An Introduction to

Support Vector Machine

MAP i - Computer Vision 2011/12 Jaime S. Cardoso
INESC Porto, Faculdade Engenharia, Universidade do Porto 2012/01/02

What is pattern recognition?

"The assignment of a physical object or event to one of several prespecified categories" -- Duda \& Hart

- A pattern is an object, process or event that can be given a name.
- A pattern class (or category) is a set of patterns sharing common attributes and usually originating from the same source.
- During recognition (or classification) given objects are assigned to prescribed classes.
- A classifier is a machine which performs classification.

Examples of applications

- Handwritten: sorting letters by postal code, input device for PDA's.
- Optical Character

Recognition (OCR)

- Biometrics
- Diagnostic systems
- Military applications

- Printed texts: reading machines for blind people, digitalization of text documents.
- Face recognition, verification, retrieval.
- Finger prints recognition.
- Speech recognition.
- Medical diagnosis: X-Ray, EKG analysis.
- Machine diagnostics, waster detection.
- Automated Target Recognition (ATR).
- Image segmentation and analysis (recognition from aerial or satelite photographs).

Basic concepts

Feature vector $\quad \mathbf{x} \in X$

Hidden state $\quad y \in Y$

- Cannot be directly measured.
- Patterns with equal hidden state belong to the same class.

Task

- To design a classifer (decision rule) $\mathrm{q}: X \rightarrow Y$ which decides about a hidden state based on an onbservation.

Example

height

Task: jockey-hoopster recognition.
The set of hidden state is $Y=\{H, J\}$
The feature space is $X=\mathfrak{R}^{2}$

Training examples $\quad\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{l}, y_{l}\right)\right\}$
Linear classifier:
$\mathrm{q}(\mathbf{x})=\left\{\begin{array}{lll}H & \text { if } & (\mathbf{w} \cdot \mathbf{x})+b \geq 0 \\ J & \text { if } & (\mathbf{w} \cdot \mathbf{x})+b<0\end{array}\right.$

$$
x_{2}
$$

x_{1}

Components of PR system

- Sensors and preprocessing.
- A feature extraction aims to create discriminative features good for classification.
- A classifier.
- A teacher provides information about hidden state -- supervised learning.
- A learning algorithm sets PR from training examples.

Feature extraction

Task: to extract features which are good for classification.
Good features:- Objects from the same class have similar feature values.

- Objects from different classes have different values.

"Good" features
"Bad" features

Feature extraction methods

Feature extraction

Feature selection

Problem can be expressed as optimization of parameters of feature extractor $\varphi(\theta)$

Supervised methods: objective function is a criterion of separability (discriminability) of labeled examples, e.g., linear discriminat analysis (LDA).

Unsupervised methods: lower dimensional representation which preserves important characteristics of input data is sought for, e.g., principal component analysis (PCA).

Classifier

A classifier partitions feature space X into class-labeled regions such that

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{|Y|} \quad \text { and } \quad X_{1} \cap X_{2} \cap \ldots \cap X_{|Y|}=\{0\}
$$

The classification consists of determining to which region a feature vector \mathbf{x} belongs to.

Borders between decision boundaries are called decision regions.

Representation of classifier

A classifier is typically represented as a set of discriminant functions

$$
\mathrm{f}_{i}(\mathbf{x}): X \rightarrow \mathfrak{R}, i=1, \ldots,|Y|
$$

The classifier assigns a feature vector \mathbf{x} to the i-the class if $\mathrm{f}_{i}(\mathbf{x})>\mathrm{f}_{j}(\mathbf{x}) \forall j \neq i$

Feature vector

Discriminant function

Review: What We've Learned So Far

- Bayesian Decision Theory
- Maximum-Likelihood \& Bayesian Parameter Estimation
- Parametric Density Estimation
- Nonparametric Density Estimation
- Parzen-Window, k_{n}-Nearest-Neighbor
- K-Nearest Neighbor Classifier
- Decision Tree Classifier

Today: Support Vector Machine (SVM)

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection \& recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.
- Also used for regression (will not cover today)

Outline

- Linear Discriminant Function
- Large Margin Linear Classifier
- Nonlinear SVM: The Kernel Trick

Demo of SVM

Slides from Jinwei Gu

Discriminant Function

- It can be arbitrary functions of x, such as:

Nearest
Neighbor

Decision Tree

Nonlinear Functions

Linear Discriminant Function

- $g(x)$ is a linear function:

$$
g(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b
$$

- A hyper-plane in the feature space
- (Unit-length) normal vector of the hyper-plane:

$$
\mathbf{n}=\frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

Linear Discriminant Function

- How would you classify

Linear Discriminant Function

- How would you classify

Linear Discriminant Function

- How would you classify

Linear Discriminant Function

- How would you classify

- Which one is the best?

Large Margin Linear Classifier

- The linear discriminant function (classifier) with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
- Robust to outliners and thus strong generalization ability

Large Margin Linear Classifier

- Given a set of data points: $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, i=1,2, \cdots, n$, where

For $y_{i}=+1, \quad \mathbf{w}^{T} \mathbf{x}_{i}+b>0$
For $y_{i}=-1, \quad \mathbf{w}^{T} \mathbf{x}_{i}+b<0$

- With a scale transformation on both w and b, the above is equivalent to

For $y_{i}=+1, \quad \mathbf{w}^{T} \mathbf{x}_{i}+b \geq 1$
For $y_{i}=-1, \quad \mathbf{w}^{T} \mathbf{x}_{i}+b \leq-1$

Large Margin Linear Classifier

- We know that

$$
\begin{aligned}
& \mathbf{w}^{T} \mathbf{x}^{+}+b=1 \\
& \mathbf{w}^{T} \mathbf{x}^{-}+b=-1
\end{aligned}
$$

- The margin width is:

$$
\begin{aligned}
M & =\left(\mathbf{x}^{+}-\mathbf{x}^{-}\right) \cdot \mathbf{n} \\
& =\left(\mathbf{x}^{+}-\mathbf{x}^{-}\right) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|}=\frac{2}{\|\mathbf{w}\|}
\end{aligned}
$$

Large Margin Linear Classifier

Formulation:

Large Margin Linear Classifier

Formulation:

$$
\text { minimize } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

such that
For $y_{i}=+1, \quad \mathbf{w}^{T} \mathbf{x}_{i}+b \geq 1$
For $y_{i}=-1, \quad \mathbf{w}^{T} \mathbf{x}_{i}+b \leq-1$

O denotes +1
O denotes -1

Margin

Large Margin Linear Classifier

- Formulation:

$$
\text { minimize } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

such that

$$
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1
$$

Solving the Optimization Problem

Quadratic programming with linear constraints

Lagrangian
Function

$$
\begin{array}{r}
\text { minimize } \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } \quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1
\end{array}
$$

$$
\begin{array}{cl}
\operatorname{minimize} & L_{p}\left(\mathbf{w}, b, \alpha_{i}\right)= \\
\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right) \\
\text { s.t. } & \alpha_{i} \geq 0
\end{array}
$$

Solving the Optimization Problem

minimize $L_{p}\left(\mathbf{w}, b, \alpha_{i}\right)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right)$

$$
\text { s.t. } \quad \alpha_{i} \geq 0
$$

$$
\begin{array}{ll}
\frac{\partial L_{p}}{\partial \mathbf{w}}=0 \quad \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial L_{p}}{\partial b}=0 & \longleftrightarrow
\end{array}
$$

Solving the Optimization Problem

$$
\begin{gathered}
\operatorname{minimize} L_{p}\left(\mathbf{w}, b, \alpha_{i}\right)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right) \\
\text { s.t. } \quad \alpha_{i} \geq 0
\end{gathered}
$$

Lagrangian Dual Problem

$$
\begin{array}{cl}
\operatorname{maximize} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { s.t. } & \alpha_{i} \geq 0, \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}
$$

Solving the Optimization Problem

- From KKT condition, we know:

$$
\alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right)=0
$$

- Thus, only support vectors have $\alpha_{i} \neq 0$
- The solution has the form:

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=\sum_{i \in \mathrm{SV}} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

$$
\text { get } b \text { from } y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1=0
$$ where \mathbf{x}_{i} is support vector

Solving the Optimization Problem

- The linear discriminant function is:

$$
g(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b=\sum_{i \in \mathrm{SV}} \alpha_{i} \mathbf{x}_{i}^{T} \mathbf{x}+b
$$

- Notice it relies on a dot product between the test point \boldsymbol{x} and the support vectors x_{i}
- Also keep in mind that solving the optimization problem involved computing the dot products $\boldsymbol{X}_{i}{ }^{\top} \boldsymbol{x}_{j}$ between all pairs of training points

Large Margin Linear Classifier

- What if data is not linear

- Slack variables ξ_{i} can be added to allow misclassification of difficult or noisy data points

Large Margin Linear Classifier

- Formulation:

$$
\text { minimize } \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{gathered}
$$

- Parameter C can be viewed as a way to control over-fitting.

Large Margin Linear Classifier

- Formulation: (Lagrangian Dual Problem)

$$
\operatorname{maximize} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}
$$

such that

$$
\begin{aligned}
& 0 \leq \alpha_{i} \leq C \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

Non-linear SVMs

- Datasets that are linearly separable with noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature Space

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: The Kernel Trick

- With this mapping, our discriminant function is now:

$$
g(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})+b=\sum_{i \in \mathrm{SV}} \alpha \phi\left(\mathbf{x}_{i}\right)^{T} \phi(\mathbf{x})+b
$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \equiv \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)
$$

Nonlinear SVMs: The Kernel Trick

- An example:

2-dimensional vectors $\mathrm{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$;

$$
\text { let } \boldsymbol{K}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left(\mathbf{1}+\mathbf{x}_{\mathbf{i}} \mathbf{T}_{\mathbf{j}} \mathbf{x}^{2}\right. \text {, }
$$

Need to show that $\boldsymbol{K}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\boldsymbol{\varphi}\left(\mathbf{x}_{\mathrm{i}}\right)^{\mathbf{T}} \boldsymbol{\varphi}\left(\mathbf{x}_{\mathrm{j}}\right)$:

$$
\begin{aligned}
& K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\left(1+\mathrm{x}_{\mathrm{i}} \mathrm{~T}_{\mathrm{j}} \mathbf{x}^{2},\right. \\
& =1+x_{i 1}{ }^{2} x_{j 1}{ }^{2}+2 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+x_{i 2}{ }^{2} x_{j 2}{ }^{2}+2 x_{i 1} x_{j 1}+2 x_{i 2} x_{j 2} \\
& =\left[\begin{array}{llll}
1 & x_{i 1}{ }^{2} \sqrt{ } 2 x_{i 1} x_{i 2} & x_{i 2}{ }^{2} \sqrt{ } 2 x_{i 1} \sqrt{ } 2 x_{i 2}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{lll}
1 & x_{j 1}{ }^{2} \sqrt{ } 2 x_{j 1} x_{j 2} & x_{j 2}{ }^{2} \sqrt{ } 2 x_{j 1}{ }^{2} x_{j 2}
\end{array}\right] \\
& =\varphi\left(\mathrm{x}_{\mathrm{i}}\right)^{\mathrm{T}} \varphi\left(\mathrm{x}_{\mathrm{j}}\right) \text {, where } \varphi(\mathrm{x})=\left[\begin{array}{llllll}
1 & x_{1}{ }^{2} \sqrt{ } 2 & x_{1} x_{2} & x_{2}{ }^{2} \sqrt{ } 2 x_{1} & \sqrt{ } 2 x_{2}
\end{array}\right]
\end{aligned}
$$

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
- Linear kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{T} \mathbf{x}_{j}$
- Polynomial kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{p}$
- Gaussian (Radial-Basis Function (RBF)) kernel:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\tanh \left(\beta_{0} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\beta_{1}\right)
$$

- In general, functions that satisfy Mercer's condition can be kernel functions.

Nonlinear SVM: Optimization

- Formulation: (Lagrangian Dual Problem)

$$
\operatorname{maximize} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

such that

$$
\begin{aligned}
& 0 \leq \alpha_{i} \leq C \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- The solution of the discriminant function is

$$
g(\mathbf{x})=\sum_{i \in \mathrm{SV}} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

- The optimization technique is the same.

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Some Issues

- Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion - Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are tested

Summary: Support Vector Machine

- 1. Large Margin Classifier
- Better generalization ability \& less over-fitting
- 2. The Kernel Trick
- Map data points to higher dimensional space in order to make them linearly separable.
- Since only dot product is used, we do not need to represent the mapping explicitly.

Additional Resource

- http://www.kernel-machines.org/
- http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Multiclass classification

- Reduction techniques
- Conventional approaches
- One-against-All
- K two-class problems
- Pairwise
- K(K-1)/2 two-class problems
- Decision-Tree-Based
- DAG (Directed Acyclic Graph)
- Error-Correcting Output Codes

Multiclass classification

- Reduction techniques
- Conventional approaches
- apply binary classifier 1 to test example and get prediction F1 (0/1)
- apply binary classifier 2 to test example and get prediction F2 (0/1)
- apply binary classifier M to test example and get prediction FM (0/1)
- use all M classifications to get the final multiclass classification 1..K

Feature extraction methods

Feature extraction

Feature selection

Problem can be expressed as optimization of parameters of feature extractor $\varphi(\theta)$

Supervised methods: objective function is a criterion of separability (discriminability) of labeled examples, e.g., linear discriminat analysis (LDA).

Unsupervised methods: lower dimensional representation which preserves important characteristics of input data is sought for, e.g., principal component analysis (PCA).

Non-linear SVMs: Feature Space

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Artificial Neural Networks

Slides from Andrew L. Nelson
and Torsten Reil

What are Neural Networks?

- Models of the brain and nervous system
- Highly parallel
- Process information much more like the brain than a serial computer
- Learning
- Very simple principles
- Very complex behaviours
- Applications
- As powerful problem solvers
- As biological models

Biologically Inspired

- Electro-chemical signals
- Threshold output firing

The Perceptron

- Binary classifier functions
- Threshold activation function

The Perceptron: Threshold Activation

 Function- Binary classifier functions
- Threshold activation function

Nonlinear Activation Functions

- Sigmoid Neuron unit function

Linear Activation functions

- Output is scaled sum of inputs

ANNs - The basics

- ANNs incorporate the two fundamental components of biological neural nets:

1. Neurones (nodes)
2. Synapses (weights)

Feed-forward nets

Input Hidden Output

Information flow is unidirectional Data is presented to Input layer Passed on to Hidden Layer Passed on to Output layer

Information is distributed

Information processing is parallel

Information

- Feeding data through the net:

$$
\text { Input } \quad \text { Hidden } \quad \text { Output }
$$

$(1 \times 0.25)+(0.5 \times(-1.5))=0.25+(-0.75)=$

- 0.5

Squashing: $\quad \frac{1}{1+e^{0.5}}=0.3775$

- Data is presented to the network in the form of activations in the input layer
- Examples
- Pixel intensity (for pictures)
- Molecule concentrations (for artificial nose)
- Share prices (for stock market prediction)
- Data usually requires preprocessing
- Analogous to senses in biology
- How to represent more abstract data, e.g. a name?
- Choose a pattern, e.g.
- 0-0-1 for "Chris"
- 0-1-0 for "Becky"
- Weight settings determine the behaviour of a network
\rightarrow How can we find the right weights?

Training the Network - Learning

- Backpropagation
- Requires training set (input / output pairs)
- Starts with small random weights
- Error is used to adjust weights (supervised learning)
\rightarrow Gradient descent on error landscape

Training Data Set
Adjust weights (w) to learn a given target function: $\quad y=f(x)$
Given a set of training data $X \longrightarrow Y$

Training Weights: Error Back-Propagation (BP) - Weight update formula:

$$
w(k+1)=w(k)+\Delta w
$$

$$
\Delta w(i)=\eta * \frac{\partial e(i)}{\partial w}
$$

Error Back-Propagation (BP)

Training error term: e

BP Formulation

$$
\left.\left.\left.\begin{array}{rl}
e\left(y_{\text {out }}, y_{\text {train }}\right) & =e\left(y_{\text {out }}\left(u_{\text {out }, 1}\right), y_{\text {train }}\right) \\
& =e\left(y_{\text {out }}\left(w_{\text {out }, 1} y_{\text {hid } 1}\right), y_{\text {train }}\right) \\
& =e\left(y _ { \text { out } } \left(w _ { \text { out } , 1 } y _ { \text { hid } } \left(u_{\text {hid } 1} 1\right.\right.\right.
\end{array}\right)\right), y_{\text {train }}\right) .
$$

BP Formulation

$$
\begin{aligned}
& \frac{\partial e}{\partial w_{\text {hid }}}=\frac{\partial e}{\partial y_{\text {out }}} \frac{\partial y_{\text {out }}}{\partial u_{\text {out }, 1}} \frac{\partial u_{\text {out }, 1}}{\partial y_{\text {hid }}} \frac{\partial y_{\text {hid }}}{\partial u_{\text {hid }, 1}} \frac{\partial u_{\text {hid }, 1}}{\partial w_{\text {hid }, 1}} \\
& \frac{\partial e}{\partial w_{\text {hid }}}=\frac{\partial u_{\text {hid }, 1}}{\partial w_{\text {hid }, 1}} \frac{\partial y_{\text {hid }}}{\partial u_{\text {hid }, 1}} \frac{\partial u_{\text {out }, 1}}{\partial y_{\text {hid }}} \frac{\partial y_{\text {out }}}{\partial u_{\text {out }, 1}} \frac{\partial e}{\partial y_{\text {out }}}
\end{aligned}
$$

BP Formulation

BP Formulation

$$
\begin{aligned}
\frac{d y_{\text {hid }}(u)}{d u} & =\frac{d}{d u}\left[\frac{1}{1+e^{-u}}\right] \\
& =\left(1+e^{-u}\right)^{-2}\left(-e^{-u}\right) \\
& =\frac{1+e^{-u}-1}{\left(1+e^{-u}\right)^{2}} \\
& =\frac{1+e^{-u}}{\left(1+e^{-u}\right)^{2}}-\frac{1}{\left(1+e^{-u}\right)^{2}} \\
& =\frac{1}{\left(1+e^{-u}\right)}-\frac{1}{\left(1+e^{-u}\right)^{2}} \\
& =\frac{1}{\left(1+e^{-u}\right)}\left[1-\frac{1}{\left(1+e^{-u}\right)}\right] \\
& =y_{\text {hid }}\left(u_{\text {hid, } 1}\right)\left[1-y_{\text {hid }}\left(u_{\text {hid, } 1}\right)\right]
\end{aligned}
$$

BP Formulation

$$
\begin{aligned}
\frac{\partial u_{o u t, 1}}{\partial y_{h i d}} & =\frac{\partial}{\partial y_{h i d}} w_{o u t, 1} y_{h i d, 1} \\
& =w_{o u t, 1}
\end{aligned}
$$

BP Formulation

BP Formulation

$$
\begin{aligned}
\frac{\partial e}{\partial w_{\text {hid }}} & =\frac{\partial u_{\text {hid }, 1}}{\partial w_{\text {hid }, 1}} \frac{\partial y_{\text {hid }}}{\partial u_{\text {hid }, 1}} \frac{\partial u_{\text {out }, 1}}{\partial y_{\text {hid }}} \frac{\partial y_{\text {out }}}{\partial u_{\text {out }, 1}} \frac{\partial e}{\partial y_{\text {out }}} \\
& =(x)\left(y_{\text {hid }}\left(u_{\text {hid }, 1}\right)\left[1-y_{\text {hid }}\left(u_{\text {hid }, 1}\right)\right]\left(w_{\text {ou }, 1}\right)(1)\left(y_{\text {out }}-y_{\text {train }}\right)\right.
\end{aligned}
$$

BP Formulation

$$
\begin{aligned}
\frac{\partial e}{\partial w_{\text {out }}} & =\frac{\partial u_{\text {out }, 1}}{\partial w_{\text {out }}} \frac{\partial y_{\text {out }}}{\partial u_{\text {out }, 1}} \frac{\partial e}{\partial y_{\text {out }}} \\
& =\left(\frac{\partial}{\partial w_{\text {out }}} w_{\text {ou }, 1} y_{\text {hid }, 1}\right)\left(\frac{\partial}{\partial u_{\text {out }, 1}}\left[u_{\text {out }, 1}+u_{\text {out }, 2}+\ldots+u_{\text {ou }, N}\right]\right)\left(\frac{\partial}{\partial y_{\text {out }}} \frac{1}{2}\left(y_{\text {out }}-y_{\text {train }}\right)^{2}\right) \\
& =\left(y_{\text {hid }}\right)(1)\left(y_{\text {out }}-y_{\text {train }}\right)
\end{aligned}
$$

Example: The XOR problem:

- Single hidden layer: 3 Sigmoid neurons
- 2 inputs, 1 output

	$\mathbf{x 1}$	$\mathbf{x 2}$	\mathbf{y}
Example 1	0	0	$\mathbf{0}$
Example 2	0	1	$\mathbf{1}$
Example 3	1	0	$\mathbf{1}$
Example 4	1	1	$\mathbf{0}$

Desired I/O table (XOR):

Example: The XOR problem:

- Training error over epoch

Example: The XOR problem:

initial_weights =

0.0654	0.2017	0.0769	0.1782	0.0243	0.0806
0.0174	0.1270	0.0599	0.1184	0.1335	0.0737

0.1511
final_weights =
4.6970 -4.6585 $2.0932 \quad 5.5168$-5.7073
$\begin{array}{llllll}-0.1886 & 1.6164 & -0.1929 & -6.8066 & 6.8477 & -1.6886\end{array}$
4.1531

Example: The XOR problem:

Mapping produced by the trained neural net:

	$\mathbf{x 1}$	$\mathbf{x 2}$	\mathbf{y}
Example 1	0	0	0.0824
Example 2	0	1	0.9095
Example 3	1	0	0.9470
Example 4	1	1	0.0464

Example: Overtraining

- Single hidden layer: 10 Sigmoid neurons
- 1 input, 1 output

Applications of Feed-forward nets

- Pattern recognition
- Character recognition
- Face Recognition
- Sonar mine/rock recognition (Gorman \& Sejowksi, 1988)
- Navigation of a car (Pomereau, 1989)
- Stock-market prediction
- Pronunciation (NETtalk)
(Sejnowksi \& Rosenberg, 1987)

