Computer Vision - 3 Segmentation

MAP-I Doctoral Programme

Miguel Tavares Coimbra

Outline

- Thresholding
- Region-based Segmentation
- Morphological Filters

Acknowledgements: Most of this course is based on the excellent courses offered by Prof. Shree Nayar at Columbia University, USA and by Prof. Srinivasa Narasimhan at CMU, USA. Please acknowledge the original source when reusing these slides for academic purposes.

Topic: Thresholding

- Thresholding
- Region-based Segmentation
- Morphological Filters

Boundaries of Objects

Marked by many users
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/html/images.html

Boundaries of Objects from Edges

Brightness Gradient (Edge detection)

- Missing edge continuity, many spurious edges

Boundaries of Objects from Edges

Multi-scale Brightness Gradient

- But, low strength edges may be very important

Machine Edge Detection

Image

Human Boundary Marking

Boundaries in Medical Imaging

A

B

C

Fig. 2. Representation of a closed contour by elliptic Fourier descriptors. (a) Input. (b) Series truncated at 16 harmonics. (c) Series truncated to four harmonics.

Detection of cancerous regions.

Boundaries in Ultrasound Images

Hard to detect in the presence of large amount of speckle noise

Sometimes hard even for humans!

What is 'Segmentation'?

- Separation of the image in different areas.
- Objects.
- Areas with similar
 visual or semantic characteristics.

Not trivial! It is the holy grail of most computer vision problems!

Subjectivity

- A 'correct' segmentation result is only valid for a specific context.
- Subjectivity!
- Hard to implement.
- Hard to evaluate.

Core Technique: Thresholding

- Divide the image into two areas:
- 1, if $f(x, y)>K$
- 0 , if $f(x, y)<=K$
- Not easy to find the ideal \boldsymbol{k} magic number.
- Core segmentation technique
- Simple
- Reasonably effective

Finding the 'magic number'

Sonnet for Lena

O dear Lena, your beauty is so vast
It is hard sometimes to describe it fast.
It thought the entire world I would impress
If only your portrait I could compress.
Alas! First when I tried to use VQ
I found that your cheeks belong to only you. Your silky hair contains a thousand lines Hard to match with sums of discrete cosines. And for your lips, sensual and tactual Thiriorn Crays found not the proper fractal

```
Sulltu=| |: |
C) Ar:all
It im thal| - \...
It thmught th. .:
Monly swon1 [w!' .1t'l
```



```
            - mith mutan of dingtete towines
                ta,maral and tartisul
            *)
```

Global thresholds are not always adequate...

Adaptive Thresholding

- Adapt the threshold value for each pixel.
- Use characteristics of nearby pixels.
- How?
- Mean
- Median
- Mean + K
- ...

Mean of 7×7 neighborhood

Sonnel: for Lena

O dear ledar, jutur licauty is mationt it is bart sumetimes to dencribe it fast. I thinghthe the mitire world I would bungtess If otily gnur jottali I tould compress. Alas! First whet Itriel to use VQ 1 fonnd thin your cheeks belong to only you. Your kilky hait cumtalins in thensuma libes llatel to suatch will stums of aliscrete cosines. And for your lips, sentisual and thetual Thitiren Criges fomal ant the proper fracint. And white these arthatek nof all guter kr:wre I might have fixel them with limke laree or there B:at when fillera tesk aparkde from your "ywn I sain, 'Dintin ill thin. I'ls just aligitize."

Sonnet for Lena

O deer Lema, your heauty fo wo vart
It is hand wonntiznea to describe ic taet. I thought the entipe world 1 would inoptem If only wour portrait I ratilit romprome.
Alme! Firat whrli I trimel to ume VQ
Ifound that yutar cherics belong to only you.
Your silky hoir contajun a thowand linee
Hanl to ralalch with sums of diacrece comines.
And for yomir lipm, mpanual and twrisal
Thirn end C'rayk fontud nat the proper fractal.
 I tught have fixenl thinit with limike here or thetr
 t neid. 'Danir eall thin. I'll junt digitize."

Thernas Coblturet

Topic: Region-based Segmentation

- Thresholding

- Region-based Segmentation
- Morphological Filters

Acknowledgements: Most of this course is based on the excellent courses offered by Prof. Shree Nayar at Columbia University, USA and by Prof. Srinivasa Narasimhan at CMU, USA. Please acknowledge the original source when reusing these slides for academic purposes.

Why Region-Based Segmentation?

- Segmentation
- Edge detection and Thresholding not always effective.
- Homogenous regions
- Region-based segmentation.
- Effective in noisy images.

Definitions

- Based on sets.
- Each image R is a set of regions R_{i}.
- Every pixel belongs to one region.
- One pixel can only belong to a single region.

$$
R=\bigcup_{i=1}^{S} R_{i} \quad R_{i} \bigcap R_{j} \neq 0
$$

Basic Formulation

Let R represent the entire image region. Segmentation partitions R into n subregions, $R_{1}, R_{2}, \ldots, R_{n}$, such that:
a) $\bigcup_{i=1}^{n} R_{i}=R$
b) $\quad R_{i}$ is a connected region, $i=1,2, \ldots, n$.
c) $\quad R_{i} \cap R_{j}=\phi$ for all i and $j, i \neq j$
d) $\quad P\left(R_{i}\right)=T R U E$ for $i=1,2, \ldots, n$.
e) $\quad P\left(R_{i} \cup R_{j}\right)=F A L S E$ for $i \neq j$.
a) Every pixel must be in a region
b) Points in a region must be connected.
c) Regions must be disjoint.
d) All pixels in a region satisfy specific properties.
e) Different regions have different properties.

How do we form regions?

- Region Growing
- Region Merging
- Region Splitting
- Split and Merge
- Watershed

What a computer sees

Region growing

- Groups pixels into larger regions.
- Starts with a seed point.
- Grows region by merging neighboring pixels.
- Iterative process
- How to start?
- How to iterate?
- When to stop?

- Seed Pixel
\uparrow Direction of Growth
(a) Start of Growing a Region

- Grown Fixels
* Fixels Being

Considered
(b) Growing Process After a Few Iterations

Region merging

- Algorithm
- Divide image into an initial set of regions.
- One region per pixel.
- Define a similarity criteria for merging regions.
- Merge similar regions.
- Repeat previous step until no more merge operations are possible.

Similarity Criteria

- Homogeneity of regions is used as the main segmentation criterion in region growing.
- gray level
- color, texture
- shape
- model
- etc.

Gray-Level Criteria

- Comparing to Original Seed Pixel
- Very sensitive to choice of seed point.
- Comparing to Neighbor in Region
- Allows gradual changes in the region.
- Can cause significant drift.
- Comparing to Region Statistics
- Acts as a drift dampener.
- Other possibilities!

Region splitting

- Algorithm
- One initial set that includes the whole image.
- Similarity criteria.
- Iteratively split regions into sub-regions.
- Stop when no more splittings are possible.

The segmentation problem

Figure 5.23 A quad-tree representation of an 8×8 binary image.
[Machine Vision; David Vernon]

Split and Merge

- Combination of both algorithms.
- Can handle a larger variety of shapes.
- Simply apply previous algorithms
consecutively.

The Watershed Transform

- Geographical inspiration.
- Shed water over rugged terrain.
- Each lake corresponds to a region.
- Characteristics
- Computationally complex.
- Great flexibility in segmentation.
- Risk of over-segmentation.

The Drainage Analogy

- Two points are in the same region if they drain to the same point.

Courtesy of Dr. Peter Yim at National Institutes of Health, Bethesda, MD

The Immersion Analogy

Catchment

[Milan Sonka, Vaclav Hlavac, and Roger Boyle]

Figure 5.51: Watershed segmentation: (a) original; (b) gradient image, 3×3 Sobel edge detection, histogram equalized; (c) raw watershed segmentation; (d) watershed segmentation using region markers to control oversegmentation. Courtesy W. Higgins, Penn State University.

Over-Segmentation

- Over-segmentation.
- Raw watershed segmentation produces a severely oversegmented image with hundreds or thousands of catchment basins.
- Post-Processing.
- Region merging.
- Edge information.
- Etc.

Topic: Morphological Filters

- Thresholding
- Region-based Segmentation
- Morphological Filters

Mathematical Morphology

- Provides a mathematical description of geometric structures.
- Based on sets.
- Groups of pixels which define an image region.
-What is this used for?
- Binary images.
- Can be used for postprocessing segmentation results!
- Core techniques
- Erosion, Dilation.
- Open, Close.

Tumor Segmentation using Morphologic Filtering

Dilation, Erosion

- Two sets:
- Image
- Morphological kernel.
- Dilation (D)
- Union of the kernel with the image set.
- Increases resulting area.
- Erosion (E)
- Intersection.
- Decreases resulting area.

$$
\begin{gathered}
D(\mathrm{~A}, \mathrm{~B})=\mathrm{A} \oplus \mathrm{~B}=\bigcup_{\beta \in \mathrm{B}}(\mathrm{~A}+\beta) \\
E(\mathrm{~A}, \mathrm{~B})=\mathrm{AQ}(-\mathrm{B})=\bigcap_{\beta \in \mathrm{B}}(\mathrm{~A}-\beta) \\
\end{gathered}
$$

Dilation

- Example using a 3×3 morphological kernel

	0	Q	0	Q	0	6	0		0	\$	Q		Q	0	0	6	0	60
	0	6	1	1	1	1	1	0	0	6	0		Q	6	0	6	0	60
	0	1	1	1	1	1	1	1	1	6	Q		¢	0	¢	6	0	06
	0	1	1	1	1	1	1	1	1	6	0		1	1	1	1	1	10
	0	1	1	1	1	1	1	1	1	Q	1		1	1	1	1	1	0
	0	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	0
	0	1	1	1	1	1	1	1	1	1	1		1	1	1	1		10
+	0	6	1	1	1	1	1	1	1	1	1		1	1	1	1		10
-	0	Q	0	0	0	1	1	1	1	1	1		1	1	1	1	0	00
	0	¢	0	0	1	1	1	1	1	1	1		1	1	1	0	0	00
	0	Q	Q	1	1	1	1	1	1	1	1		1	1	0	¢	0	60
	¢	¢	¢	1	1	1	1	1	1	1	1		1	1	1	6	0	6
	0	¢	0	1	1	1	1	1	1	1	1		1	1	1	¢	0	60
	0	Q	0	1	1	1	1	-	1	1	1		1	1	1	Q	0	60
	0	6	0	1	1	1	1	-	1	1	1		1	1		0	0	0
	0	¢	0	0	1	1	1	-	1	1	1		1	1	0	0	0	00

Erosion

- Example using a 3×3 morphological kernel

b		¢	Q	0		¢	0	0	0	0	0	0			6
¢	0	¢	0	0	4	0	\$	¢	0	6	\$	6	0	0	6
¢	0	6	1	1	1	0	0	Q	0	¢	Q	6	0		6
¢	Q	1	1	1	1	1	0	\%	0	0	Q	0	0	0	0
¢	0	1	1	1	1	1	0	0	6	0	1	1	1		0
¢	0	1	1	1	1	0	¢	0	0	1	1	1	1		0
¢	0	0	1	1	Q	6	0	0	1	1	1	1			0
¢	6	¢	¢	0	¢	\$	0	1	1	1	1	1	0		6
¢	¢	Q	O	0	¢	0	1	1	1	1	1	¢			¢
¢	0	0	0	0	0	1	1	1	1	1	0	0	6		0
¢	0	Q	¢	Q	1	1	1	1	1	¢	0	6	1		0
¢	0	0	Q	1	1	1	1	1	0	0	0	¢	¢		Q
Q	0	0	Q	1	1	1	1	1	1	1	1	¢	0		6
¢	Q	6	0	1	1	1	1	1	1	1	1	0	0		0
¢	Q	0	O	0	1	1	1	1	1	1		0	0		0
6	0	Q	6	Q	0	0	6	Q	0	6	Q	Q	0		

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Opening, Closing

- Opening
- Erosion, followed by dilation.
- Less destructive than an erosion.

- Adapts image shape to kernel shape.
- Closing
- Dilation, followed by erosion.
- Less destructive than a dilation.
- Tends to close shape irregularities.

Opening

- Example using a 3×3 morphological kernel

\square	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0	0	0	1	1	1	0	0
0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0
0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Closing

- Example using a 3×3 morphological kernel

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0
0	0	0	1	1	1	1	0	1	0	0	1	1	1	0	0
0	0	1	1	1	1	0	1	1	1	1	1	1	0	0	0
0	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0
0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0
0	1	1	0	0	0	0	1	1	1	0	1	0	0	0	0
0	1	1	1	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

\rightarrow| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Core morphological operators

Dilation

Closing

Erosion

Opening

Example: Opening

Example: Closing

Connected Component Analysis

- Define 'connected'.
- 4 neighbors.
- 8 neighbors.
- Search the image for seed points.
- Recursively obtain all connected points of the seeded region.

Resources

- Gonzalez \& Woods - Chapter 7 and 8
- Russ - Chapter 7
- N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans.
Sys., Man., Cyber., vol. 9, pp. 62-66, 1979.

