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OutlineOutline
F t d f t t ti ( i i )• Features and feature extraction (revision)

• Statistical pattern recognitionp g
– Bayesian Decision Theory

• MAP
• MLE Gaussian estimation
• Plug-in classifier

Dimensionality– Dimensionality 
– Feature  space selection
– Non-Bayesian classifiers

• Distance-based classifiers
– KNN

• Decision boundary-based classifiers
– Decision trees
– ANN
– SVMs

– Unsupervised learning and clusteringUnsupervised learning and clustering
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Computer vision system

I iti t

Computer vision system

• Image recognition system:
– Feature extraction: captures meaningful information from the image (for the

specific task at hand), reducing dimensionality.
P tt iti D th t l j b f l if i d ibi– Pattern recognition: Does the actual job of classifying or describing
observations, relying on the extracted features.

• System diagram:

pixel
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feature
space

concept
space

pixels
feature
vector

Image content
recognition

Image Feature 
Extraction

Recognition 
machine
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Features and feature extraction (revision)Features and feature extraction (revision)

Ob t th i f i di di ll i f ti B• Observers capture the meaning of an image discarding all unnecessary information. By
choosing adequate features we do the same!

By selecting some specific feature we introduce prior knowledge!• By selecting some specific feature we introduce prior knowledge!

• Different image content is described by different features:
Shape colour texture– Shape, colour, texture…

• There are a wide range of different feature types
– Low/middle/high levelLow/middle/high level
– Global/local

• The choice of feature selection is based on both prior knowledge we may have and the
availability of certain features!

• Feature can be concatenated for decision based on joint information.

5Computer Vision - 8 - Pattern recognition concepts



Features and feature extraction (revision)

• Classic features:

Features and feature extraction (revision)

• Classic features:
– Global colour and edge histograms
– Texture through co-occurrence matrices and fractal analysis

• MPEG-7 features:• MPEG-7 features:
– Dominant colour – clusters colours into a small number of colours in the image (salient colours)
– Scalable colour – HSI histogram (H with 16 levels, S with 4 levels and I with 4 levels)
– Colour Layout – divides image into block and obtains average colours (sketch like feature)C
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– Colour structure – histogram of local colour structures

Homogeneous structure filter response that indicates structure at different scales/orientations

C
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– Homogeneous structure – filter response that indicates structure at different scales/orientations
– Local Edge histogram - Image divided into 4x4 sub-regions, 5 bin edge histogram for each region

– Freeman Chain Code – represents the border of an object by a code of relative steps.

te
xt
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e

– Region-Based Shape – uses an ART basis functions response to describe shape along various
angular and radial directions.

– Contour-Based Descriptor - Finds curvature zero crossing points of the shape‘s contour (key points).
The position of key points are expressed relative to the length of the contour curve

sh
ap

e
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The position of key points are expressed relative to the length of the contour curve
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Features and feature extraction (revision)Features and feature extraction (revision)

I bdi i i• Image subdivision
– Global feature rarely have the descriptive power to capture all information in an

image
– This leaves global features usable only for some limited image recognition tasks and

motivates localized image analysis

• An image often requires a part based analysis:
– Context is global, but object are defined locally.
– Most image content is described at a local level.
– By dividing an image into parts we simplify recognition.
– Separating objects from context makes recognition more robust

• There are several way an image can be subdivided for analysis
– Object segmentation (when possible not na easy taks in “normal images”!)Object segmentation (when possible, not na easy taks in normal images !)
– Grid subdivision (easy but leads to sampling problems)
– Exhaustive search (slow)
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Computer vision system

I iti t

Computer vision system

• Image recognition system:
– Feature extraction: captures meaningful information from the image (for the

specific task at hand), reducing dimensionality.
P tt iti D th t l j b f l if i d ibi– Pattern recognition: Does the actual job of classifying or describing
observations, relying on the extracted features.

• System diagram:

pixel
space

feature
space

concept
space

pixels
feature
vector

Image content
recognition

Image Feature 
Extraction

Recognition 
machine
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Bayesian Decision TheoryBayesian Decision Theory
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Bayesian Decision TheoryBayesian Decision Theory

• Prior Probabilities:
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Bayesian Decision TheoryBayesian Decision Theory

• Class-conditional Probabilities:
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Bayesian Decision TheoryBayesian Decision Theory

• Posterior Probabilities:

MAP estimate
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Bayesian Decision TheoryBayesian Decision Theory

• Making a Decision:
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Bayesian Decision TheoryBayesian Decision Theory

• Probability of Error:
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Bayesian Decision TheoryBayesian Decision Theory
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Bayesian Decision TheoryBayesian Decision Theory

• Minimum-error-rate Classification:
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Bayesian Decision TheoryBayesian Decision Theory
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Bayesian Decision TheoryBayesian Decision Theory

• The Gaussian Density:
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Bayesian Decision TheoryBayesian Decision Theory

• Multivariate Gaussian:
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Bayesian Decision TheoryBayesian Decision Theory

• Bayes Linear Classifier:
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Bayesian Decision TheoryBayesian Decision Theory

• Plug-in classifier:
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Bayesian Decision TheoryBayesian Decision Theory

• Gaussian Density Estimation:

For more details see:
http://www.autonlab.org/tutorials/mle13.pdf
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Bayesian Decision TheoryBayesian Decision Theory

N ï B l ifi• Naïve Bayes classifier:
– Given a large number of features it is very difficult to estimate P(F|C) due

to all the correlations between features (sorry about the variable name
change).

– It is easier if we assume independent features (uncorrelated Gaussian
features).
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Bayesian Decision TheoryBayesian Decision Theory

N ï B l ifi• Naïve Bayes classifier:
– Assuming uncorrelated features makes all the math much simpler:

– Naïve assumption:

– Allowing for:

• PCA can be use to de-correlate the features!
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Bayesian Decision TheoryBayesian Decision Theory

• Classification error:
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DimensionalityDimensionality

• Curse of Dimensionality:
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Dimensionality

H id bl i h di i li

Dimensionality

• How to avoid problems with dimensionality:

• The complexity of the classifier increases as features are more heavilyThe complexity of the classifier increases as features are more heavily
correlated, far from Gaussian and overlapped.

• The rule of n/d>10 is only really valid for independent features
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Dimensionality

R d i di i li

Dimensionality

• Reducing dimensionality:
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PCA Principal Component analysisPCA – Principal Component analysis

Fi d th t t d t t ti d bl d t t ti i l• Finds the most accurate data representation and enable data representation in a lower 
dimensional space without much information loss.

– Assumes that variance is equal to information
– Assumes Gaussian variables
– Uses L2 norm

• In the resulting basis axis are aligned 
with major co-variance directions and axis
which do not represent large variances may
be removed without loss of information.
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PCA Principal Component analysisPCA – Principal Component analysis

• PCA – Principal Component analysis
– Useful for better Gaussian modeling of the data ( eliminates the need for a full 

covariance matrix))
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Feature space selectionFeature  space selection

P i i l t l i (PCA)• Principle component analysis (PCA)
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LDA Linear Discriminant AnalysisLDA - Linear Discriminant Analysis
Also know as Fisher's linear discriminant analysis:• Also know as Fisher's linear discriminant analysis:

– Projection that best separates 
the data in a least-squares 
sense.

– Projection of n-dimensional 
data onto a line.
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Fisher’s linear discriminants

f f• A simple linear discriminant function is a projection of the data down to 1-D.
– So choose the projection that gives the best separation of the classes. 

What do we mean by “best separation”?

• An obvious direction to choose is the direction of the line joining the class 
means.

B t if th i di ti f i i h l i t th l t– But if the main direction of variance in each class is not orthogonal to 
this line, this will not give good separation (see the next figure).

LDA h th di ti th t i i th ti f b t l• LDA chooses the direction that maximizes the ratio of between class 
variance to within class variance.
– This is the direction in which the projected points contain the most 

information about class membership (under Gaussian assumptions)information about class membership (under Gaussian assumptions)
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Illustration of the advantage of Fisher’s linear discriminantsIllustration of the advantage of Fisher s linear discriminants

When projected onto the line 
joining the class means, the 
l t ll

Fisher chooses a direction that makes 
the projected classes much tighter, 
even though their projected means areclasses are not well 

separated.
even though their projected means are 
less far apart.
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Math of Fisher’s linear discriminantsMath of Fisher s linear discriminants

• What linear transformation is best for 
discrimination? xwTy =

• The projection onto the vector 
separating the class means seems 
sensible:

12 mmw −∝

• But we also want small variance within 
each class:
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More math of Fisher’s linear discriminantsMore math of Fisher s linear discriminants
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Feature space selection

PCA LDA l

Feature  space selection

• PCA vs LDA examples:
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Feature space selection

PCA LDA l

Feature  space selection

• PCA vs LDA examples:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Distance-based classifiers:
– Nearest neighbor classier

• Decision boundary-based classifiers:
Decision trees– Decision trees

– Neural networks
– Support vector machinesSupport vector machines
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• The k-Nearest neighbor Classier:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Distance Functions:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

M h l bi di• Mahalanobis distance:
– Based on the covariance of each feature with the 

class examples.
B d th ti th t di t i th di ti f• Based on the assumption that distances in the direction of 
high variance are less important

• Highly dependent on a good estimate of covariance.

re
 2

– Superior to the Euclidean distance.

Fe
at

ur

where  P is the covariance matrix

F t 1Feature 1
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Linear Discriminant Functions:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Discriminative vs Generative models:• Discriminative vs Generative models:
– Discriminative models are a class of models used in machine learning for

modelling the dependence of an unobserved variable y on an observed variable x.
Within a statistical framework, this is done by modelling the conditional probabilityWithin a statistical framework, this is done by modelling the conditional probability
distribution P(y | x), which can be used for predicting y from x.

– Generative models can randomly generate observable data, typically given some
hidden parameters. It specifies a joint probability distribution over observation and
label sequences. Generative models are used in machine learning for either
modelling data directly or as an intermediate step to forming a conditional probability
density function. A conditional distribution can be formed from a generative model
through the use of Bayes' rulethrough the use of Bayes rule.

• Discriminative models differ from generative models in that they do not allow
one to generate samples from the joint distribution of x and y. However, for
tasks such as classification and regression that do not require the jointtasks such as classification and regression that do not require the joint
distribution, discriminative models generally yield superior performance. On the
other hand, generative models are typically more flexible than discriminative
models in expressing dependencies in complex learning tasks

44

models in expressing dependencies in complex learning tasks.
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Discriminative vs Generative models:• Discriminative vs Generative models:
Discriminative models 

go right to the point and 
define a decisionGenerative models 

estimate the 
distributions

define a decision 
boundary
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:

50Computer Vision - 8 - Pattern recognition concepts



Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:
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Non Bayesian ClassifiersNon-Bayesian Classifiers

• Decision trees:• Decision trees:

54Computer Vision - 8 - Pattern recognition concepts



Non Bayesian ClassifiersNon-Bayesian Classifiers

MLP• MLP:
– Formulated from loose biological principles
– Popularized mid 1980s

axonsynapse

nucleusPopularized mid 1980s
• Rumelhart, Hinton & Williams 1986
• Werbos 1974, Ho 1964

cell body

nucleus

dendrites

• “learn” pre-processing stage from data

dendrites

• layered, feed-forward structure
– sigmoidal pre-processingg p p g
– task-specific output

non-linear model
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PerceptronPerceptron
• “Perceptrons” describes a whole family of learning machines, but the 

standard type consisted of a layer of fixed non-linear basis functions 
followed by a simple linear discriminant function.y p
– They were introduced in the late 1950’s and they had a simple online 

learning procedure.
– Grand claims were made about their abilities This led to lots ofGrand claims were made about their abilities. This led to lots of 

controversy. 
– Researchers in symbolic AI emphasized their limitations (as part of an 

ideological campaign against real numbers probabilities and learning)ideological campaign against real numbers, probabilities, and learning) 
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PerceptronPerceptron
• Model:• Model:

– Rosenblatt (1962)
– Linear separation
– Inputs :Vector of real values

1– Outputs :1 or -1
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PerceptronPerceptron
D fi l th t li l
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• Defines a plane that linearly 
separates the feature space.
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PerceptronPerceptron
• Decision surface:

– The decision surface for a single perceptron is a line.
– Can represent some functions (AND(x1 x2) for example)Can represent some functions (AND(x1,x2) for example).
– Can only work on linearly separable problems (fails on the XOR).
– For non-linearly separable problems perceptrons must be organized in networks.
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PerceptronPerceptron

• Error function
– One possible error measure is the number of misclassified examples.

Suppose Y = { 1 1} and the estimated classifier y(x) also outputs a result which is– Suppose Y = {−1, 1} and the estimated classifier y(x) also outputs a result which is 
either +1 or −1.

– An example <X(n), Y(n)> is misclassified if Y(n)*y(X(n)) is negative.
S bl f ti i j t ti th b f l tl– So a reasonable error function is just counting the number of examples correctly 
classified:

∑
n

iXiYWE ))(()()( ∑
∈

−=
fiedmissclassii

iXyiYWE ))(()()(

– This is called 0-1 loss
– How can we find the best weights W?How can we find the best weights W?
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Learning (The perceptron rule)Learning (The perceptron rule)
Mi i i ti f th t f ti• Minimization of the cost function :

– This is an error counting cost function ->

• J(w) is always >= 0 (M is the ensemble of bad classified examples)
∑ ∈

−=
Mk

kk
pvywJ )(

( ) y ( p )
– is the target value 

Partial cost

k
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• Partial cost
– If        is not well classified :
– If is well classified:
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• Perceptron algorithm (updates w to reduce J):
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PerceptronPerceptron
• Activation Functions

• Controls when unit is “active” or 
“inactive”

• Threshold function (sign) outputs 1 
when input is positive and 0 
otherwiseotherwise

• Sigmoid function = 1 / (1 + e-x)

• Sigmoid function behaves very 
closely to the threshold function but 
enable backwards error propagationenable backwards error propagation 
since it is continuously derivable. 
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A Sigmoidal UnitA Sigmoidal Unit

x1
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Combining multiple PerceptronsCombining multiple Perceptrons
• Adding layers to the MLPs and combining 

individual perceptrons:

• To handle more complex problems (than linearly

x1

x2• To handle more complex problems (than linearly 
separable ones) we need multiple layers.

• Each layer receives its inputs from the previous 
j

2

xu

y

layer and forwards its outputs to the next layer

• The result is the combination of linear 
boundaries which allow the separation of

j

xd
boundaries which allow the separation of 
complex 

• Weights are obtained through the back 
propagation algorithm

L0 L1 L2

( )Ty w v bθ +propagation algorithm ( )
( )T
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y w v b

v w x b

θ

σ

= +

= +
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Diff t li l bl bl
Types of Exclusive OR Classes with Most General

Different non linearly separable problems

Structure Types of
Decision Regions

Exclusive-OR
Problem

Classes with
Meshed regions

Most General
Region Shapes

Single-Layer Half Plane A Bg y Half Plane
Bounded By
Hyperplane

A

AB

B
B

A

Two-Layer Convex Open
Or

A B
B

A

Three-Layer

Closed Regions

Abitrary

AB

A B

A

Three Layer
(Complexity

Limited by No.
of Nodes)

A

AB

B
B

A
o Nodes)

Neural Networks – An Introduction Dr. Andrew Hunter
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Neural Network LearningNeural Network Learning

Back-Propagation Algorithm:
function BACK-PROP-LEARNING(examples network) returns a neural networkfunction BACK PROP LEARNING(examples, network) returns a neural network

inputs: examples, a set of examples, each with input vector x and output vector y
network, a multilayer network with L layers, weights Wj,i , activation function g

repeat
for each e in examples dofor each e in examples do

for each node j in the input layer do aj xj[e]
for l = 2 to M do

ini  ∑j Wj,i aj
ai g(ini)

for each node i in the output layer dop y
Δj g’(inj) ∑i Wji Δi

for l = M – 1 to 1 do
for each node j in layer l do

Δj g’(inj) ∑i Wj,i Δi
f h d i i l l + 1 dfor each node i in layer l + 1 do

Wj,i Wj,i + α x aj x Δi
until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network)
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Back Propagation IllustrationBack-Propagation Illustration

ARTIFICIAL NEURAL NETWORKS Colin Fahey's Guide (Book CD)
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Radial Basis Functions (RBFs)Radial Basis Functions (RBFs)
F t• Features
– One hidden layer
– The activation of a hidden unit is determined by the distance between the input 

t d t t tvector and a prototype vector

Outputs

Radial units

Inputs

68Computer Vision - 8 - Pattern recognition concepts



Radial Basis Functions (RBFs)Radial Basis Functions (RBFs)

• RBF hidden layer units have a receptive field which has a 
centre

• Generally, the hidden unit function is Gaussian
• The output Layer is linear
• Realized function
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Radial Basis Functions (RBFs)Radial Basis Functions (RBFs)
• Learning

– The training is performed by deciding on
• How many hidden nodes there should be
• The centers and the sharpness of the Gaussians

2 steps– 2 steps
• In the 1st stage, the input data set is used to determine the 

parameters of the basis functionspa a e e s o e bas s u c o s
• In the 2nd stage, functions are kept fixed while the second 

layer weights are estimated ( Simple BP algorithm like for 
MLPs)
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MLPs versus RBFsMLPs versus RBFs
Cl ifi ti• Classification
– MLPs separate classes via 

hyperplanes X2 MLP
– RBFs separate classes via 

hyperspheres
• Learning

2

– MLPs use distributed learning
– RBFs use localized learning
– RBFs train faster

X1

• Structure
– MLPs have one or more hidden 

layers

X2 RBF
y

– RBFs have only one layer
– RBFs require more hidden neurons 

=> curse of dimensionality X1y 1
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Support Vector MachinesSupport Vector Machines
D i i f i h l (li i 2D) i f t ( i il t• Decision surface is a hyperplane (line in 2D) in feature space (similar to 
the Perceptron)

• Arguably, the most important recent discovery in machine learning

• In a nutshell:In a nutshell: 
– map the data to a predetermined very high-dimensional space via a 

kernel function
Fi d th h l th t i i th i b t th t– Find the hyperplane that maximizes the margin between the two 
classes

– If data are not separable find the hyperplane that maximizes the 
i d i i i th ( i ht d f th )margin and minimizes the (a weighted average of the) 

misclassifications
Slides from: Constantin F. Aliferis & Ioannis Tsamardinos
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Support Vector MachinesSupport Vector Machines

• Three main ideas:
1 Define what an optimal hyperplane is (in way that can be identified in1. Define what an optimal hyperplane is (in way that can be identified in 

a computationally efficient way): maximize margin
2. Extend the above definition for non-linearly separable problems: have 

a penalty term for misclassificationsa penalty term for misclassifications
3. Map data to high dimensional space where it is easier to classify with 

linear decision surfaces: reformulate problem so that data is mapped 
i li itl t thiimplicitly to this space
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Support Vector MachinesSupport Vector Machines

• Three main ideas:
1 Define what an optimal hyperplane is (in way that can be identified in1. Define what an optimal hyperplane is (in way that can be identified in 

a computationally efficient way): maximize margin
2. Extend the above definition for non-linearly separable problems: have 

a penalty term for misclassificationsa penalty term for misclassifications
3. Map data to high dimensional space where it is easier to classify with 

linear decision surfaces: reformulate problem so that data is mapped 
i li itl t thiimplicitly to this space
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Which Separating Hyperplane to Use?Which Separating Hyperplane to Use?

Var1

Var22
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Maximizing the MarginMaximizing the Margin

Var1
IDEA 1: Select the 
separating 
hyperplane that 
maximizes the 
margin!

Margin 
Width

Var2

Margin 
Width 2
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Support VectorsSupport Vectors

Var1

Support Vectors

Var2

Margin 
Width

2
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Setting Up the Optimization ProblemSetting Up the Optimization Problem

Var1

The width of the 
margin is:

2 k

kbxw =+⋅
rr

wr

w

So, the problem is:

Var2kbxw −=+⋅
rr kk

w
2

max

( ) f l 1

k
w

t b k≥ ∀

0=+⋅ bxw rr
k . . ( ) ,   of class 1
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s t w x b k x
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Setting Up the Optimization ProblemSetting Up the Optimization Problem

Var1

There is a scale and unitThere is a scale and unit 
for data so that k=1. Then 
problem becomes:

1w x b⋅ + =
r r

r
2max
w

Var21w x b⋅ + = −
r r

1w x b+

11

wr
. . ( ) 1,   of class 1

( ) 1,   of class 2
s t w x b x
w x b x

⋅ + ≥ ∀
⋅ + ≤ − ∀

Var21w x b⋅ + =

0=+⋅ bxw rr

11
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Setting Up the Optimization ProblemSetting Up the Optimization Problem

• If class 1 corresponds to 1 and class 2 corresponds to -1, we can 
rewrite

( ) 1 with 1w x b x y⋅ + ≥ ∀ =

• as

( ) 1,   with 1
( ) 1,   with 1

i i i

i i i

w x b x y
w x b x y

+ ≥ ∀
⋅ + ≤ − ∀ = −

S th bl b

( ) 1,  i i iy w x b x⋅ + ≥ ∀

• So the problem becomes:

2max 21min
2

w

. . ( ) 1,  i i i

w
s t y w x b x⋅ + ≥ ∀

2
. . ( ) 1,  i i is t y w x b x⋅ + ≥ ∀

or
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Linear, Hard-Margin SVM FormulationLinear, Hard Margin SVM Formulation

• Find w,b that solves

21imin
2
( ) 1

w

st y w x b x+ ≥ ∀
• Problem is convex so, there is a unique global minimum value (when feasible)

Th i l i i i i i i ht d b l th t id th

. . ( ) 1, i i is t y w x b x⋅ + ≥ ∀

• There is also a unique minimizer, i.e. weight and b value that provides the 
minimum

• Non-solvable if the data is not linearly separable
Q d ti P i• Quadratic Programming
– Very efficient computationally with modern constraint optimization 

engines (handles thousands of constraints and training instances).
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Max Margin Loss FunctionMax Margin Loss Function

Primal

DualDual

82Computer Vision - 8 - Pattern recognition concepts



Support Vector ExpansionSupport Vector Expansion

New decision Function

• When αi is non-zero then xi is a support vector
• When αi is zero xi is not a support vector
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Support Vector MachinesSupport Vector Machines

• Three main ideas:
1 Define what an optimal hyperplane is (in way that can be identified in1. Define what an optimal hyperplane is (in way that can be identified in 

a computationally efficient way): maximize margin
2. Extend the above definition for non-linearly separable problems: have 

a penalty term for misclassificationsa penalty term for misclassifications
3. Map data to high dimensional space where it is easier to classify with 

linear decision surfaces: reformulate problem so that data is mapped 
i li itl t thiimplicitly to this space
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Non Linearly Separable DataNon-Linearly Separable Data

Var1
iξ

Introduce slack 
variables

Allow some instances 

iξ

iξ

1b+
r r

to fall within the 
margin, but penalize 
them

V

1w x b⋅ + =

1

wr

Var21w x b⋅ + = −
r r

0=+⋅ bxw rr

11
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Non Linearly Separable Data
Constraint becomes :

Non-Linearly Separable Data

Var1
iξ

Constraint becomes :

( ) 1 , 
0

i i i iy w x b xξ
ξ

⋅ + ≥ − ∀
≥

iξ
Objective function penalizes 
for misclassified instances and

0iξ ≥

iξ

1w x b⋅ + =
r r

wr

for misclassified instances and 
those within the margin

21min w C ξ+ ∑

Var21w x b⋅ + = −
r r 11

w

C trades-off margin width and

min
2 i

i
w C ξ+ ∑

2w x b

0=+⋅ bxw rr

11 C trades off margin width and 
misclassifications
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Linear Soft-Margin SVMsLinear, Soft-Margin SVMs

( ) 1 ,  
0

i i i iy w x b xξ
ξ

⋅ + ≥ − ∀

≥

21min
2 i

i

w C ξ+ ∑

• Algorithm tries to maintain ξi to zero while maximizing margin

0iξ ≥2 i

• Notice: algorithm does not minimize the number of misclassifications (NP-
complete problem) but the sum of distances from the margin hyperplanes

• Other formulations use ξi
2 instead

• As C→∞, we get closer to the hard-margin solution
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Robustness of Soft vs Hard Margin SVMsRobustness of Soft vs Hard Margin SVMs

Var1
Var1

iξ

ξi

Var2

0=+⋅ bxw rr

Var20=+⋅ bxw rr

0=+⋅ bxw

Soft Margin SVN Hard Margin SVN
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Soft vs Hard Margin SVMSoft vs Hard Margin SVM

• Soft-Margin always have a solution

• Soft-Margin is more robust to outliers
– Smoother surfaces (in the non-linear case)

H d M i d i h• Hard-Margin does not require to guess the cost parameter 
(requires no parameters at all)
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Support Vector MachinesSupport Vector Machines

• Three main ideas:
1 Define what an optimal hyperplane is (in way that can be identified in1. Define what an optimal hyperplane is (in way that can be identified in 

a computationally efficient way): maximize margin
2. Extend the above definition for non-linearly separable problems: have 

a penalty term for misclassificationsa penalty term for misclassifications
3. Map data to high dimensional space where it is easier to classify with 

linear decision surfaces: reformulate problem so that data is mapped 
i li itl t thiimplicitly to this space
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Disadvantages of Linear Decision SurfacesDisadvantages of Linear Decision Surfaces

Var1

Var2
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Advantages of Non Linear SurfacesAdvantages of Non-Linear Surfaces

Var1

Var2
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Linear Classifiers in High Dimensional SpacesLinear Classifiers in High-Dimensional Spaces

Var1 Constructed Feature 2

VarVar2 Constructed Feature 1

Find function Φ(x) to map to a different space
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Mapping Data to a High Dimensional SpaceMapping Data to a High-Dimensional Space

• Find function Φ(x) to map to a different space, then SVM formulation 
becomes:

21min w C ξ+ ∑ ,1))(( .. ∀−≥+Φ⋅ iii xbxwyts ξ

• Data appear as Φ(x), weights w are now weights in the new space

min
2 i

i

w C ξ+ ∑ 0
,))((

≥i

iiiy
ξ

ξ

pp ( ), g g p

• Explicit mapping expensive if Φ(x) is very high dimensional

• Solving the problem without explicitly mapping the data is desirableg p p y pp g
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The Dual of the SVM FormulationThe Dual of the SVM Formulation
• Original SVM formulation• Original SVM formulation

– n inequality constraints
– n positivity constraints
– n number of ξ variables

∑+
i

ibw
Cw ξ2

, 2
1min

• The (Wolfe) dual of this problem
0

 ,1))((  ..
≥

∀−≥+Φ⋅

i

iii xbxwyts
ξ

ξ

The (Wolfe) dual of this problem
– one equality constraint
– n positivity constraints
– n number of α variables 

(Lagrange multipliers)
∑ ∑−Φ⋅Φ

ji i
ijijijia

xxyy
i

))()((
2
1min ααα

(Lagrange multipliers)
– Objective function more 

complicated

• NOTICE: Data only appear as ∑ =

∀≥≥ i

y
xts

0
 ,0C  .. i

α

α

ji i,

• NOTICE: Data only appear as 
Φ(xi) ⋅ Φ(xj)

∑ =
i

ii y 0α
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Incorporating Kernels in SVMsIncorporating Kernels in SVMs

O ’• Optimize αi’s and bias w.r.t. kernel
• Decision function:
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Polynomial KernelsPolynomial Kernels

• The dot product is related to a polynomial power of the 
original dot product.

• if c is large then focus on linear terms
• if c is small focus on higher order terms
• Very fast to calculate
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Radial Basis FunctionsRadial Basis Functions

• The inner product of two points is related to the distance in space 
between the two points.

• Placing a bump on each point.
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