
BACKGROUND MODELING AND SUBTRACTION BY CODEBOOK CONSTRUCTION

Kyungnam Kim1, Thanarat H. Chalidabhongse2, David Harwood1, Larry Davis1

1Computer Vision Lab, University of Maryland, College Park, MD 20742, USA
2Faculty of Information Technology, King Mongkut’s Institute of Technology, Thailand

1{knkim|harwood|lsd@umiacs.umd.edu}, 2{thanarat@it.kmitl.ac.th}

ABSTRACT
We present a new fast algorithm for background modeling
and subtraction. Sample background values at each pixel
are quantized into codebooks which represent a compressed
form of background model for a long image sequence. This
allows us to capture structural background variation due to
periodic-like motion over a long period of time under lim-
ited memory. Our method can handle scenes containing
moving backgrounds or illumination variations (shadows and
highlights), and it achieves robust detection for compressed
videos. We compared our method with other multimode
modeling techniques.

1. INTRODUCTION

In visual surveillance, a common approach for discriminat-
ing moving objects from the background is detection by
background subtraction. Some background models assume
that the series of intensity values of a pixel can be modeled
by a single unimodal distribution. This basic model is used
in [1, 2]. However, a single-mode model cannot handle mul-
tiple backgrounds, such as waving trees. The generalized
mixture of Gaussians (MOG) has been used to model com-
plex, non-static backgrounds [3, 4]. The MOG has some
disadvantages. Background having fast variations cannot
be accurately modeled with just a few Gaussians, causing
problems for sensitive detection. To overcome these prob-
lems, a non-parametric technique [5] was developed for es-
timating background probabilities at each pixel from many
recent samples over time using Kernel density estimation.
These pixel-based techniques assume that the time series of
observation is independent at each pixel. In contrast, some
researchers employ a region- or frame-based approach by
segmenting an image into regions or by refining low-level
classification obtained at the pixel level [4, 6].

Our codebook (CB) background subtraction algorithm
was intended to sample values over long times, without mak-
ing parametric assumptions. The key features of our al-
gorithm are in the followings: (1) resistance to artifacts
of acquisition, digitization and compression, (2) capabil-
ity of coping with illumination changes, (3) adaptive and

compressed background models that can capture structural
background motion over a long period of time under limited
memory, (4) unconstrained training that allows moving
foreground objects in the scene during the initial training
period.

In Sec.2, we describe the background modeling method
along with the color metric and foreground detection. We
show, in Sec.3, that the method is suitable for both station-
ary and moving backgrounds and is robust with respect to
image quality. Conclusions and future work are presented
in Sec.4.

2. BACKGROUND MODELING

The CB algorithm adopts a quantization/clustering technique
[7], to construct a background model. Samples at each pixel
are clustered into the set of codewords. The background is
encoded on a pixel by pixel basis.

2.1. Construction of the codebook

Let X be a training sequence for a single pixel consist-
ing of N RGB-vectors: X = {x1,x2, ...,xN}. Let C =
{c1, c2, ..., cL} represent the codebook for the pixel con-
sisting of L codewords. Each pixel has a different codebook
size based on its sample variation. Each codeword ci, i =
1 . . . L, consists of an RGB vector vi = (R̄i, Ḡi, B̄i) and a
6-tuple auxi = 〈Ǐi, Îi, fi, λi, pi, qi〉. The tuple auxi con-
tains intensity (brightness) values and temporal variables
described below.

Ǐ , Î : the min and max brightness, respectively,
that the codeword accepted;

f : the frequency with which the codeword has occurred;
λ : the maximum negative run-length (MNRL)

defined as the longest interval during the
training period that the codeword has NOT recurred;

p, q : the first and last access times, respectively,
that the codeword has occurred.

In the training period, each value, xt, sampled at time t is
compared to the current codebook to determine which code-
word cm (if any) it matches (m is the matching codeword’s

index). We use the matched codeword as the sample’s en-
coding approximation. To determine which codeword will
be the best match, we employ a color distortion measure and
brightness bounds. The detailed algorithm is given below.

Algorithm for Codebook Construction
I. L← 0 (← means assignment), C ← ∅ (empty set)

II. for t=1 to N do

i. xt = (R,G,B), I ← R+G+B

ii. Find the codeword cm in C = {ci|1 ≤ i ≤ L} matching to
xt based on two conditions (a) and (b).

(a) colordist(xt,vm) ≤ ε1

(b) brightness(I, 〈Ǐm, Îm〉) = true
iii. If C = ∅ or there is no match, then L ← L + 1. Create a new

codeword cL by setting

• vL ← (R,G,B)

• auxL ← 〈I, I, 1, t− 1, t, t〉.

iv. Otherwise, update the matched codeword cm, consisting of
vm = (R̄m, Ḡm, B̄m) and auxm = 〈Ǐm, Îm, fm, λm, pm,

qm〉, by setting

• vm ← (fmR̄m+R

fm+1
,

fmḠm+G

fm+1
,

fmB̄m+B

fm+1
)

• auxm ← 〈 min{I, Ǐm}, max{I, Îm}, fm + 1,
max{λm, t− qm}, pm, t 〉.

end for
III. For each codeword ci, i = 1 . . . L, wrap around λi by setting

λi ← max{λi, (N − qi + pi − 1)}.

The two conditions (a) and (b), detailed in Eq.2,3 later,
are satisfied when the pure colors of xt and cm are close
enough and the brightness of xt lies between the accept-
able brightness bounds of cm. Instead of finding the nearest
neighbor, we just find the first codeword to satisfy these two
conditions. ε1 is the sampling threshold (bandwidth).

Note that reordering the training set almost always re-
sults in codebooks with the same detection capacity. Re-
ordering the training set would require maintaining all or
a large part of it in memory. Experiments show that one-
pass training is sufficient. Retraining (i.e., iteration of the
codebook construction algorithm) does not affect detection
significantly.

2.2. Maximum Negative Run-Length

We refer to the codebook obtained from the previous step as
the fat codebook. In the temporal filtering step, we refine the
fat codebook by separating the codewords that might con-
tain moving foreground objects from the true background
codewords, thus allowing moving foreground objects dur-
ing the initial training period. The true background, which
includes both static pixels and moving background pixels,
usually is quasi-periodic (values recur in a bounded period).
This motivates the temporal criterion of MNRL (λ), which
is defined as the maximum interval of time that the code-
word has not recurred during the training period.

.
.
vi (codeword)

xt (input pixel)
p

δδδδ

R

G

B O

εεεε

Ilow

Ihi
decision boundary

θθθθ

I

I

Fig. 1. The proposed color model - separate evaluation of color
distortion and brightness distortion.

Let M denote the background model (a new codebook
after temporal filtering):

M = {cm|cm ∈ C ∧ λm ≤ TM}. (1)

Usually, a threshold TM is set equal to half the number of
training frames, N

2
.

A codeword having a large λwill be eliminated from the
codebook by Eq.1. Even though one has a large frequency
‘f ’, its large λ means that it is mostly a foreground event
which was stationary only for that period f . On the other
hand, one having a small f and a small λ could be a rare
background event occurring quasi-periodically.

Experiments show that only 6.5 codewords per pixel
(on average) are required for the background acquisition in
order to model 5 minutes of 30 fps outdoor video. This
reasonable number of codewords means that our method
achieves a high compression of the background model. This
allows us to capture variable moving backgrounds over a
very long period of time with limited memory.

2.3. Color and Brightness

To cope with the problem of illumination changes such as
shading and highlights, we utilize a color model separating
the color and brightness components.

We observe that the pixel values sampled over time are
mostly distributed along the axis going toward the origin
point (0, 0, 0). We developed a new color model depicted
in Fig.1 to perform a separate evaluation of color distortion
and brightness distortion. The motivation of this model is
that the background pixel values lie along the principal axis
of the codeword with the low and high bound of brightness
since the variation is mainly due to the brightness. When
we have an input pixel xt = (R,G,B) and a codeword ci

where vi = (R̄i, Ḡi, B̄i),

‖xt‖
2 = R2 +G2 +B2

‖vi‖
2 = R̄2

i + Ḡ2
i + B̄2

i

〈xt,vi〉
2 = (R̄iR+ ḠiG+ B̄iB)2.

(a) original image (b) standard deviations

(c) unimodal model in [2] (d) MOG

(e) Kernel (f) CB

Fig. 2. Detection results on a compressed video

The color distortion δ can be calculated by

p2 = ‖xt‖
2
cos2 θ = 〈xt,vi〉

2

‖vi‖
2

colordist(xt,vi) = δ =

√

‖xt‖
2
− p2.

(2)

To allow for brightness changes in detection, we con-
sider Ǐ and Î statistics in the 6-tuple defined in Sec.2.1. In
detection, we allow the brightness change to vary in a cer-
tain range that limits the shadow level and highlight level.
The range is [Ilow, Ihi], for each codeword, defined as Ilow =

αÎ, Ihi = min{βÎ, Ǐ
α
} where α < 1 and β > 1. Typically,

α is between 0.4 – 0.7, and β is between 1.1 – 1.5. This
range [Ilow, Ihi] becomes a stable range during codebook
updating. The logical brightness function in Sec.2.1 is de-
fined as

brightness(I, 〈Ǐ , Î〉) =

{

true if Ilow ≤ ‖xt‖ ≤ Ihi

false otherwise.
(3)

2.4. Foreground Detection

Subtracting the current image from the background model is
straightforward. Unlike MOG or [5] which compute prob-
abilities using costly floating point operations, our method
does not involve probability calculation. Indeed, the prob-
ability estimate in [5] is dominated by the nearby training
samples. We simply compute the distance of the sample

(a) original image (b) MOG

(c) Kernel (d) CB

Fig. 3. Differences in the color metrics of the algorithms

from the nearest cluster mean. This is very fast and shows
little difference in detection compared with the probability
estimate. The subtraction operation BGS(x)for an incom-
ing pixel value x in the test set is defined as:

Algorithm for Background Subtraction
I. x = (R,G,B), I ← R+G+B

II. For all codewords inM in Eq.1, find the codeword cm matching
to x based on two conditions:

• colordist(x,vm) ≤ ε2

• brightness(I, 〈Ǐm, Îm〉) = true

III. BGS(x) =

{

foreground if there is no match
background otherwise.

ε2 is the detection threshold.

3. DETECTION RESULTS AND COMPARISON

This section demonstrates the performance of the proposed
algorithm compared with MOG [3] and Kernel [5].

Fig.2(a) is an image extracted from the MPEG video
encoded at 70 kbits/sec. Fig.2(b) depicts a 20-times scaled
image of the standard deviations of green(G)-channel val-
ues in the training set. The distribution of pixel values has
been affected by the blocking effects of MPEG. The uni-
modal model in Fig.2(c) suffers from these effects. For
compressed videos having very abnormal distributions, CB
eliminates most compression artifacts - see Fig.2(c)-2(f).

Fig.3(a)-3(d) depict an example of foreground detec-
tion, showing differences in the color metrics of the algo-
rithms. The video image in Fig.3(a) shows someone with
a red sweater standing in front of a brick wall of somewhat
different reddish color. In the MOG result, there are de-
tection holes through the sweater (and the face) and more

(a) original image (b) MOG

(c) Kernel (d) CB

Fig. 4. Detection results on training of non-clean backgrounds

shadows behind the person (Fig.3(b)). The holes are mainly
due to difference in color balance and not overall brightness.
Kernel shows some miss-detection on the face.

To test unconstrained training, we applied the algorithms
to a video in which people are almost always moving in and
out a building (see Fig.4(a)-4(d)). By λ-filtering, CB was
able to obtain the most complete background model.

Multiple backgrounds moving over a long period of time
cannot be well trained with techniques having limited mem-
ory constraints. A sequence of 1000 frames recorded at 30
frames per second (fps) was trained. It contains trees mov-
ing irregularly over that period. The number of Gaussians
allowed for MOG was 20. A sample of size 300 was used
to represent the background for Kernel. Fig.5(a)-5(d) shows
that CB captures most multiple background events. This is
due to a compact background model represented by quan-
tized codewords. The processing speeds for this sequence
are reported in Table1. The implementation of our approach
is straightforward and it is faster than MOG and Kernel.

Further performance evaluation of the algorithms was
reported in [8] where a Perturbation Detection Rate (PDR)
analysis measures the sensitivity of a background subtrac-
tion algorithm in detecting low contrast targets against back-
ground as a function of contrast. The results in [8] reflect
obvious differences among the algorithms as applied to the
particular type of background scenes.

4. CONCLUSIONS AND FUTURE WORK

Our new adaptive background subtraction algorithm, which
is able to model a background from a long training sequence
with limited memory, works well on moving backgrounds,
illumination changes (using our color distortion measures),
and compressed videos. Comparison with other multimode
modeling algorithms shows that the proposed one has good
properties on several background modeling problems.

(a) original image (b) MOG

(c) Kernel (d) CB

Fig. 5. Detection results on very long-time backgrounds

MOG Kernel CB
background training 8.3 40.8 39.2

background subtraction 12.1 11.1 30.7

Table 1. Processing speed (fps) on 2GHz Pentium system

The future work will be focused on improving the CB
algorithm in terms of automatic parameter estimation and
integration of detection and tracking.

5. REFERENCES

[1] C.R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland,
“Pfinder: Real-time tracking of the human body,” IEEE
Transactions on PAMI, Vol. 19, no. 7, pp. 780-785, 1997.

[2] T. Horprasert, D. Harwood, and L.S. Davis, “A statistical
approach for real-time robust background subtraction and
shadow detection,” IEEE Frame-Rate Applications Workshop,
Kerkyra, Greece, 1999.

[3] C. Stauffer and W.E.L. Grimson, “Adaptive background mix-
ture models for real-time tracking,” Int. Conf. Computer Vi-
sion and Pattern Recognition, Vol. 2, pp. 246-252, 1999.

[4] M. Harville, “A framework for high-level feedback to adap-
tive, per-pixel, mixture-of-gaussian background models,” Eu-
ropean Conf. Computer Vision, Vol. 3, pp. 543-560, 2002.

[5] A. Elgammal, D. Harwood, and L.S. Davis, “Non-parametric
model for background subtraction,” European Conf. Com-
puter Vision, Vol. 2, pp. 751-767, 2000.

[6] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,
“Wallflower: Principles and practice of background mainte-
nance,” Int. Conf. Computer Vision, pp. 255-261, 1999.

[7] T. Kohonen, “Learning vector quantization,” Neural Net-
works, Vol. 1, pp. 3-16. 1988.

[8] T. H. Chalidabhongse, K. Kim, D. Harwood and L. Davis,
“A Perturbation Method for Evaluating Background Subtrac-
tion Algorithms”, Joint IEEE International Workshop on Vi-
sual Surveillance and Performance Evaluation of Tracking
and Surveillance (VS-PETS), 2003.

