CG - T9 - Illumination

L:CC, MI:ERSI
Miguel Tavares Coimbra
(course and slides designed by Verónica Costa Orvalho)

How should we illuminate objects?

illumination

key element to add realism to a scene how many lights we need to illuminate and object?

illumination: how to illuminate

A basic illumination technique requires at least 3 lights per object: key light, fill light, rim light

illumination: how to illuminate

key light:

. creates the subject main illumination
. defines the most visible lighting and shadows
. is the dominant light source (eg. sun,

representad by ambient light

illumination: how to illuminate

fill light:

. softens and extends the illumination of fill light . makes more of the subject visible
. are secondary light sources (eg. table lamp...)

illumination: how to illuminate

rim light (or back light):

. creates a bright line around the edge of the object
. helps visually separates the object from the background

representad by directional light

illumination: how to illuminate

no back light (left), back light added (right)
reference book: Jeremy Birn, "Digital Lighting \& Rendering", Second Edition, New Riders, April 27, 2006

illumination

elements that influence the illumination computation: . type of light, position and direction . light component (ambient, diffuse, specular)
. vertices normal
. object material
. additional object colors

some basics you MUST know

Types of Lights

Ambient:

No source point; affects all polys independent of position, orientation and viewing angle; used as a 'fudge' to approximate 2 nd order and higher reflections

Diffuse:

Light scattered in all directions after it hits a poly; dependant upon incident angle

Specular:

'Shininess' ; dependant upon incident and viewing angles

some basics you MUST know

Types of Lights

1. Ambient
2. Diffuse
3. Specular
4. Emissive: color of a surface adds intensity to the object, but is unaffected by any light sources. Does not introduce any additional light into the overall scene.

Ambient Light

ambient light

. light that doesn't come from any direction
. objects are evenly lit on all surfaces in all directions

ambient light

. has a source, but rays of light bounce around the scene and become directionless
ambient light source

$$
\begin{array}{lll}
R & G & B
\end{array}
$$

.5 intensity .5 intensity .5 intensity
material "ambient" color (.5, 1, .5)

ambient light

. has a source, but rays of light bounce around the scene and become directionless
ambient light source

.5 intensity .5 intensity .5 intensity
how do you calculate the ambient color component of an object?
material "ambient" color (.5, 1, .5)

U.PORTO

ambient light

. has a source, but rays of light bounce around the scene and become directionless
ambient light source

R G B

.5 intensity .5 intensity .5 intensity

$(\mathbf{R}, \mathbf{G}, \mathbf{B})=(.25, .5$,
.25)

$$
.5^{*} .5=.25 \quad .5^{*} 1=.5 \quad .5^{*} .5=.25
$$

material "ambient" color (.5, 1, .5)

Diffuse illumination

how can we create a light model?

$I(x, y, z, \theta, \phi, \lambda)$

- (x, y, z) : light source
. (θ, ϕ) : emition direction
. λ : light intensity

how can we create a light model?

measuring irradiance at a plane perpendicular to I tells us how bright the light is in general

how can we create a light model?

measuring irradiance at a plane perpendicular to I tells us how bright the light is in general
how we calculate the illumination on a surface ?

how can we create a light model?

measuring irradiance at a plane perpendicular to I tells us how bright the light is in general
how we calculate the illumination on a surface?
meassure irradiance to a plane parallel to the surface.
(perpendicular to \mathbf{n})

how can we create a light model?

measuring irradiance at a plane perpendicular to I tells us how bright the light is in general

how we calculate the illumination on a surface ?
meassure irradiance to a plane parallel to the surface.
(perpendicular to \mathbf{n})
surface irradiance equal to the irradiance meassured perpendicular to I* cosine θ (between \boldsymbol{n} and I)

\square

how can we create a light model?

measuring irradiance at a plane perpendicular to I tells us how bright the light is in general
how we calculate the illumination on a surface?

$$
\mathbf{E}=\mathrm{E}_{\llcorner } \cos \theta
$$

$\mathbf{E}_{\llcorner }$irradiance perpendicular to I

how can we create a light model?

measuring irradiance at a plane perpendicular to I tells us how bright the light is in general

how we calculate the illumination on a surface?

$$
\mathbf{E}=\mathrm{E}_{\llcorner } \cos \theta
$$

$E_{\llcorner }$irradiance perpendicular to I
$\operatorname{Cos} \theta=\mathbf{I} \cdot \mathbf{n}$ (dot product)
$E=E_{(}(I \cdot n)$

how can we create a light model?

measuring irradiance at a plane perpendicular to I tells us how bright the light is in general

how we calculate the illumination on a surface?

$$
\mathbf{E}=\mathbf{E}_{\llcorner } \cos \theta
$$

$E_{\llcorner }$irradiance perpendicular to I
$\operatorname{Cos} \theta=\mathbf{I} \cdot \mathbf{n}$ (dot product)

$$
E_{k}=E_{\mathrm{L}}(I \cdot n) \quad E=\sum E_{k}
$$

$k=1 \ldots n$, where n are the lights in the scene

how can we create a light model?

meassures the density of the rays

Irradiance is proportional to the density of the rays

Inversely proportional to the distance \mathbf{d} between the rays

Since irradiance is inversely proportional to the distance d it is proportional to $\cos \theta$

Lambert Shading Model

$\mathrm{c} \infty \boldsymbol{\operatorname { c o s }}(\theta)$
 $c^{\infty} \boldsymbol{n} \cdot /$

c: color vector
n : surface normal
I: direction to light
θ : light/normal angle
$n \cdot l$
$\cos (\theta)=$
$|n| \cdot|I|$
U.PORTO [CG ${ }^{\text {CG } 1213-\mathrm{Tq}}$

Lambert's law

$\mathbf{I}_{\text {diftuse }}=\mathbf{k}_{\mathrm{d}} \mathrm{I}_{\text {Ight }} \boldsymbol{\operatorname { c o s }}(\theta)$
 $=k_{d} I_{\text {lignt }} \boldsymbol{n} \cdot \boldsymbol{I}$

$I_{\text {Ighn }}$ light source intensity
k : surface reflectance coefficient in $[0,1]$
θ : light/normal angle

Lambert's law

$I_{\text {diftuse }}=k_{d} I_{\text {light }} \cos (\theta)$
 $=k_{d} \boldsymbol{I}_{\text {light }} \boldsymbol{n} \cdot \boldsymbol{I}$

How would you change this equation to support more than one light?

Lambert's law

$$
\begin{aligned}
I_{\text {diffuse }}= & \mathbf{k}_{\mathrm{d}} \mathbf{I}_{\text {light }} \cos (\theta) \\
& =\mathbf{k}_{\mathrm{d}} \mathbf{I}_{\text {light }} n \cdot \boldsymbol{I}
\end{aligned}
$$

How would you change this equation to support more than one light?

$$
\mathbf{I}_{\text {difuse }}=\sum \mathbf{k}_{\mathrm{d}} \mathbf{I}_{\text {light }} \boldsymbol{n} \cdot \boldsymbol{I}
$$

How to calculate all these normals?

how to calculate the normal

$$
a \cdot x+b \cdot y+c \cdot z+d=0
$$

$\mathbf{n}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
$\mathbf{n}=\left(p_{2}-p_{1}\right) \times\left(p_{1}-p_{0}\right)$

flat shading (ambient)

gouraud (smooth) shading

$$
\mathbf{n}=\frac{\mathbf{n}_{1}+\mathbf{n}_{2}+\mathbf{n}_{3}+\mathbf{n}_{4}}{\left|\mathbf{n}_{1}+\mathbf{n}_{2}+\mathbf{n}_{3}+\mathbf{n}_{4}\right|}
$$

-In OpenGL: glShadeModel (GL_SMOOTH) U.PORTO $\mathbb{C}^{\text {CG 12/13-t9 }}$

phong (smooth) shading

1. calculate the normals on the side of the polygons by interpolating the vertex normals

$$
\mathbf{n}(\alpha)=(1-\alpha) \mathbf{n}_{A}+\alpha \mathbf{n}_{B}
$$

phong (smooth) shading

1. calculate the normals on the side of the polygons by interpolating the vertex normals
2. calculate the normals inside the

Flat / Gouraud / Phong Shading

Flat Shading

Split; same for
Normal each triangle's three vertices

One color value
Color computed for each triangle

Interpolated to each fragment

Phong Shading*

Each vertex has a normal which is used Interpolated to each to compute a per fragment
vertex color
Each fragment has a normal which is used to compute a per fragment color

Illumination: components

phong

ambient + diffuse + specular $=$ phong

reflection U.PORTO © other: blinn-phong, lambert, gouraud,...

In a nutshell

- Calculate each primary color separately
- Start with global ambient light
- Add reflections from each light source
- Clamp to [0, 1]

Summary

- Three main types of light: - Ambient, Diffuse, Specular
- Illumination on a surface depends on the irradiance angle with the normal
- Lambert shading model
- How can we calculate these normals?
- Flat shading, Gouraud shading, Phong shading

