MAPI — Computer Vision

Multiple View Geometry



Intrinsic Camera Parameters




Intrinsic Camera Parameters

* \We can associate with a camera two different
image planes:
— the first one is a normalized plane located at a unit

distance from the pinhole.

« We attach to this plane its own coordinate system with an
origin located at the point C where the optical axis pierces it
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Intrinsic Camera Parameters

* \We can associate with a camera two different
image planes:
— the first one is a normalized plane located at a unit

distance from the pinhole.

* The perspective projection equation can be written in this
normalized coordinate system as

 where

P

is the vector of homogeneous coordinates of the projection
P of the point P into the normalized image plane.



Intrinsic Camera Parameters

* The physical retina of the camera is in general
different
— it is located at a distance f from the pinhole
— measurement in image coordinate system may be In
“pixel” units (u,v),
— pixels may not be rectangular,
» so the camera has two additional scale parameters & and /

— origin of image coordinate system may not be at the
center of image (projection of lens center) (u,,v,)

— axis may be skewed (06)



Intrinsic Camera Parameters

* The physical retina of the camera is in general
different

— fis a distance, expressed in meters for example

-

u=hkf >
Z

v=lfZ
! z

— a pixel will have dimensions 1/k x 1// where k and [ are
expressed in pixelxm™1.

— The parameters %, [ and f can be replaced by the

— magnifications a = k£ fand 3 = / fexpressed in pixel
units.



Intrinsic Camera Parameters

* The physical retina of the camera is in general different

— The actual origin of the camera coordinate system is at a corner C
of the retina and not at its center,

— The center of the CCD matrix usually does not coincide with the
principal point C,,.

— This adds two parameters u, and v, that define the position (in
pixel units) of C, in the retinal coordinate system.
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Intrinsic Camera Parameters

* The physical retina of the camera is in general
different

— the camera coordinate system may also be skewed,
due to some manufacturing error,

* The angle 8 between the two image axes is not equal to (but of
course not very different from either) 90 degrees.
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Intrinsic Camera Parameters

* Planar affine transformation
— between the physical image frame and the normalized:

(u) (aa —acotd u,
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. E M P P denotes the homogeneous coordinate vector of P
p o in the camera coordinate system:
z homogeneous coordinates have allowed

us to represent the perspective projection

M = (K O) mapping by the 3 x4 matrix M.



Extrinsic Parameters

* Relate camera frame, C, to world (object) frame,
W

— General transformation
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Extrinsic Parameters

Relate camera frame, C, to world (object) frame, W

p=iMP  M=KR 1)

Z

The matrix M is also defined with 11 free coefficients.

Note that there are:
— S intrinsic parameters (a, B, u, v, and 6) and

— 6 extrinsic parameters
* the three angles defining R
* and the three coordinates of t,

which matches the number of independent coefficients of
M.



Extrinsic Parameters

Relate camera frame, C, to world (object) frame, W

The matrix M can be rewritten explicitly as a function of
the intrinsic and extrinsic parameters of the camera:

(o] —acotly +ugr; at —acotér, +ut, )
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r, 1, r,l and r;" denote the three rows of the matrix R

t., t,and ¢, are the coordinates of the vector t in the frame
attached to the camera.



Calibration Methods

« Geometric camera calibration

— techniques for estimating the intrinsic and extrinsic parameters
of a camera

« Suppose that a camera observes n geometric features
such as points or lines with known positions in some
fixed world coordinate system.

— (1) computing the perspective projection matrix M associated
with the camera in this coordinate system

— (2) computing the intrinsic and extrinsic parameters of the
camera from this matrix.

* Once a camera has been calibrated, it is possible to
associate with any image point a well-defined ray
passing through this point and the camera’s optical
center, and to conduct quantitative three-dimensional
measurements from digitized pictures



Calibration Methods

A Linear Approach to Camera Calibration

* If the 4-vectors P;(i=1, ..., n)and mTj(j =1, 2,
3) denote respectively the homogeneous
coordinate vectors of the points P; and the rows of

the matrix M, we can express the position of the
image of each point as
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Calibration Methods

A Linear Approach to Camera Calibration

» Collecting these constraints for all n points yields a system of 2n

homogeneous linear equations in the twelve coefficients of the matrix
M

« System of equations:
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Calibration Methods

A Linear Approach to Camera Calibration

 When n = 6, the system of equations is in general
overconstrained

* The linear least-squares literature provides methods for

computing the value of the unit vector m that minimizes
IPm|2.

« Estimating the vector m (hence the matrix M) reduces to

computing the eigenvectors and eigenvalues of the 12 x
12 matrix PTP.



Linear Least Squares Methods

consider a system of n linear equations in p unknowns:

Ay Xy + Ay X, +otag,x, =b ay Ay o 4, | X b,
3 & =
@, % +a,,%, +..+a,x, =b, Ay A o 4, X, b,
Let A denote the n x p matrix with coefficients a;, and letx = (x, . . ., x,)T and

b=, ..., b )"
We know from linear algebra that (in general):

1. when n < p, there exists an (p — n) dimensional vector space of vectors x
that are solutions

2. when n = p, there is a unique solution;
3. when n > p, there is no solution.

This statement is true when the rank of A is maximal, i.e., equal to min(n, p)
When the rank is lower, there exists a higher-dimensional set of solutions.



Linear Least Squares Methods

* Consider the overconstrained case n > p.

» Since there is no exact solution in this case,
— finding the vector x that minimizes the error measure

E = Zn:(ailxl +ota,x, —b.)* = ‘Ax—b‘z
=1



Recover the parameters

* Once the projection matrix M has been estimated,
It can be used to recover the intrinsic and extrinsic
parameters:
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Recover the parameters

« Using the fact that the rows of a rotation matrix have
unit length and are perpendicular to each other yields
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Recover the parameters
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Recover the parameters

* the translation parameters are recovered by
writing

at, —a COtoF, +ut,
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Taking Radial Distortion into
Account

 so far that our camera was equipped with a

perfect lens.

 real lenses suffer from a number of aberrations.

— radial distortion

 a type ofaberration that depends on the distance between the
imaged point and the optical axis and can be modelled as
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Taking Radial Distortion into

Account

Geometrically, radial distortion changes the distance
between the image center and the image point p but it
does not affect the direction of the vector joining these

two points.

This is called the radial alignment constraint and it can be

expressed algebraically by writing
m,.P

uy | my.P

my. P

= v(m,.P)—u(m,.P)=0

This is a linear constraint on the vectors m, and m,.
Given n fiducial points we obtain n equations in the eight

coefficients of the vectors m, and m,



Produto Externo de 2 Vectores

Denotando por x, ¥ & Z 05 vectores unitarios dos repectivos eixos, e de acordo com
a definicéo, temos

— XxxXx=yxy=zxz=0 (pois xfaz um angulo de 0% com x
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-y; ¥ xZ = X (regra do saca-rolhas)
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Sendo o produto externo distributivo em relacdo a soma, dados dois wectores
A=a,x+a y+ta zeB=b,x+b, y+b, zoseuproduto externo & dado por
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AxB=la,x+a,yv+a,Z)x{b,x+b, y+b,Z)=
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