MAPI - Computer Vision

Multiple View Geometry

Intrinsic Camera Parameters

Intrinsic Camera Parameters

- We can associate with a camera two different image planes:
- the first one is a normalized plane located at a unit distance from the pinhole.
- We attach to this plane its own coordinate system with an origin located at the point C where the optical axis pierces it

Intrinsic Camera Parameters

- We can associate with a camera two different image planes:
- the first one is a normalized plane located at a unit distance from the pinhole.
- The perspective projection equation can be written in this normalized coordinate system as
- where

$$
\left\{\begin{array}{l}
\hat{u}=\frac{x}{z} \\
\hat{v}=\frac{y}{z}
\end{array} \Leftrightarrow \hat{p}=\frac{1}{z}\left(\begin{array}{ll}
\text { Id } & 0
\end{array}\right)\binom{P}{1}\right.
$$

\hat{p}
is the vector of homogeneous coordinates of the projection
\hat{p} of the point P into the normalized image plane.

Intrinsic Camera Parameters

- The physical retina of the camera is in general different
- it is located at a distance f from the pinhole
- measurement in image coordinate system may be in
"pixel" units (u,v),
- pixels may not be rectangular,
- so the camera has two additional scale parameters k and l
- origin of image coordinate system may not be at the center of image (projection of lens center) $\left(u_{0}, v_{0}\right)$
- axis may be skewed (θ)

Intrinsic Camera Parameters

- The physical retina of the camera is in general different
- f is a distance, expressed in meters for example

$$
\left\{\begin{array}{l}
u=k f \frac{x}{z} \\
v=l f \frac{y}{z}
\end{array}\right.
$$

- a pixel will have dimensions $1 / k \times 1 / l$ where k and l are expressed in pixel $\times \mathrm{m}^{-1}$.
- The parameters k, l and f can be replaced by the
- magnifications $\alpha=k f$ and $\beta=l f$ expressed in pixel units.

Intrinsic Camera Parameters

- The physical retina of the camera is in general different
- The actual origin of the camera coordinate system is at a corner C of the retina and not at its center,
- The center of the CCD matrix usually does not coincide with the principal point C_{0}.
- This adds two parameters u_{0} and v_{0} that define the position (in pixel units) of C_{0} in the retinal coordinate system.

$$
\left\{\begin{array}{l}
u=\alpha \frac{x}{z}+u_{0} \\
v=\beta \frac{y}{z}+v_{0}
\end{array}\right.
$$

Intrinsic Camera Parameters

- The physical retina of the camera is in general different
- the camera coordinate system may also be skewed, due to some manufacturing error,
- The angle θ between the two image axes is not equal to (but of course not very different from either) 90 degrees.

$$
\left\{\begin{array}{c}
u=\alpha \frac{x}{z}-\alpha \cot \theta \frac{y}{z}+u_{0} \\
v=\frac{\beta}{\sin \theta} \frac{y}{z}+v_{0}
\end{array}\right.
$$

Intrinsic Camera Parameters

- Planar affine transformation
- between the physical image frame and the normalized:

$$
\begin{gathered}
p=\mathrm{K} \hat{p} \quad p=\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right) \mathrm{K}=\left(\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{\beta}{\sin \theta} & v_{0} \\
0 & 0 & 1
\end{array}\right) \\
p=\frac{1}{Z} \mathbf{M P} \quad \begin{array}{l}
P \text { denotes the homogeneous coordinate vector of } P \\
\text { in the camera coordinate system: } \\
\text { homogeneous coordinates have allowed } \\
\text { us to represent the perspective projection } \\
\text { mapping by the } 3 \times 4 \text { matrix } \mathrm{M} .
\end{array} \\
\mathrm{M}=\left(\begin{array}{ll}
\mathrm{K} & 0
\end{array}\right)
\end{gathered}
$$

Extrinsic Parameters

- Relate camera frame, C, to world (object) frame, W
- General transformation

$$
\binom{{ }^{B} P}{1}={ }_{A}^{B} T\binom{{ }^{A} P}{1} \quad{ }_{A}^{B} T=\left(\begin{array}{cc}
{ }_{A}^{B} R & { }^{B} O_{A} \\
0^{\mathrm{T}} & 1
\end{array}\right)
$$

- Camera frame

$$
{ }^{C} P=\left(\begin{array}{cc}
{ }_{W}^{C} R & { }^{C} O_{W}
\end{array}\right)\binom{{ }^{W} P}{1}
$$

Extrinsic Parameters

- Relate camera frame, \boldsymbol{C}, to world (object) frame, \boldsymbol{W}

$$
p=\frac{1}{z} \mathrm{M} P \quad \mathrm{M}=\mathrm{K}\left(\begin{array}{ll}
\mathrm{R} & t
\end{array}\right)
$$

- The matrix \mathbf{M} is also defined with 11 free coefficients.
- Note that there are:
- 5 intrinsic parameters ($\alpha, \beta, u_{0}, v_{0}$ and θ) and
- 6 extrinsic parameters
- the three angles defining R
- and the three coordinates of t,
- which matches the number of independent coefficients of M.

Extrinsic Parameters

- Relate camera frame, \boldsymbol{C}, to world (object) frame, \boldsymbol{W}
- The matrix M can be rewritten explicitly as a function of the intrinsic and extrinsic parameters of the camera:

$$
\mathrm{M}=\left(\begin{array}{cc}
\alpha r_{1}^{T}-\alpha \cot \theta r_{2}^{T}+u_{0} r_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} r_{2}^{T}+v_{0} r_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
r_{3}^{T} & t_{z}
\end{array}\right)
$$

- $r_{1}{ }^{T}, r_{2}{ }^{T}$ and $r_{3}{ }^{T}$ denote the three rows of the matrix R
- t_{x}, t_{y} and t_{z} are the coordinates of the vector t in the frame attached to the camera.

Calibration Methods

- Geometric camera calibration
- techniques for estimating the intrinsic and extrinsic parameters of a camera
- Suppose that a camera observes \boldsymbol{n} geometric features such as points or lines with known positions in some fixed world coordinate system.
- (1) computing the perspective projection matrix M associated with the camera in this coordinate system
- (2) computing the intrinsic and extrinsic parameters of the camera from this matrix.
- Once a camera has been calibrated, it is possible to associate with any image point a well-defined ray passing through this point and the camera's optical center, and to conduct quantitative three-dimensional measurements from digitized pictures

Calibration Methods

A Linear Approach to Camera Calibration

- If the 4 -vectors $P_{i}(\mathrm{i}=1, \ldots, \mathrm{n})$ and $m^{T}{ }_{j}(\mathrm{j}=1,2$, 3) denote respectively the homogeneous coordinate vectors of the points P_{i} and the rows of the matrix M , we can express the position of the image of each point as

$$
\left\{\begin{array} { l }
{ u _ { i } = \frac { m _ { 1 } \cdot P _ { i } } { m _ { 3 } \cdot P _ { i } } } \\
{ v _ { i } = \frac { m _ { 2 } \cdot P _ { i } } { m _ { 3 } \cdot P _ { i } } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\left(m_{1}-u_{i} m_{3}\right) \cdot P_{i}=0 \\
\left(m_{2}-v_{i} m_{3}\right) \cdot P_{i}=0
\end{array}\right.\right.
$$

Calibration Methods

A Linear Approach to Camera Calibration

- Collecting these constraints for all n points yields a system of $2 n$ homogeneous linear equations in the twelve coefficients of the matrix M
- System of equations:

$$
P m=0, P=\left(\begin{array}{ccc}
P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T} \\
0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\
\ldots & \ldots & \ldots \\
P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\
0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}
\end{array}\right), m=\left(\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)
$$

Calibration Methods

A Linear Approach to Camera Calibration

- When $\mathrm{n} \geq 6$, the system of equations is in general overconstrained
- The linear least-squares literature provides methods for computing the value of the unit vector m that minimizes $|P m|^{2}$.
- Estimating the vector \mathbf{m} (hence the matrix \mathbf{M}) reduces to computing the eigenvectors and eigenvalues of the $12 \times$ 12 matrix $P^{\top} P$.

Linear Least Squares Methods

- consider a system of n linear equations in p unknowns:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 p} x_{p}=b_{1} \\
\ldots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n p} x_{p}=b_{n}
\end{array} \Leftrightarrow\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 p} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n p}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{p}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\ldots \\
b_{n}
\end{array}\right)\right.
$$

- Let \boldsymbol{A} denote the $\boldsymbol{n} \times \boldsymbol{p}$ matrix with coefficients $a_{i j}$, and let $x=\left(x_{l}, \ldots, x_{p}\right)^{T}$ and $b=\left(b_{1}, \ldots, b_{n}\right)^{T}$
- We know from linear algebra that (in general):
- 1. when $n<p$, there exists an $(p-n)$ dimensional vector space of vectors x that are solutions
- 2. when $n=p$, there is a unique solution;
- 3 . when $n>p$, there is no solution.
- This statement is true when the rank of A is maximal, i.e., equal to $\min (n, p)$
- When the rank is lower, there exists a higher-dimensional set of solutions.

Linear Least Squares Methods

- Consider the overconstrained case $n>p$.
- Since there is no exact solution in this case,
- finding the vector x that minimizes the error measure

$$
E=\sum_{i=1}^{n}\left(a_{i 1} x_{1}+\ldots+a_{i p} x_{p}-b_{i}\right)^{2}=|A x-b|^{2}
$$

Recover the parameters

- Once the projection matrix M has been estimated, it can be used to recover the intrinsic and extrinsic parameters:

$$
\mathrm{M}=\left(\begin{array}{cc}
\alpha r_{1}^{T}-\alpha \cot \theta r_{2}^{T}+u_{0} r_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} r_{2}^{T}+v_{0} r_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
r_{3}^{T} & t_{z}
\end{array}\right)=\left(\begin{array}{ll}
A & b
\end{array}\right)
$$

Recover the parameters

- Using the fact that the rows of a rotation matrix have unit length and are perpendicular to each other yields

$$
\begin{aligned}
& \left\{\begin{array}{cc}
\rho=\varepsilon /\left|a_{3}\right| \\
r_{3}=\rho a_{3} \\
u_{0}=\rho^{2}\left(a_{1} \cdot a_{3}\right) \\
v_{0}=\rho^{2}\left(a_{2} \cdot a_{3}\right)
\end{array}\right) \\
& \left\{\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
a_{3}^{T}
\end{array}\right)=\left(\begin{array}{c}
\alpha r_{1}^{T}-\alpha \cot \theta r_{2}^{T}+u_{0} r_{3}^{T} \\
\frac{\beta}{\sin \theta} r_{2}^{T}+v_{0} r_{3}^{T} \\
r_{3}^{T}
\end{array}\right) \\
& \left\{\begin{array} { c }
{ \rho ^ { 2 } (a _ { 1 } \times a _ { 3 }) = - \alpha r _ { 2 } - \alpha \operatorname { c o t } \theta r _ { 1 } } \\
{ \rho ^ { 2 } (a _ { 2 } \times a _ { 3 }) = \frac { \beta } { \operatorname { s i n } \theta } r _ { 1 } }
\end{array} \text { and } \left\{\begin{array}{l}
\rho^{2}\left|a_{1} \times a_{3}\right|=\frac{|\alpha|}{\sin \theta} \\
\rho^{2}\left|a_{2} \times a_{3}\right|=\frac{|\beta|}{\sin \theta}
\end{array}\right.\right.
\end{aligned}
$$

Recover the parameters

$$
\begin{gathered}
\cos \theta=-\varepsilon_{u} \varepsilon_{v} \frac{\left(a_{1} \times a_{3}\right) \cdot\left(a_{2} \times a_{3}\right)}{\left|a_{1} \times a_{3}\right|\left|a_{2} \times a_{3}\right|} \\
\alpha=\varepsilon_{u} \rho^{2}\left|a_{1} \times a_{3}\right| \sin \theta \\
\beta=\varepsilon_{v} \rho^{2}\left|a_{2} \times a_{3}\right| \sin \theta
\end{gathered}, \text { whe }, ~\left\{\begin{array}{c}
r_{1}=\frac{\rho^{2} \sin \theta}{\beta}\left(a_{2} \times a_{3}\right)=\frac{1}{\left|a_{2} \times a_{3}\right|}\left(a_{2} \times a_{3}\right) \\
r_{2}=r_{3} \times r_{1}
\end{array},\right.
$$

Recover the parameters

- the translation parameters are recovered by writing

$$
\rho\left(\begin{array}{c}
\alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
t_{z}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Taking Radial Distortion into Account

- so far that our camera was equipped with a perfect lens.
- real lenses suffer from a number of aberrations.
- radial distortion
- a type ofaberration that depends on the distance between the imaged point and the optical axis and can be modelled as

$$
p=\left(\begin{array}{ccc}
1 / \lambda & 0 & 0 \\
0 & 1 / \lambda & 0 \\
0 & 0 & 1
\end{array}\right) \text { MP } \quad \begin{aligned}
& r^{2}=u^{2}+v^{2} \\
& \lambda=1+k_{1} r^{2}+k_{2} r^{4}+\ldots
\end{aligned}
$$

Taking Radial Distortion into Account

- Geometrically, radial distortion changes the distance between the image center and the image point \boldsymbol{p} but it does not affect the direction of the vector joining these two points.
- This is called the radial alignment constraint and it can be expressed algebraically by writing

$$
\lambda\binom{u}{v}=\binom{\frac{m_{1} \cdot P}{m_{3} \cdot P}}{\frac{m_{2} \cdot P}{m_{3} \cdot P}} \Rightarrow v\left(m_{1} \cdot P\right)-u\left(m_{2} \cdot P\right)=0
$$

- This is a linear constraint on the vectors m_{l} and m_{2}.
- Given \boldsymbol{n} fiducial points we obtain \boldsymbol{n} equations in the eight coefficients of the vectors \boldsymbol{m}_{1} and \boldsymbol{m}_{2}

Produto Externo de 2 Vectores

- Denotando por \underline{x}, y e \underline{z} os vectores unitários dos repectivos eixos, e de acordo com a definição, temos
- $\underline{x} \times \underline{x}=\underline{y} \times \underline{y}=\underline{z} \times \underline{z}=0$ (pois \underline{x} faz um ângulo de 0° com \underline{x}
$-\underline{x} \times \underline{y}=\underline{\mathbf{z}} ; \underline{x} \times \underline{\mathbf{z}}=-\underline{y} ; \underline{\mathbf{y}} \times \underline{\mathbf{z}}=\underline{\mathbf{x}}$ (regra do saca-rolhas);
$-\underline{y} \times \underline{x}=-\underline{z} ; \underline{z} \times \underline{x}=\underline{y} ; \underline{z} \times \underline{y}=-\underline{x}$ (regra do saca-rolhas)

- Sendo o produto externo distributivo em relação à soma, dados dois vectores $A=a_{\mathbf{x}} \underline{\mathbf{x}}+\mathrm{a}_{\mathbf{y}} \mathbf{y}+\mathbf{a}_{\mathbf{z}} \underline{\mathbf{z}}$ e $\mathbf{B}=\mathbf{b}_{\mathbf{x}} \underline{\mathbf{x}}+\mathbf{b}_{\mathbf{y}} \underline{\mathbf{y}}+\mathbf{b}_{\mathbf{z}} \underline{\mathbf{z}}$ o seu produto externo é dado por
- $A \times B=\left(a_{x} \underline{x}+a_{y} \underline{y}+a_{z} \underline{z}\right) \times\left(b_{x} \underline{x}+b_{y} \underline{y}+b_{z} \underline{z}\right)=$

$$
\left(a_{y} b_{z}-a_{z} b_{y}\right) \underline{x}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \underline{y}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \underline{z}
$$

