}$ continuity

continuous in position

continuous in position and tangent vector

piecewise polynomials

join curves or curve segments nicely

continuous in position

continuous in position and tangent vector
$C^{0} \wedge C^{1} \wedge C^{2}$ continuity

continuous in position, tangent vector and curvature

piecewise polynomials

sudden jerk at the join

C^{0} continuity

continuous in position
the segment should join at the same point, so linear interpolation fulfills this condition

$$
q_{3}=r_{0}
$$

piecewise polynomials

tangents at the join parallel and equal in length

G^{1} continuity

continuous in position and tangent vector
must be parallel and have the same direction, nothing about the length

$$
\left(r_{1}-r_{0}\right)=c\left(q_{3}-q_{2}\right) \quad \text { for } \quad c>0
$$

$$
c=\left(t_{2}-t_{1}\right) /\left(t_{1}-t_{0}\right)
$$

piecewise polynomials

tangents at the join parallel and double in length

piecewise polynomials

G^{1} continuity
C^{1} continuity

continuous in position and tangent vector

continuous in position and tangent vector, stronger than G_{1}

other curves

. Hermite Splines
. Catmull-Rom Splines
. Natural Cubic Splines
. B-Splines
. NURBS

other curves

. Hermite Splines
. Catmull-Rom Splines
. Natural Cubic Splines
. B-Splines
. NURBS

Hermite Splines or Cubic splines

simpler to control than Bezier

defined by:
. starting and end points
. and starting and end tangents

Hermite Splines

$p(t)=\left(2 \mathrm{t}^{3}-3 \mathrm{t}^{2}+1\right) p_{0}+\left(t^{3}-2 \mathrm{t}^{2}+t\right) m_{0}+\left(t^{3}-t^{2}\right) m_{1}+\left(-2 \mathrm{t}^{3}+3 \mathrm{t}^{2}\right) p_{1}$
$p(0)=p_{0,} p(1)=p_{1}$
$(\partial p / \partial t)(0)=m_{0,}(\partial p / \partial t)(0)=m_{1}$,

Hermite Splines or Cubic splines

why Hermit Splines are cubic interpolation?

$$
p(t)=\left(2 \mathrm{t}^{3}-3 \mathrm{t}^{2}+1\right) p_{0}+\left(t^{3}-2 \mathrm{t}^{2}+t\right) m_{0}+\left(t^{3}-t^{2}\right) m_{1}+\left(-2 \mathrm{t}^{3}+3 \mathrm{t}^{2}\right) p_{1}
$$

Hermite Splines or Cubic splines

why Hermit Splines are cubic

 interpolation?because the highest exponent on the
blending function is t^{3}

$$
p(t)=\left(2 \mathrm{t}^{3}-3 \mathrm{t}^{2}+1\right) p_{0}+\left(t^{3}-2 \mathrm{t}^{2}+t\right) m_{0}+\left(t^{3}-t^{2}\right) m_{1}+\left(-2 \mathrm{t}^{3}+3 \mathrm{t}^{2}\right) p_{1}
$$

Catmull-Rom Splines

. the spline passes through all of the control points
. C^{1} continuous, there are no discontinuities in the tangent direction and magnitude

B-Splines

. no interpolation
. the curve passes near the control points (use interactive placement, it is hard to know where the curve will go)
. C^{2} continuous to compensate the loss of interpolation

example effect + curve

http://www.digitalartform.com/archives/images/dripDemo.jpg

