
MAPI – Computer Vision

Multiple View Geometry



Intrinsic Camera Parameters



Intrinsic Camera Parameters
• We can associate with a camera two different 

image planes: 
– the first one is a normalized plane located at a unit 

distance from the pinhole. 
• We attach to this plane its own coordinate system with an 

origin located at the point Ĉ where the optical axis pierces it



Intrinsic Camera Parameters
• We can associate with a camera two different 

image planes: 
– the first one is a normalized plane located at a unit 

distance from the pinhole. 
• The perspective projection equation can be written in this 

normalized coordinate system as

• where  

is the vector of homogeneous coordinates of the projection 
of the point P into the normalized image plane.
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Intrinsic Camera Parameters

• The physical retina of the camera is in general 
different
– it is located at a distance  f from the pinhole
– measurement in image coordinate system may be in 

“pixel” units (u,v), 
– pixels may not be rectangular, 

• so the camera has two additional scale parameters k and l

– origin of image coordinate system may not be at the 
center of image (projection of lens center) (u0,v0)

– axis may be skewed (θ)



Intrinsic Camera Parameters
• The physical retina of the camera is in general 

different
– f is a distance, expressed in meters for example

– a pixel will have dimensions 1/k x 1/l where k and l are 
expressed in pixel×m−1.

– The parameters k, l and f can be replaced by the
– magnifications α = k f and β = l f expressed in pixel 

units.
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Intrinsic Camera Parameters
• The physical retina of the camera is in general different

– The actual origin of the camera coordinate system is at a corner C
of the retina and not at its center, 

– The center of the CCD matrix usually does not coincide with the 
principal point C0. 

– This adds two parameters u0 and v0 that define the position (in 
pixel units) of C0 in the retinal coordinate system. 
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Intrinsic Camera Parameters

• The physical retina of the camera is in general 
different
– the camera coordinate system may also be skewed, 

due to some manufacturing error, 
• The angle θ between the two image axes is not equal to (but of 

course not very different from either) 90 degrees. 
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Intrinsic Camera Parameters

• Planar affine transformation 
– between the physical image frame and the normalized:
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P denotes the homogeneous coordinate vector of P
in the camera coordinate system: 

homogeneous coordinates have allowed 
us to represent the perspective projection 
mapping by the 3 ×4 matrix M.



Extrinsic Parameters

• Relate camera frame, C, to world (object) frame, 
W
– General transformation 

– Camera frame
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Extrinsic Parameters
• Relate camera frame, C, to world (object) frame, W

• The matrix M is also defined with 11 free coefficients. 
• Note that there are:

– 5 intrinsic parameters (α, β, u0, v0 and θ) and 
– 6 extrinsic parameters 

• the three angles defining R 
• and the three coordinates of t, 

• which matches the number of independent coefficients of 
M.
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Extrinsic Parameters
• Relate camera frame, C, to world (object) frame, W
• The matrix M can be rewritten explicitly as a function of 

the intrinsic and extrinsic parameters of the camera:

• r1
T, r2

T and r3
T denote the three rows of the matrix R 

• tx, ty and tz are the coordinates of the vector t in the frame 
attached to the camera.
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Calibration Methods
• Geometric camera calibration 

– techniques for estimating the intrinsic and extrinsic parameters
of a camera

• Suppose that a camera observes n geometric features 
such as points or lines with known positions in some 
fixed world coordinate system.
– (1) computing the perspective projection matrix M associated 

with the camera in this coordinate system
– (2) computing the intrinsic and extrinsic parameters of the 

camera from this matrix.
• Once a camera has been calibrated, it is possible to 

associate with any image point a well-defined ray
passing through this point and the camera’s optical
center, and to conduct quantitative three-dimensional 
measurements from digitized pictures



Calibration Methods
A Linear Approach to Camera Calibration

• If the 4-vectors Pi (i = 1, . . ., n) and mT
j (j = 1, 2, 

3) denote respectively the homogeneous 
coordinate vectors of the points Pi and the rows of 
the matrix M, we can express the position of the 
image of each point as
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Calibration Methods
A Linear Approach to Camera Calibration

• Collecting these constraints for all n points yields a system of 2n
homogeneous linear equations in the twelve coefficients of the matrix 
M

• System of equations:
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Calibration Methods
A Linear Approach to Camera Calibration

• When n ≥ 6, the system of equations is in general 
overconstrained

• The linear least-squares literature provides methods for 
computing the value of the unit vector m that minimizes 
|Pm|2. 

• Estimating the vector m (hence the matrix M) reduces to 
computing the eigenvectors and eigenvalues of the 12 ×
12 matrix PTP.



Linear Least Squares Methods
• consider a system of n linear equations in p unknowns:

• Let A denote the n × p matrix with coefficients aij, and let x = (x1, . . . , xp)T and 
b = (b1, . . . , bn)T

• We know from linear algebra that (in general):
• 1. when n < p, there exists an (p − n) dimensional vector space of vectors x

that are solutions
• 2. when n = p, there is a unique solution;
• 3. when n > p, there is no solution.

• This statement is true when the rank of A is maximal, i.e., equal to min(n, p)
• When the rank is lower, there exists a higher-dimensional set of solutions.
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Linear Least Squares Methods

• Consider the overconstrained case n > p. 
• Since there is no exact solution in this case, 

– finding the vector x that minimizes the error measure
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Recover the parameters

• Once the projection matrix M has been estimated, 
it can be used to recover the intrinsic and extrinsic 
parameters:
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Recover the parameters
• Using the fact that the rows of a rotation matrix have 

unit length and are perpendicular to each other yields

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

T

TT

TTT

T

T

T

r

rvr

rurr

a
a
a

3

302

3021

3

2

1

sin

cot

θ
β

θαα

ρ

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⋅=
⋅=

=
=

)(
)(

/

32
2

0

31
2

0

33

3

aav
aau

ar
a

ρ
ρ

ρ
ερ , where ε=±1

⎪⎩

⎪
⎨
⎧

=×

−−=×

132
2

1231
2

sin
)(

cot)(

raa

rraa

θ
βρ

θααρ

⎪
⎪
⎩

⎪⎪
⎨

⎧

=×

=×

θ
β

ρ

θ
α

ρ

sin

sin

32
2

31
2

aa

aa
and



Recover the parameters
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Recover the parameters

• the translation parameters are recovered by 
writing
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Taking Radial Distortion into 
Account

• so far that our camera was equipped with a 
perfect lens. 

• real lenses suffer from a number of aberrations.
– radial distortion

• a type ofaberration that depends on the distance between the 
imaged point and the optical axis and can be modelled as

MP
100
01/0
001/

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= λ

λ
p

...1 4
2

2
1

222

+++=

+=

rkrk
vur

λ



Taking Radial Distortion into 
Account

• Geometrically, radial distortion changes the distance 
between the image center and the image point p but it 
does not affect the direction of the vector joining these 
two points. 

• This is called the radial alignment constraint and it can be 
expressed algebraically by writing

• This is a linear constraint on the vectors m1 and m2. 
• Given n fiducial points we obtain n equations in the eight 

coefficients of the vectors m1 and m2
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