CG - T6 - Transformations

L:CC, MI:ERSI

Miguel Tavares Coimbra
(course and slides designed by Verónica Costa Orvalho)

agenda

. introduction
. transform
. linear transform
. affine transformation
. homogeneous notation
. what is a matrix?
. 3D homogeneous transformations

introduction

rigid body transformations

rotation
translation

non-rigid body transformations

distance between points on objects DO NOT remain constant

transform

transform:

 operation that takes an attribute: points, vectors or colors
transform

transform:

operation that takes an attribute: points, vectors or colors
∇

converts them in some way

transform

transform:

 operation that takes an attribute: points, vectors or colors∇
converts them in some way
basic tool for manipulating geometry

transform

transform:

. position, reshape, animate $\left\{\begin{array}{l}\text { lights } \\ \text { cameras }\end{array}\right.$

transform

transform:

. position, reshape, animate $\left\{\begin{array}{l}\text { objects } \\ \text { lights } \\ \text { cameras }\end{array}\right.$
. ensure that all computations are performed in the same coord. system, etc.

linear transform

linear transform:

linear transform

linear transform:

. preserves vector addition
. and scalar multiplication

linear transform

linear transform:

. preserves vector addition

$$
f(\mathbf{x})+f(\mathbf{y})=f(\mathbf{x}+\mathbf{y})
$$

. and scalar multiplication

linear transform

linear transform:

. preserves vector addition

$$
f(\mathbf{x})+\mathbf{f}(\mathbf{y})=\mathbf{f}(\mathbf{x}+\mathbf{y})
$$

. and scalar multiplication

$$
k f(\mathbf{x})=f(k \mathbf{x})
$$

linear transform

linear transform:

. preserves vector addition

$$
f(\mathbf{x})+\mathbf{f}(\mathbf{y})=\mathbf{f}(\mathbf{x}+\mathbf{y})
$$

. and scalar multiplication

$$
k f(\mathbf{x})=f(k \mathbf{x}) \rightarrow f(\mathbf{x})=f(2 \mathbf{x})
$$

linear transform

linear transform:

. preserves vector addition

$$
f(\mathbf{x})+\mathbf{f}(\mathbf{y})=\mathbf{f}(\mathbf{x}+\mathbf{y})
$$

. and scalar multiplication

$$
k f(\mathbf{x})=\mathbf{f}(k \mathbf{x}) \rightarrow \mathbf{f}(\mathbf{x})=\mathbf{f}(2 \mathbf{x})
$$

linear transform

linear transform:

. scalar multiplication

$$
k f(\mathbf{x})=\mathbf{f}(k \mathbf{x}) \rightarrow \mathbf{f}(\mathbf{x})=\mathbf{f}(2 \mathbf{x})
$$

takes a vector and multiplies each element by 2

linear transform

linear transform:

. scalar multiplication

$$
k f(\mathbf{x})=f(k \mathbf{x}) \rightarrow f(\mathbf{x})=f(2 \mathbf{x})
$$

takes a vector and multiplies each element by 2

linear transform

linear transform:

. scalar multiplication

$$
k f(\mathbf{x})=f(k \mathbf{x}) \rightarrow f(\mathbf{x})=f(2 \mathbf{x})
$$

takes a vector and multiplies each element by 2

linear transform

linear transform:

. scaling transform changes the scale (size) of the object

linear transform

linear transform:

. scaling transform changes the scale (size) of the object . rotation transform

linear transform

linear transform:

. scaling transform changes the scale (size) of the object
. rotation transform
rotates a vector about the origin

linear transform

linear transform:

. scaling transform changes the scale (size) of the object
. rotation transform
rotates a vector about the origin
represented by: $\mathbf{3 \times 3}$ matrix

linear transform

what happens if we would
like to add a fixed vector
to another vector ?

linear transform

what happens if we would like to add a fixed vector to another vector ?

linear transform

what happens if we would
like to add a fixed vector to another vector ?
$\underset{\text { [not linear] }}{\mathbf{f}(\mathbf{x})=\mathbf{x}}+(5,3,6)$

linear transform

what happens if we would
like to add a fixed vector to another vector ?

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=\mathbf{x}+(5,3,6) \\
& \text { [not linear] }
\end{aligned}
$$

perform a translation

linear transform

what if we would like to
scale an object to be half as large,

$$
\text { 1. } \mathbf{f}(\mathbf{x})=\mathbf{f}(1 / 2 \mathbf{x})
$$

linear transform

what if we would like to
scale an object to be half as large, then move it to a different location?

$$
\begin{aligned}
& \text { 1. } \mathbf{f}(\mathbf{x})=\mathbf{f}(1 / 2 \mathbf{x}) \\
& \text { 2. } \mathbf{f}(\mathbf{x})=\mathbf{x}+(5,3,6)
\end{aligned}
$$

linear transform

what if we would like to
scale an object to be half
as large, then move it to a different location?

$$
\begin{aligned}
& \text { 1. } \mathbf{f}(\mathbf{x})=\mathbf{f}(1 / 2 \mathbf{x}) \\
& \text { 2. } \mathbf{f}(\mathbf{x})=\mathbf{x}+(5,3,6)
\end{aligned}
$$

using these functions makes it difficult to easily
combine them

solution

affine transformations

solution:

affine transformations

affine transformations

solution:

affine transformations is one that performs a linear transformation and then a translation

affine transformations

solution:

affine transformations is one that performs a linear transformation and then a translation

represented by: 4×4 matrix

affine transformations

solution:

affine transformations is one that performs a linear transformation and then a translation
represented by: 4×4 matrix

homogeneous notation

. useful for transforming both: vectors and points

homogeneous notation

. useful for transforming both: vectors and points
. allows translation only on points

homogeneous notation

$$
p=(p X, p Y, p Z, p W)\left\{\begin{array}{l}
p W=1 \rightarrow \text { points } \\
p W=0 \rightarrow \text { vectors }
\end{array}\right.
$$

homogeneous notation

$\mathrm{p}=(\mathrm{pX}, \mathrm{pY}, \mathrm{pZ}, \mathrm{pW})\left\{\begin{array}{l}\mathrm{pW}=\mathbf{1} \rightarrow \text { points } \\ \mathrm{pW}=\mathbf{0} \rightarrow \text { vectors }\end{array}\right.$
if pW != 1 \&\& pW != 0

homogeneous notation

$$
\begin{gathered}
\mathrm{p}=(\mathrm{pX}, \mathrm{pY}, \mathrm{pZ}, \mathrm{pW})\left\{\begin{array}{l}
\mathrm{pW}=1 \rightarrow \text { points } \\
\mathrm{pW}=0 \rightarrow \text { vectors }
\end{array}\right. \\
\text { if } \mathrm{pW}!=1 \& \& \mathrm{pW}!=0 \\
\quad \begin{array}{l}
\text { then the actual point is obtained } \\
\text { by homogenization }
\end{array}
\end{gathered}
$$

$$
\mathbf{p}=(\mathrm{pX} / \mathrm{pW}, \mathrm{pY} / \mathrm{pW}, \mathrm{pZ} / \mathrm{pW}, \mathrm{pW} / \mathrm{pW})
$$

more on matrix

now we can concatenate individual affine transforms:

more on matrix

now we can concatenate individual affine transforms:

. translation
. rotation
. scale
. reflection
. shearing
. rigid body
. etc.

what is a matrix?

matrix M: tool for manipulating vectors and points

what is a matrix?

matrix M:

tool for manipulating vectors and points
a point describes a location in space

what is a matrix?

matrix M:

tool for manipulating vectors and points
a point describes a location in space
a vector describes a direction, has no location

what is a matrix?

matrix M:
 tool for manipulating vectors and points

a point describes a location in space
a vector describes a direction, has no location

what is a matrix?

matrix M:

$$
\mathbf{M}_{4 \times 4}=\left\lvert\, \begin{array}{cccc}
\mathrm{m} 00 & \mathrm{~m} 01 & \mathrm{~m} 02 & 0 \\
\mathrm{~m} 10 & \mathrm{~m} 11 & \mathrm{~m} 12 & 0 \\
\mathrm{~m} 20 & \mathrm{~m} 21 & \mathrm{~m} 22 & 0 \\
0 & 0 & 0 & 1
\end{array}\right.
$$

what is a matrix?

matrix M:

what is a matrix?

matrix M:

what is a matrix?

unit matrix or identity matrix I:

it is square and contains ones in the diagonal and zeros elsewhere

$$
\mathbf{I}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

in homogeneous coordinates

2D homogeneous transformations

2D homogeneous transformations

scale

$\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}\mathrm{s}_{-} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{~s}_{\mathrm{y}} \mathrm{y} & 0 \\ 0 & 0 & 1\end{array}\right)$

translate

$\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}1 & 0 & t-x \\ 0 & 1 & t-y \\ 0 & 0 & 1\end{array}\right)$

rotate

2D homogeneous transformations

scale

$\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}\mathrm{s}_{\overline{3}} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{~s}_{\mathbf{0}} \mathrm{y} & 0 \\ 0\end{array}\right)$

translate

$\mathbf{M}_{3 \times 3}=\left(\begin{array}{lll}1 & 0 & \mathrm{t}_{-} \mathrm{x} \\ 0 & 1 & \mathrm{t}_{-} \mathrm{y} \\ 0 & 0 & 1\end{array}\right.$
rotate

1. can we combine these matrix?

2. How?
3. why?

2D homogeneous transformations

scale

$\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}\mathrm{s}_{\overline{3}} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{~s}_{\mathbf{0}} \mathrm{y} & 0 \\ 0\end{array}\right)$
translate
$\mathbf{M}_{3 \times 3}=\left(\begin{array}{lll}1 & 0 & \mathrm{t}_{-} \mathrm{x} \\ 0 & 1 & \mathrm{t}_{-} \mathrm{y} \\ 0 & 0 & 1\end{array}\right.$
rotate

$$
\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right.
$$

any sequence of translate/scale/rotate
can be combined into a single homogeneous matrix by multiplication.

For efficiency

2D homogeneous transformations

scale

$\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}s_{-} x & 0 & 0 \\ 0 & s_{-} y & 0 \\ 0 & 0 & 1\end{array}\right)$

translate

$\mathbf{M}_{3 \times 3}=\left(\begin{array}{ccc}1 & 0 & t_{-} x \\ 0 & 1 & t_{-} y \\ 0 & 0 & 1\end{array}\right)$
rotate

3D homogeneous transformations

3D homogeneous transformations

translate

translate \mathbf{T} an entity by a vector $\mathbf{t}=(\mathbf{t} \mathbf{x}, \mathbf{t} \mathbf{y}, \mathbf{t} \mathbf{z})$

3D homogeneous transformations

translate

$$
\mathbf{T}_{4 \times 4}=\left(\begin{array}{llll}
1 & 0 & 0 & \mathrm{t}-\mathrm{x} \\
0 & 1 & 0 & \mathrm{t}^{-} \mathrm{y} \\
0 & 0 & 1 & \mathrm{t}_{-} \mathrm{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$p=\left(p _x, p _y, p _z, 1\right)$ with $T(t)$ yields a new point \mathbf{p}^{\prime}

$$
p^{\prime}=\left(p_{-} x+t _x, p _y+t _y, p _z+t _z, 1\right)
$$

3D homogeneous transformations

rotate

$\mathbf{R}_{\mathbf{x}} \boldsymbol{\alpha}, \mathbf{R}_{\mathbf{y}} \boldsymbol{\alpha}, \mathbf{R}_{\mathbf{z}} \boldsymbol{\alpha}$, which rotate an entity $\boldsymbol{\alpha}$ radians around XYZ

3D homogeneous transformations

rotate

$\mathbf{R}_{\mathrm{x}} \boldsymbol{\alpha}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \mathbf{R}_{\mathbf{y}} \boldsymbol{\alpha}=\left(\begin{array}{cccc}\cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathbf{R}_{\mathbf{z}} \boldsymbol{\alpha}=\left(\begin{array}{cccc}\cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\mathbf{R}_{\mathbf{x}} \boldsymbol{\alpha}, \mathbf{R}_{\mathbf{y}} \boldsymbol{\alpha}, \mathbf{R}_{\mathbf{z}} \boldsymbol{\alpha}$, which rotate an entity $\boldsymbol{\alpha}$ radians around XYZ

3D homogeneous transformations

rotate inverse

$\mathbf{R}_{\mathrm{i}}^{-1}(\alpha)=\mathbf{R}_{\mathrm{i}}(-\alpha)$
rotate in the opposite direction around the same axis

3D homogeneous transformations

rotation around a point

3D homogeneous transformations

rotation around a point

 rotate an object $\boldsymbol{\alpha}$ radians around the \mathbf{z}-axis, with the center of rotation being point \mathbf{p}

3D homogeneous transformations

rotation around a point

 rotate an object $\boldsymbol{\alpha}$ radians around the \mathbf{z}-axis, with the center of rotation being point \mathbf{p}

3D homogeneous transformations

rotation around a point

 rotate an object $\boldsymbol{\alpha}$ radians around the \mathbf{z}-axis, with the center of rotation being point $\mathbf{p}$$$
X=T(p) R_{z}(\alpha) T(-p)
$$

3D homogeneous transformations

scale

$$
\mathbf{S}_{4 \times 4}=\left(\begin{array}{cccc}
\mathrm{s}_{-} \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{~s}_{-} \mathrm{y} & 0 & 0 \\
0 & 0 & \mathrm{~s}_{\bar{z}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3D homogeneous transformations

scale

$$
\mathbf{S}_{4 \times 4}=\left(\begin{array}{cccc}
\mathrm{s}_{-} \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{~s}_{-} \mathrm{y} & 0 & 0 \\
0 & 0 & \mathrm{~s}_{-} \mathrm{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

inverse
$S^{-1}(\mathbf{s})=S\left(1 / \mathbf{s}_{-} \mathbf{x}, 1 / \mathbf{s} _\mathbf{y}, 1 / \mathbf{s}_{-} \mathbf{z}\right)$

3D homogeneous transformations

scale (example)

$$
\mathbf{S}_{4 \times 4}=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

a 2 D representation of a 3 D object

3D homogeneous transformations

scale (example)
$\mathbf{S}_{4 \times 4}=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \mathbf{S}_{4 \times 4}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 / 2\end{array}\right)$

a 2 D representation of a 3 D object

3D homogeneous transformations

scale (example)
alternative
$\mathbf{S}_{4 \times 4}=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \mathbf{S}_{4 \times 4}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 / 2\end{array}\right)$

needs homogenization

a 2 D representation of a 3 D object

3D homogeneous transformations

scale (example)

alternative

needs homogenization

is this solution efficient?

a 2 D representation of a 3 D object

3D homogeneous transformations

how should the matrix be if you would like to mirror an object?

3D homogeneous transformations

how should the matrix be if you would like to mirror an object?

mirror on y-axis

$$
\mathbf{S}_{4 \times \mathbf{x}}=\left(\begin{array}{cccc}
\mathrm{s}_{-} \mathrm{x} & 0 & 0 & 0 \\
0 & -\mathrm{s}^{\mathrm{s}} \mathrm{y} & 0 & 0 \\
0 & 0 & \mathrm{~s}_{-} \mathrm{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3D homogeneous transformations

what happens to the triangles of a 3D model when they are mirrored?

3D homogeneous transformations
what happens to the triangles of a 3D model when they are mirrored?
check if triangles vertices are clockwise or counterclockwise.
incorrect lighting and backface culling may occur.

3D homogeneous transformations

concatenation of transforms

multiplication operation on matrices is noncommutative

3D homogeneous transformations

concatenation of transforms

multiplication operation on matrices is noncommutative

1
order in which matrices occur matters

3D homogeneous transformations

concatenation of transforms

order-dependent

3D homogeneous transformations

concatenation of transforms

1

order-dependent

gain efficiency

eg. several thousand of vertices all scale, rotate and translate at once

3D homogeneous transformations

the rigid-body transform

3D homogeneous transformations

the rigid-body transform

what happens if we take a box from a table and move it to another location?
what attributes change?

3D homogeneous transformations

the rigid-body transform
what happens if we take a box from a table and move it to another location?
what attributes change?
. object orientation and location change
. the shape of the object is not affected

3D homogeneous transformations

the rigid-body transform
preserves: lengths, angles and handedness

3D homogeneous transformations

the rigid-body transform

concatenation of a translation matrix $\mathbf{T}(\mathbf{t})$ and a rotation matrix \mathbf{R}

preserves: lengths, angles and handedness

3D homogeneous transformations

the rigid-body transform

$$
\mathbf{X}=\mathbf{T}(\mathrm{t}) \mathbf{R}
$$

concatenation of a translation matrix $\mathbf{T}(\mathbf{t})$ and a rotation matrix \mathbf{R}
preserves: lengths, angles and handedness

3D homogeneous transformations

the rigid-body transform

$$
X=T(t) R
$$

concatenation of a translation matrix $\mathbf{T}(\mathbf{t})$ and a rotation matrix \mathbf{R}

which is the appearance of the matrix?

preserves: lengths, angles and handedness

3D homogeneous transformations

the rigid-body transform

$$
X=T(t) R
$$

concatenation of a translation matrix $\mathbf{T}(\mathbf{t})$ and a rotation matrix \mathbf{R}

$$
\mathbf{X}=\mathbf{T}(\mathbf{t}) \mathbf{R}=\left(\begin{array}{cccc}
\text { r00 } & \text { r01 } & \text { r02 } & \frac{\mathrm{t}-\mathrm{x}}{} \\
\text { r10 } & \text { r11 } & \text { r12 } & \overline{\mathrm{t}} \mathrm{y} \\
\text { r20 } & \text { r21 } & \text { r22 } & \frac{\mathrm{t}}{} \mathrm{z} z \\
0 & 0 & 0 & \mathbf{1}
\end{array}\right)
$$

preserves: lengths, angles and handedness

advance topics \& references

Advance topics
. non rigid-body transform
. quaternions
References
. chapter 5 \& 6 Book: Fundamentals of Computer Graphics (P. Shirley et al.)

