
Course:
Computer Graphics

Veronica Orvalho
veronica.orvalho@dcc.fc.up.pt

www.dcc.fc.up.pt/~veronica.orvalho

Illumination

Book: The read book, OpenGL Superbible

mailto:veronica.orvalho@dcc.fc.up.pt

agenda

day 1:
1. demos
2. illumination step by step
3. OpenGL example
4. lab 3

videos

day 1:
Natural Light Render demonstration in the style of Paul Debevec
http://www.youtube.com/watch?v=sDAYBG6L8HY

Videoman using OpenCV
http://www.youtube.com/watch?v=huFpdL8us0w

Post-production Facial Performance Relighting using Reflecta
http://www.youtube.com/watch?v=FlvXzHLNUS0

Rapid Acquisition of Specular and Diffuse Normal Maps
http://www.youtube.com/watch?v=Ij5naq3mny0

Paul Devebec presentations (50 minutes)
http://www.youtube.com/watch?v=556FvXHLtAo

http://www.youtube.com/watch?v=sDAYBG6L8HY

“Interactive HDR lighting of dynamic participating media” by F. Navarro, D. Guitierrez, F. Serón, Vis Comput (2009)

Distance map optimization:
Left: One of the 256 slices of smoke from
a volume data set. Middle: Distance map
corresponding to this slice. Brighter
regions correspond to lower distances.
Right: Volumetric representation of the
whole distance map

Values generated by pixel validity mask
pass. From left to right: Smoke volume
being rendered, pixel validity mask
showing red pixels for those fragments
containing valid information and color
representation of index of the first slice
containing non-transparent data (iFirst)

Composition
Left to right: Simple back-to-front
alpha compositing, primary rays,
primary rays and shadow rays

“Interactive HDR lighting of dynamic participating media” by F. Navarro, D. Guitierrez, F. Serón, Vis Comput (2009)

left-right and top-
bottom order.

Smoke rendered
using eight
different light
probes

some basics you MUST know

day 1: Types of Lights

Ambient:
No source point; affects all polys independent
of position, orientation and viewing angle;
used as a ‘fudge’ to approximate 2nd order
and higher reflections

Diffuse:
Light scattered in all directions after it hits a
poly; dependant upon incident angle

Specular:
‘Shininess’ ; dependant upon incident and
viewing angles

Images: http://xoax.net/comp/sci/graphics3D/BasLocIll.php

some basics you MUST know

day 1: Types of Lights

1. Ambient
2. Diffuse
3. Specular

4. Emissive: color of a surface adds intensity to the object, but is
unaffected by any light sources. Does not introduce any additional
light into the overall scene.

Images: http://xoax.net/comp/sci/graphics3D/BasLocIll.php

some basics you MUST know

day 1: Implementation Specifications

1. Two kinds of parameters: lighting and material

2. Material properties: state variables, can be changed as you
 draw different polys in a scene

3. Light properties: parameters indexed to light numbers;
 OpenGL can use up to 8 lights;
 light positions are affected by the modelview
 matrix stack

some basics you MUST know

day 1: Shading Model
defines how the lighting equations are applied to a
rasterized poly.

GL_FLAT: Lighting is evaluated once per poly, and the resulting
color value is used for the whole object.

GL_SMOOTH: Lighting is evaluated at each vertex, and pixel
colors are linearly interpolated across polys. This is more
expensive, but it looks much better.

OpenGL uses the Phong lighting model at vertices, but has no
built-in support for Phong shading.

some basics you MUST know

day 1: Normals

1. The lighting equations depend upon normals. We need to
provide them.

2. The current normal can be specified glNormal* function,
and will be applied to every subsequent vertex.
(or you can load them from a file)

3. Normals should be of unit length, or the lighting equations
will not work correctly. This can be a problem, because normals
are affected by any scaling done in the matrix stack. You must
either re-normalize the normals as a pre-processing step, or
enable GL_NORMALIZE (which is computationally expensive).

example illumination in OpenGL

day 1: How can I make my light position stay fixed relative
to my eye position?
Specify your light in eye coordinate space:
 - set the ModelView matrix to the identity
 - then specify your light position.

How do I make a headlight?
a light that appears to be positioned at or near the eye and
shining along the line of sight:
 - set the ModelView to the identity,
 - set the light position at (or near) the origin,
 - and set the direction to the negative Z axis.

OpenGL FAQ
opengl.org

example illumination in OpenGL

day 1: How can I make my light stay fixed relative to my scene?

As your view changes, your ModelView matrix also changes.
This means you'll need to respecify the light position, usually at
the start of every frame. A typical application will display a
frame with the following pseudo-code:

 1. Set the view transform.
 2. Set the light position
 3. Send down the scene or model geometry.
 5. Swap buffers.

OpenGL FAQ
opengl.org

example illumination in OpenGL

day 1: How can I make a light that moves around in a scene?
you'll need to respecify this light position every time the view
changes. Additionally, this light has a dynamic modeling
transform that also needs to be in the ModelView matrix
before you specify the light position. In pseudo-code, you need
to do something like:

 1. Set the view transform
 2. Push the matrix stack
 3. Set the model transform to update the light’s position
 4. Set the light position
 5. Pop the matrix stack
 6. Send down the scene or model geometry
 7. Swap buffers

OpenGL FAQ
opengl.org

some basics you MUST know

day 1: Types of Lights

 ambient + diffuse + specular = phong

 reflection

some basics you MUST know

day 1: Types of Lights

 A + D + S

 reflection

Tutorial (video):
http://xoax.net/comp/sci/graphics3D/BasLocIll.php

http://xoax.net/comp/sci/graphics3D/BasLocIll.php
http://xoax.net/comp/sci/graphics3D/BasLocIll.php

example illumination in OpenGL

day 1: OpenGL
init code

//set the global lighting / shading params
glShadeModel(GL_SMOOTH); // or GL_FLAT
glEnable(GL_NORMALIZE); //or not
glEnable(GL_LIGHTING);

//set the global ambient light
GLfloat ambient = {.2,.2,.2,1};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, globalAmb);

//This code sets up a light and enables it
GLfloat diffuse[] = {1,0,0,1};
GLfloat ambient[] = {.5,0,0,1};
GLfloat specular[] = {1,1,1,1};

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
glEnable(GL_LIGHT0); //enable the light

example illumination in OpenGL

day 1: OpenGL
init code

//set the global lighting / shading params
glShadeModel(GL_SMOOTH); // or GL_FLAT
glEnable(GL_NORMALIZE); //or not
glEnable(GL_LIGHTING);

//set the global ambient light
GLfloat ambient = {.2,.2,.2,1};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, globalAmb);

//This code sets up a light and enables it
GLfloat diffuse[] = {1,0,0,1};
GLfloat ambient[] = {.5,0,0,1};
GLfloat specular[] = {1,1,1,1};

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
glEnable(GL_LIGHT0); //enable the light

example illumination in OpenGL

day 1: optimize
code
(init)

//we need to store our lights as we might have more than 1
typedef struct
{
 float pos[4];
 float diffuse[4];
 float specular[4];
 float ambient[4];
} light_t;

//instance of a light
light_t light={
 {6,10,15,1}, //position (the final 1 means the light is positional)
 {1,1,1,1}, //diffuse
 {0,0,0,1}, //specular
 {0,0,0,1} //ambient
 };

example illumination in OpenGL

day 1: optimize
code
(Render) //redraw function

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLightfv(GL_LIGHT0,GL_POSITION,light.pos); //updates the light's position
glLightfv(GL_LIGHT0,GL_DIFFUSE,light.diffuse); //updates the light's diffuse color
glLightfv(GL_LIGHT0,GL_SPECULAR,light.specular); //updates the light's specular color
glLightfv(GL_LIGHT0,GL_AMBIENT,light.ambient); //updates the light's ambient color

drawObject(...);

Assignment 2: illumination + textures

1. implement the equations of lambert, phong, gouraud and apply it to an object
(eg. sphere, terrain)

2 support at least 3 light sources (ambient, point, directional)

3 use the .OBJ file from assignment 1 to apply the lambert shading model and load the textures

4 create different lights using OpenGL* (at least 3 different lights)

5 implement planar reflections (you can use OpenGL geometric transformations)

6 implement texture mapping using OpenGL* and test the different filters (at least 2 types of filters)

7 allow manipulating (eg. Keyboard) the different lights: type of light, position, intensities, colors)

* Use OpenGL or the API of your choice, shaders.

Due: April 13th at 24h00

references

day 1:
Tutorial on Lighting in OpenGL:

http://glprogramming.com/red/chapter05.html (the Read Book)
http://www.swiftless.com/tutorials/opengl/lighting.html
http://www.falloutsoftware.com/tutorials/gl/gl8.htm
http://www.gamedev.net/reference/list.asp?categoryid=31
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=07
http://www.sulaco.co.za/tut3.htm

http://xoax.net/comp/sci/graphics3D/BasLocIll.php (video)

http://glprogramming.com/red/chapter05.html
http://www.falloutsoftware.com/tutorials/gl/gl8.htm
http://www.falloutsoftware.com/tutorials/gl/gl8.htm
http://www.gamedev.net/reference/list.asp?categoryid=31
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=07
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=07
http://www.sulaco.co.za/tut3.htm
http://xoax.net/comp/sci/graphics3D/BasLocIll.php

