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Features

I P features describing an observation x =


x1
x2
x3
. . .
xp

 are called a

feature vector or input vector

I The set of all possible feature vectors Rp is called the feature
space.
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Classifier

I Maps a feature vector into one of K classes

x −→ Ci ∈ {C1, C2, . . . , CK}

I The classifier performs a partitioning of the feature space into
K disjoint regions such that

f(x) =


C1 if x ∈ R1

...

CK if x ∈ RK

where ∪Ki=1Ri = Rp
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Bayesian Decision Theory

I Bayesian Decision Theory is a statistical approach that
quantifies the tradeoffs between various decisions using
probabilities and costs that accompany such decisions.

I Fish sorting example: define C, the type of fish we observe
(state of nature), as a random variable where

I C = C1 for sea bass
I C = C2 for salmon
I P (C1) is the a priori probability that the next fish is a sea bass
I P (C2) is the a priori probability that the next fish is a salmon
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Prior Probabilities

I Prior probabilities reflect our knowledge of how likely each
type of fish will appear before we actually see it.

I How can we choose P (C1) and P (C2)?
I Set P (C1) = P (C2) if they are equiprobable (uniform priors).
I May use different values depending on the fishing area, time of

the year, etc.

I Assume there are no other types of fish

P (C1) + P (C2) = 1

(exclusivity and exhaustivity)

I In a general classification problem with K classes, prior
probabilities reflect prior expectations of observing each class
and

∑K
i=1 P (Ci) = 1
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Making a Decision

I How can we make a decision with only the prior information?

Decide

{
C1 if P (C1) > P (C2)
C2 otherwise

I What is the probability of error for this decision?

P (error) = min{P (C1), P (C2)}

6 / 64



Class-conditional Probabilities

I Let’s try to improve the decision using the lightness
measurement x (∈ R).

I Let x be a continuous random variable.

I Define p(x|Cj) as the class-conditional probability density
(probability of x given that the state of nature is Cj for
j = 1, 2).

I p(x|C1) and p(x|C2) describe the difference in lightness
between populations of sea bass and salmon.
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Class-conditional Probabilities
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Posterior Probabilities

I Suppose we know P (Cj) and P (x|Cj) for j = 1, 2, and
measure the lightness of a fish as the value x.

I Define P (Cj |x) as the a posteriori probability (probability of
the state of nature being Cj given the measurement of feature
value x).

I We can use the Bayes formula to convert the prior probability
to the posterior probability

P (Cj |x) =
P (x|Cj)P (Cj)

P (x)

where P (x) =
∑2

j=1 P (x|Cj)P (Cj)
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Making a Decision

I P (x|Cj) is called the likelihood and P (x) is called the
evidence.

I How can we make a decision after observing the value of x?

Decide

{
C1 if P (C1|x) > P (C2|x)

C2 otherwise

I Rewriting the rule gives

Decide

{
C1 if P (x|C1)

P (x|C2) >
P (C2)
P (C1)

C2 otherwise
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Making a Decision

Figure: Optimum thresholds for different priors.
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Probability of Error

I What is the probability of error for this decision?

P (error|x) =

{
P (C1|x) if we decide C2
P (C2|x) if we decide C1

I What is the average probability of error?

p(error) =

∫ +∞

−∞
P (error, x)dx =

∫ +∞

−∞
P (error|x)P (x)dx

I Bayes decision rule minimizes this error because

P (error|x) = min{P (C1|x), P (C2|x)}
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Probability of Error

Figure: Components of the probability of error for equal priors and the
non-optimal decision point x∗. The optimal point xB minimizes the total
shaded area and gives the Bayes error rate.
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Confusion matrix

I Consider the two-category case and define
I C1: target is present
I C2: target is present

Table: Confusion matrix.

Assigned

C1 C2

True
C1 correct detection mis-detection
C2 false alarm correct rejection
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Bayesian Decision Theory

How can we generalize to
I more than one feature?

I replace the scalar x by the feature vector x

I more than two states of nature?
I just a difference in notation

I allowing actions other than just decisions?
I allow the possibility of rejection

I different risks in the decision?
I define how costly each action is
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Minimum-error-rate Classification

I Let {C1, ..., CK} be the finite set of K states of nature
(classes, categories).

I Let x be the D-component vector-valued random variable
called the feature vector.

I If all errors are equally costly, the minimum-error decision rule
is defined as
Decide Ci if P (Ci|x) > P (Cj |x) ∀j 6= i

I The resulting error is called the Bayes error and is the best
performance that can be achieved.

16 / 64



Bayesian Decision Theory

I Bayesian decision theory gives the optimal decision rule under
the assumption that the “true” values of the probabilities are
known.

I How can we estimate (learn) the unknown
p(x|Cj), j = 1, ...,K?

I Parametric models: assume that the form of the density
functions are known

I Density models (e.g., Gaussian)
I Mixture models (e.g., mixture of Gaussians)
I Hidden Markov Models
I Bayesian Belief Networks

I Non-parametric models: no assumption about the form

I Histogram-based estimation
I Parzen window estimation
I Nearest neighbour estimation
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The Gaussian Density

I Gaussian can be considered as a model where the feature
vectors for a given class are continuous-valued, randomly
corrupted versions of a single typical or prototype vector.

I Some properties of the Gaussian:
I Analytically tractable
I Completely specified by the 1st and 2nd moments
I Has the maximum entropy of all distributions with a given

mean and variance
I Many processes are asymptotically Gaussian (Central Limit

Theorem)
I Uncorrelatedness implies independence
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Univariate Gaussian

I For x ∈ R:

P (x) = N(µ, σ2) =
1√
2πσ

exp

[
−1

2
(
x− µ
σ

)2
]

where

µ = E[x] =

∫ +∞

−∞
xP (x)dx

σ2 = E[(x− µ)2] =

∫ +∞

−∞
(x− µ)2P (x)dx
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Univariate Gaussian

Figure: A univariate Gaussian distribution has roughly 95% of its area in
the range |x− µ| ≤ 2σ
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Multivariate Gaussian

I For x ∈ RD:

p(x) = N(µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
where

µ = E(x) =

∫
xP (x)Dx

Σ = E[(x− µ)(x− µ)T ]
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Multivariate Gaussian

Figure: Samples drawn from a two-dimensional Gaussian lie in a cloud
centered on the mean µ. The loci of points of constant density are the
ellipses for which (x− µ)T Σ−1(x− µ) is constant, where the
eigenvectors of Σ determine the direction and the corresponding
eigenvalues determine the length of the principal axes. The quantity
r2 = (x− µ)T Σ−1(x− µ) is called the squared Mahalanobis distance
from x to µ.
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Bayes Linear Classifier

I Let us assume that the class-conditional densities are Gaussian
and then explore the resulting form for the posterior
probabilities.

I assume that all classes share the same covariance matrix.
Thus the density for class Ckis given by

p(x|Ck) =
1

(2π)D/2

1

|Σ|1/2
exp

{
−1

2
(x− µk)TΣ−1(x− µk)

}
I We thus model the class-conditional densities p(x|Ck) and

class priors p(Ck)
I Then use these to compute posterior probabilities p(Ck|x)

through Bayes’ theorem:

p(Ck|x) =
p(x|Ck)p(Ck)∑K
j=1 p(x|Cj)p(Cj)

I assuming only 2 classes the decision boundary is linear: check
this!
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Bayes Linear Classifier
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Quadratic discriminant Model
The decision surface is planar when the covariance matrices are the
same and quadratic when they are not.
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Bayesian Decision Theory

I Bayesian Decision Theory shows us how to design an optimal
classifier if we know the prior probabilities P (Ci) and the
class-conditional densities P (x|Ci).

I Unfortunately, we rarely have complete knowledge of the
probabilistic structure.

I However, we can often find design samples or training data
that include particular representatives of the patterns we want
to classify.
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Gaussian Density Estimation

I The maximum likelihood estimates of a Gaussian are
µ̂ = 1

n

∑n
i=1 xi and Σ̂ = 1

n

∑n
i=1(xi − µ̂)(xi − µ̂)T

Figure: Gaussian density estimation examples.
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2D Gaussian
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2D Gaussian
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2D Gaussian
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2D Gaussian
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2D Gaussian
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2D Example
Consider a classification problem with 2 features and 2 classes.
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2D Example

I The estimated class-conditional distributions from the data
are:

p(x|C1) :

[
x1
x2

]
∈ N

([
4
2

]
,

[
1 1
1 2

])
p(x|C2) :

[
x1
x2

]
∈ N

([
1
1

]
,

[
1 1
1 2

])
I We assume equal losses and equal priors.

We wish to compute the classification rule.
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2D Example
Solution

I auxiliar computations: Σ =

[
1 1
1 2

]
↔ Σ−1 =

[
2 − 1
−1 1

]
I d(x) = 5x1 − 2x2 − 9.5
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2D Example
Solution
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2D Example b

Consider a classification problem with 2 features and 3 classes.

I The estimated class-conditional distributions from the data
are:

p(x|C1) :

[
x1
x2

]
∈ N

([
4
2

]
,

[
1 1
1 2

])
p(x|C2) :

[
x1
x2

]
∈ N

([
1
1

]
,

[
1 1
1 2

])
p(x|C3) :

[
x1
x2

]
∈ N

([
2
6

]
,

[
1 1
1 2

])
I We assume equal losses and equal priors.

We wish to compute the classification rule.
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2D Example b
Solution
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Classifiers based on Bayes Decision Theory
Computation of a-posteriori probabilities

I Assume known
I a-priori probabilities p(C1), . . . , p(CK)
I p(x|C1), . . . , p(x|CK)

This is also known as the likelihood of x with respect to Ci
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Classifiers based on Bayes Decision Theory

I The Bayes rule (for K = 2)

I p(x)p(Ci|x) = p(x|Ci)p(Ci)⇒ p(Ci|x) = p(x|Ci)p(Ci)
p(x)

I p(x) =
∑2

i=1 p(x|Ci)p(Ci)
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Classifiers based on Bayes Decision Theory
The Bayes classification rule (for two classes K=2)

I Given x classify it according to the rule

I if p(C1|x) > p(C2|x) x→ C1
I if p(C2|x) > p(C1|x) x→ C2

I Equivalently: classify x according to the rule

p(x|C1)p(C1) ≷ p(x|C2)p(C2)

I For equiprobable classes the test becomes

p(x|C1) ≷ p(x|C2)
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Classifiers based on Bayes Decision Theory
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Classifiers based on Bayes Decision Theory

I Equivalently in words: Divide space in two regions

I if x ∈ R1: decide for C1
I if x ∈ R2: decide for C2

I Probability of error
I Total shaded area
I Pe = 0.5

∫ x0

−∞ p(x|C2) + 0.5
∫ +∞
x0

p(x|C1)

I Bayesian classifier is OPTIMAL with respect to minimising
the classification error probability
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Classifiers based on Bayes Decision Theory

Indeed: Moving the threshold the total shaded area INCREASES
by the extra “grey” area.
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Classifiers based on Bayes Decision Theory

I The Bayes classification rule for many (K > 2) classes:
I Given x classify it to Ci if:

p(Ci|x) > p(Cj |x), ∀j 6= i

I Such a choice also minimizes the classification error probability

I Minimizing the average risk
I For each wrong decision, a penalty term is assigned since some

decisions are more sensitive than others
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Classifiers based on Bayes Decision Theory

I For (K = 2):
I Define the loss matrix

L =

[
`11 `12
`21 `22

]
I `12 is the penalty term for deciding class C2 although the

pattern belongs to C1
I cost of deciding for C1:

`11p(C1|x) + `21p(C2|x)

I cost of deciding for C2:

`12p(C1|x) + `22p(C2|x)

46 / 64



Classifiers based on Bayes Decision Theory

I For (K = 2):
I Decide for C1 if

`11p(C1|x) + `21p(C2|x) < `12p(C1|x) + `22p(C2|x)

(`11 − `12)p(C1|x) < (`22 − `21)p(C2|x)

(`12 − `11)p(C1|x) > (`21 − `22)p(C2|x)

(`12 − `11)p(x|C1)p(C1) > (`21 − `22)p(x|C2)p(C2)

p(x|C1)

p(x|C2)
>
p(C2)

p(C1)

(`21 − `22)

(`12 − `11)
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Classification Error

I To apply these results to multiple classes, separate the
training samples to K subsets D1, . . . ,DK , with the samples
in Di belonging to class Ci, and then estimate each density
p(x|Ci,Di) separately.

I Different sources of error:
I Bayes error: due to overlapping class-conditional densities

(related to features used)
I Model error: due to incorrect model
I Estimation error: due to estimation from a finite sample (can

be reduced by increasing the amount of training data)
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Discriminant functions
Decision Surfaces

I g(x) ≡ p(Ci|x)− p(Cj |x) = 0
is the surface separating the regions. On the one side is
positive (+), on the other is negative (-). It is known as
Decision Surface.

I If f(.) monotonically increasing, the rule remains the same if
we use: x→ Ci if f(p(Ci|x)) > f(p(Cj |x)) ∀j 6= i
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Discriminant functions
Decision Surfaces

I In general, discriminant functions can be defined independent
of the Bayesian rule. They lead to suboptimal solutions, yet, if
chosen appropriately, they can be computationally more
tractable. Moreover, in practice, they may also lead to better
solutions. This, for example, may be case if the nature of the
underlying pdf’s are unknown.
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Non-Bayesian Classifiers

I Distance-based classifiers:
I Minimum (mean) distance classifier
I Nearest neighbour classifier

I Decision boundary-based classifiers:
I Linear discriminant functions
I Support vector machines
I Neural networks
I Decision trees
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The k-Nearest neighbour Classifier

I Given the training data D = {x1, . . . ,xn} as a set of n labeled
examples, the nearest neighbour classifier assigns a test point
x the label associated with its closest neighbour in D.

I .

The k-nearest neighbour classifier classifies x by
assigning it the label most frequently represented
among the k nearest samples.

Figure: Classifier
for k = 5.

I Closeness is defined using a distance function.
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Distance Functions

I A general class of metrics for d-dimensional patterns is the
Minkowski metric

Lp(x,y) =

(
d∑

i=1

|xi − yi|p
)1/p

also referred to as the Lp norm.

I The Euclidean distance is the L2 norm

L2(x,y) =

(
d∑

i=1

|xi − yi|2
)1/2

I The Manhattan or city block distance is the L1 norm

L1(x,y) =

d∑
i=1

|xi − yi|
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Linear Discriminant Functions
The L∞ norm is the maximum of the distances along individual
coordinate axes

L∞(x,y) =
d

max
i=1
|xi − yi|

Figure: Each colored shape consists of points at a distance 1.0 from the
origin, measured using different values of p in the Minkowski Lp metric.
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Linear Discriminant Functions

Figure: Linear decision boundaries produced by using one linear
discriminant for each class.

55 / 64



Linear Models for Classification
Fisher’s linear discriminant

Also known as Linear Discriminant Analysis

I One way to view a linear classification model is in terms of
dimensionality reduction.

I Projection that best separates the data in a least-squares
sense.

I Projection of D-dimensional data onto a line.
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Linear Models for Classification
Fisher’s linear discriminant

Also known as Linear Discriminant Analysis
I A simple linear discriminant function is a projection of the

data down to 1-D.
I So choose the projection that gives the best separation of the

classes. What do we mean by “best separation”?

I An obvious direction to choose is the direction of the line
joining the class means.

I But if the main direction of variance in each class is not
orthogonal to this line, this will not give good separation (see
the next figure).

I LDA chooses the direction that maximizes the ratio of
between class variance to within class variance.

I This is the direction in which the projected points contain the
most information about class membership (under Gaussian
assumptions)
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Linear Models for Classification
Fisher’s linear discriminant

Also known as Linear Discriminant Analysis

I When projected onto the line joining the class means, the
classes are not well separated.

I Fisher chooses a direction that makes the projected classes
much tighter, even though their projected means are less far
apart.
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Linear Models for Classification
Fisher’s linear discriminant

Math of Fisher’s linear discriminant

I What linear transformation is best for discrimination?
y = wTx

I The projection onto the vector separating the class means
seems sensible: w ∝m2 −m1

with m1 = 1
N1

∑
n∈C1 xn m2 = 1

N2

∑
n∈C2 xn

This w maximizes m2 −m1 = wt(m2 −m1), subject to
||w|| = 1

I But we also want small variance within each class:
s2k = 1

Nk

∑
n∈Ck(wtxn −mk)2

I Fisher’s objective function is

J(w) =
(m2 −m1)

2

s21 + s22
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Linear Models for Classification
Fisher’s linear discriminant

More Math of Fisher’s linear discriminant
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Support Vector Machines

Figure: A binary classification problem of separating balls from diamonds.
Support vector machines find hyperplane decision boundaries that yield
the maximum margin of separation between the classes. The optimal
hyperplane is orthogonal to the shortest line connecting the convex hulls
of the two classes (dotted), and intersects it half way between the two
classes. 61 / 64



Neural Networks

Figure: A neural network consists of an input layer, an output layer and
usually one or more hidden layers that are interconnected by modifiable
weights represented by links between layers. They learn the values of
these weights as a mapping from the input to the output.
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Decision Trees

Figure: Decision trees classify a pattern through a sequence of questions,
in which the next question asked depends on the answer to the current
question.
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