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Manipulation

What I see What I want to see
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Digital Images

What we see
What a computer sees

To change 

this...

I need to 

change this!
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Pixel Manipulation

• Let’s start simple

• I want to change a 

single Pixel.

• Or, I can apply a 

transformation T to all 

pixels individually.

MyNewValueYXf ),(

 ),(),( yxfTyxg 
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Image Domain (Spatial)

• I am directly changing 

values of the image 

matrix.

• Image Domain

• So, what is the other 

possible ‘domain’?

)( fTg 

3
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Image Negative

What I see What I want to see

What operation T

allows me to 

obtain this result?

g=T(f)
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Image Negative

• Consider the 

maximum value 

allowed by 

quantization (max).

• For 8 bits: 255

• Then:

What I want to see

),(255),(

),(max),(

yxfyxg

yxfyxg


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Dynamic Range Manipulation

• What am I really 

doing?

– Changing the 

response of my image 

to the received 

brightness.

• Dynamic Range 

Manipulation

– Represented by a 2D 

Plot.

f

Normal

Inverted

g
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Why DRM?
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Why DRM?
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Other DRM functions

• By manipulating our 

function we can:

– Enhance generic 

image visibility.

– Enhance specific 

visual features.

– Use quantization 

space a lot better.
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Contrast Stretching

• ‘Stretches’ the dynamic 

range of an image.

• Corrects some image 

capture problems:

– Poor illumination, aperture, 

poor sensor performance, 

etc.
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Histogram Processing

• Histograms give us an idea of how we are 

using our dynamic range

What if I want a 

different histogram 

for my image?
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Types of Image Histograms

• Images can 

be classified 

into types 

according to 

their 

histogram

– Dark

– Bright

– Low-contrast

– High-contrast
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Types of Image Histograms

I can 

manipulate 

this using 

single Pixel 

operations!
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Histogram Equalization

• Objective:
– Obtain a ‘flat’ 

histogram.

– Enhance visual 
contrast.

• Digital histogram
– Result is a ‘flat-ish’ 

histogram.

– Why?
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https://en.wikipedia.org/wiki/Histogram_equalization
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Histogram Equalization
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Histogram Equalization
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Neighbors

Why do we care at 

all?
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Digital Images

What a computer sees

So, who 

exactly are 

my 

neighbors?
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4-Neighbors

• A pixel p at (x,y) has 

2 horizontal and 2 

vertical neighbors:

– (x+1,y), (x-1,y), 

(x,y+1), (x,y-1)

– N4(p): Set of the 4-

neighbors of p.

• Limitations?

(x,y-1)

(x,y+1)

(x+1,y)(x-1,y)
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8-Neighbors

• A pixel has 4 diagonal 

neighbors

– (x+1,y+1), (x+1,y-1), 

(x-1,y+1), (x-1,y-1)

– ND(p): Diagonal set of 

neighbors

• N8(p) = N4(p)+ND(p)

• Limitations?

(x,y-1)

(x,y+1)

(x+1,y)(x-1,y)

(x-1,

y-1)

(x+1,

y-1)

(x-1,

y+1)

(x+1,

y+1)
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Connectivity

• Two pixels are 

connected if:

– They are neighbors 

(i.e. adjacent in some 

sense -- e.g. N4(p), 

N8(p), …)

– Their gray levels 

satisfy a specified 

criterion of similarity 

(e.g. equality, …)

(x,y-1)

(x,y+1)

(x+1,y)(x-1,y)

(x-1,

y-1)

(x+1,

y-1)

(x-1,

y+1)

(x+1,

y+1)

(x,y-1)
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4 and 8-Connectivity

(x,y-1)

(x,y+1)

(x+1,y)(x-1,y)

(x-1,

y-1)

(x+1,

y-1)

(x-1,

y+1)

(x+1,

y+1)

(x,y-1)

(x,y-1)

(x,y+1)

(x+1,y)(x-1,y)

(x-1,

y-1)

(x+1,

y-1)

(x-1,

y+1)

(x+1,

y+1)

(x,y-1)

4-Connectivity 8-Connectivity
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Distances

Distance
How far is 

that 

point?
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D4 Distance

• D4 distance (city-block distance):

– D4(p,q) = |x-s| + |y-t|

– forms a diamond centered at (x,y)

– e.g. pixels with D4≤2 from p

2

212

21012

212

2

D4 = 1 are the 4-neighbors of p
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D8 Distance

• D8 distance (chessboard distance):

– D8(p,q) = max(|x-s|,|y-t|)

– Forms a square centered at p

– e.g. pixels with D8≤2 from p

22222

21112

21012

21112

22222

D8 = 1 are the 8-neighbors of p



Mapi 17/18 - Computer Vision

Euclidean Distance

• Euclidean distance:

– De(p,q) = [(x-s)2 + (y-

t)2]1/2

– Points (pixels) having 

a distance less than or 

equal to r from (x,y) 

are contained in a disk 

of radius r centered at 

(x,y).
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Arithmetic operations between 

images

Why do I want to add 

these images?
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Arithmetic operations between 

images

Why do I want to add 

these images?
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Arithmetic operations between 

images

Slightly better... What 

if I add a lot of similar 

noisy images 

together?
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Image Arithmetic

• Image 1: a(x,y)

• Image 2: b(x,y)

• Result: c(x,y) = a(x,y) OPERATION b(x,y)

• Possibilities:

– Addition

– Subtraction

– Multiplication

– Division

– Etc..

Why is this useful?

What problems can 

happen?
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Logic Operations

• Binary Images

• We can use Boolean Logic

• Operations:

– AND

– OR

– NOT
More on this when 

we study 

mathematical 

morphology.
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Example: Background Subtraction

• Image arithmetic is simple and powerful.

Is there a 

person 

here? 

Where?
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Background Subtraction

• Remember: We can only see numbers!

Is there a 

person 

here? 

Where?
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Background Subtraction

• What if I know this?
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Background Subtraction

• Subtract!

• Limitations?
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Background Subtraction

• Objective: 

– Separate the foreground objects from a static 
background.

• Large variety of methods:

– Mean & Threshold [CD04]

– Normalized Block Correlation [Mats00]

– Temporal Derivative [Hari98]

– Single Gaussian [Wren97]

– Mixture of Gaussians [Grim98]

Segmentation!!

More on this 

later.
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Outline
• Single Pixel Manipulation

• Frequency Space

– Fourier Transform
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– Spatial Convolution

• Digital Filters
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How to Represent Signals?

• Option 1: Taylor series represents any function using 

polynomials.

• Polynomials are not the best - unstable and not very 

physically meaningful.

• Easier to talk about “signals” in terms of its “frequencies”

(how fast/often signals change, etc).
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Jean Baptiste Joseph Fourier (1768-1830)

• Had a crazy idea (1807):
• Any periodic function can 

be rewritten as a weighted sum 
of Sines and Cosines of 
different frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and other 
big wigs

– Not translated into English 
until 1878!

• But it’s true!
– called Fourier Series

– Possibly the greatest tool 

used in Engineering
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A Sum of Sinusoids

• Our building block:

• Add enough of them to get any 
signal f(x) you want!

• How many degrees of 
freedom?

• What does each control?

• Which one encodes the coarse 
vs. fine structure of the signal?

xAsin(
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• We want to understand the frequency  of our signal.  

So, let’s reparametrize the signal by  instead of x:

• For every  from 0 to inf, F() holds the amplitude A and phase  of the 

corresponding sine  

– How can F hold both?  Complex number trick!

Fourier Transform

xAsin(

f(x) F()
Fourier 

Transform

)()()(  iIRF 

22 )()(  IRA  )(

)(
tan 1






R

I
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Time and Frequency

• example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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Time and Frequency

• example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +
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Frequency Spectra

• example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +
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Frequency Spectra

• Usually, frequency is more interesting than the phase
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= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= 
1

1
sin(2 )

k

A kt
k








Frequency Spectra
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Fourier Transform – more formally

Arbitrary function Single Analytic Expression

Spatial Domain (x) Frequency Domain (u)

Represent the signal as an infinite weighted sum of an 

infinite number of sinusoids

   




 dxexfuF uxi 2

(Frequency Spectrum F(u))

1sincos  ikikeik
Note:

Inverse Fourier Transform (IFT)    



 dxeuFxf uxi 2
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Properties of Fourier Transform

Spatial

Domain

Frequency

Domain

Linearity    xgcxfc 21     uGcuFc 21 

Scaling  axf 








a

u
F

a

1

Shifting  0xxf   uFe
uxi 02

Symmetry  xF  uf 

Conjugation  xf   uF 

Convolution    xgxf     uGuF

Differentiation
 
n

n

dx

xfd
   uFui

n
2
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How does this apply to images?

• We have defined the 

Fourier Transform as 

• But images are:

– Discrete.

– Two-dimensional.

What a computer sees

   




 dxexfuF iux
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2D Discrete FT

• In a 2-variable case, the discrete FT pair 

is:











1

0

1

0

)]//(2exp[),(
1

),(
M

x

N

y

NvyMuxjyxf
MN

vuF 











1

0

1

0

)]//(2exp[),(),(
M

u

N

v

NvyMuxjvuFyxf 

For u=0,1,2,…,M-1 and v=0,1,2,…,N-1

For x=0,1,2,…,M-1 and y=0,1,2,…,N-1

AND:

New matrix 

with the 

same size!
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Frequency Space

• Image Space

– f(x,y)

– Intuitive

• Frequency Space

– F(u,v)

– What does this mean?
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Frequency Space

• Basic Principles
– The sinusoidal pattern shown below can be captured in a single 

Fourier term that encodes 1: the spatial frequency, 2: the 

magnitude (positive or negative), and 3: the phase.
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Frequency Space

• Basic Principles
– The spatial frequency is the frequency across space (the x-axis in this case) with 

which the brightness modulates.

– The magnitude of the sinusoid corresponds to its contrast, or the difference 

between the darkest and brightest peaks of the image. A negative magnitude 

represents a contrast-reversal, i.e. the brights become dark, and vice-versa.

– The phase represents how the wave is shifted relative to the origin, in this case it 

represents how much the sinusoid is shifted left or right.
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Frequency Space

• Basic Principles
– The Fourier transform encodes all of the spatial frequencies present in an image 

simultaneously as follows. A signal containing only a single spatial frequency of 

frequency f is plotted as a single peak at point f along the spatial frequency axis, 

the height of that peak corresponding to the amplitude, or contrast of that 

sinusoidal signal.
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Frequency Space

• Basic Principles
– There is also a "DC term" corresponding to zero frequency, that represents the 

average brightness across the whole image. A zero DC term would mean an image 

with average brightness of zero, which would mean the sinusoid alternated 

between positive and negative values in the brightness image. But since there is no 

such thing as a negative brightness, all real images have a positive DC term.

– Actually, for mathematical reasons beyond the scope of this tutorial, the Fourier 

transform also plots a mirror-image of the spatial frequency plot reflected across 

the origin, with spatial frequency increasing in both directions from the origin. For 

mathematical reasons beyond the scope of this explanation, these two plots are 

always mirror-image reflections of each other, with identical peaks at f and -f as 

shown below.
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Horizontal and Vertical Frequency

• Frequencies:

– Horizontal frequencies 

correspond to horizontal 

gradients.

– Vertical frequencies 

correspond to vertical 

gradients.

• The brighter the peaks in 

the Fourier image, the 

higher the contrast in the 

brightness image.

• What about diagonal lines?
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Power distribution

An image (500x500 pixels) and its Fourier spectrum. The super-imposed circles have 

radii values of 5, 15, 30, 80, and 230, which respectively enclose 92.0, 94.6, 96.4, 98.0, 

and 99.5% of the image power.



Mapi 17/18 - Computer Vision
If I discard high-frequencies, I get a blurred image...

Why?
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Low-Pass Filtered Inverse Transformed
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High-Pass Filtered Inverse Transformed
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Band-Pass Filtered Inverse Transformed
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Why bother with FT?

• Great for filtering.

• Great for compression.

• In some situations: Much faster than 

operating in the spatial domain.

• Convolutions are simple multiplications in 

Frequency space!

• ...
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Outline
• Single Pixel Manipulation
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– Fourier Transform
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– Spatial Convolution

• Digital Filters
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Convolution

 f



      hfgdxhfxg  






 h



 h



x

kernel h
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Convolution - Example

f
g

gf  Eric Weinstein’s Math World
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Convolution - Example

1 2-1-2

 xc

-1 1

1

 xb

-1 1

1
 xa

bac 

1
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Properties of Convolution

• Commutative

• Associative

• Cascade system

abba 

   cbacba 

f g
1h 2h

f g
21 hh 

f g
12 hh 
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Outline
• Single Pixel Manipulation

• Frequency Space

• Digital Filters

– Spatial filters

– Frequency domain filtering

– Edge detection
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Outline
• Single Pixel Manipulation

• Frequency Space

• Digital Filters

– Spatial filters

– Frequency domain filtering

– Edge detection
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Images are Discrete and Finite

 yxf ,  yxg , yxh ,

f

M
N

i
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h

Convolution
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Fourier Transform
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Inverse Fourier Transform
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Spatial Mask

• Simple way to 

process an image.

• Mask defines the 

processing function.

• Corresponds to a 

multiplication in 

frequency domain. Convolution – Mask 

‘slides’ over the image

Mask Image
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Example

• Each mask position 

has weight w.

• The result of the 

operation for each 

pixel is given by:

1 2 1

0 0 0

-1 -2 -1

2 2 2

4 4 4

4 5 6

Mask Image

=1*2+2*2+1*2+…

=8+0-20

=-12

 
 


a

as

b

bt

tysxftswyxg ),(),(),(
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Definitions

• Spatial filters

– Use a mask (kernel) over an image region.

– Work directly with pixels.

– As opposed to: Frequency filters.

• Advantages

– Simple implementation: convolution with the 
kernel function.

– Different masks offer a large variety of 
functionalities.
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Averaging

Let’s think 

about 

averaging 

pixel values

For n=2, convolve pixel values with 1 2 1

2D images: 

1 2 1(a) use then

1

2

1

1 2 1or (b) use

1

2

1

1

2

1

1

2

1

2

4

2

 
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The convolution kernel
2n

8n

nlarge

Repeated averaging  Gaussian smoothing

Averaging
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Gaussian Smoothing

 












 



2

22

2

1

22

1
,





ji

ejih
Gaussian

kernel

N pixels

Filter size N …can be very large

(truncate, if necessary)

   
 













 



1 1

2

1

2
,

2

1
,

2

22

m n

nm

njmifejig




2D Gaussian is separable!

    
 




1 1

2

1

2

1

2
,

2

1
,

2

2

2

2

m n

nm

njmifeejig 



Use two 1D

Gaussian

Filters!
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• A Gaussian kernel gives less weight to pixels further 
from the center of the window

• This kernel is an approximation of a Gaussian function:

Gaussian Smoothing

1 2 1

2 4 2

1 2 1
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2

8.2 4

original
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Mean Filtering

• We are degrading the 

energy of the high spatial 

frequencies of an image 

(low-pass filtering).

– Makes the image 

‘smoother’.

– Used in noise reduction.

• Can be implemented with 

spatial masks or in the 

frequency domain. 1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
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http://www.michaelbach.de/ot/cog_blureffects/index.html

http://www.michaelbach.de/ot/cog_blureffects/index.html
http://www.michaelbach.de/ot/cog_blureffects/index.html
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http://www.michaelbach.de/ot/cog_blureffects/index.html

http://www.michaelbach.de/ot/cog_blureffects/index.html
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Median Filter

• Smoothing is averaging

(a) Blurs edges 

(b) Sensitive to outliers

(a)

(b)

– Sort            values around the pixel 

– Select middle value (median)

– Non-linear (Cannot be implemented with convolution)

• Median filtering

12 N

sort median
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Median Filter
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Median Filter
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3x3

5x5

7x7

Salt and pepper noise Gaussian noise
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Border Problem

What a computer sees

1 2 1

2 4 2

1 2 1

How do we apply 

our mask to this 

pixel?
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Border Problem

• Ignore

– Output image will be smaller than original

• Pad with constant values

– Can introduce substantial 1st order derivative values

• Pad with reflection

– Can introduce substantial 2nd order derivative values
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Outline
• Single Pixel Manipulation

• Frequency Space

• Digital Filters

– Spatial filters

– Frequency domain filtering

– Edge detection
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Image Processing in the Fourier 

Domain

Does not look anything like what we have seen

Magnitude of the FT
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Convolution in the Frequency Domain

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|
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Lets the low frequencies 

pass and eliminates the 

high frequencies.

Generates image with overall

shading, but not much detail

Low-pass Filtering
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Lets through the high 

frequencies (the detail), 

but eliminates the low 

frequencies (the overall 

shape). It acts like an 

edge enhancer. 

High-pass Filtering
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Outline
• Single Pixel Manipulation

• Frequency Space

• Digital Filters

– Spatial filters

– Frequency domain filtering

– Edge detection
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Edge Detection

• Convert a 
2D image 
into a set of 
curves
– Extracts 

salient 
features of 
the scene

– More 
compact 
than pixels
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Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity
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How can you tell that a pixel is 

on an edge?
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Edge Types

Step Edges

Roof Edge Line Edges
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Real Edges

Noisy and Discrete!

We want an Edge Operator that produces:

– Edge Magnitude

– Edge Orientation

– High Detection Rate and Good Localization
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Gradient

• Gradient equation: 

• Represents direction of most rapid change in intensity

• Gradient direction:

• The edge strength is given

by the gradient magnitude
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Theory of Edge Detection

1B

2B t
x

y
Ideal edge

  0cossin,   yxyxL

  0,:1 yxLB

  0,:2 yxLB

Unit step function:

 
















0for 0

0for 
2

1

0for 1

t

t

t

tu    d sstu
t

 
 

Image intensity (brightness):

       c o ss in, 121 yxuBBByxI
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• Partial derivatives (gradients):

   

   













cossincos

cossinsin

12

12

yxBB
y

I

yxBB
x

I

• Squared gradient:

      2

12

22

cossin,  
























 yxBB

y

I

x

I
yxs

Edge Magnitude: 

Edge Orientation: 

 yxs ,


















x

I

y

I
/arctan

Rotationally symmetric, non-linear operator

(normal of the edge)

Theory of Edge Detection
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• Laplacian:

    








 co ssin'

122

2

2

2
2 yxBB

y

I

x

I
I

Rotationally symmetric, linear operator

I

x

x

I





2

2

x

I





x

x

zero-crossing

Theory of Edge Detection
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Discrete Edge Operators

• How can we differentiate a discrete image?

Finite difference approximations:

1, jiI 1,1  jiI

jiI , jiI ,1

    
jijijiji IIII

x

I
,,11,1,1

2

1









    jijijiji IIII
y

I
,1,,11,1

2

1











1 1

1 1
2

1






x

I 1 1

1 1
2

1






y

I

Convolution masks :
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1, jiI 1,1  jiI

jiI , jiI ,1

1,1  jiI

jiI ,1

1,1  jiI 1, jiI 1,1  jiI

• Second order partial derivatives:

 jijiji III
x

I
,1,,122

2

2
1

 






 
1,,1,22

2

2
1

 



jijiji III

y

I

• Laplacian :

2

2

2

2
2

y

I

x

I
I











2

2 1


 I

Convolution masks :

1 0

4 1

0

1

0 1 0

or
26

1



4 1

20 4

1

4

1 4 1

Discrete Edge Operators

(more accurate)
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The Sobel Operators

• Better approximations of the gradients exist

– The Sobel operators below are commonly used

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1
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Comparing Edge Operators

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 1

Gradient:

Roberts (2 x 2):

Sobel (3 x 3):

Sobel (5 x 5):
-1 -2 0 2 1

-2 -3 0 3 2

-3 -5 0 5 3

-2 -3 0 3 2

-1 -2 0 2 1

1 2 3 2 1

2 3 5 3 2

0 0 0 0 0

-2 -3 -5 -3 -2

-1 -2 -3 -2 -1

0 1

-1 0

1 0

0 -1

Good Localization

Noise Sensitive

Poor Detection

Poor Localization

Less Noise Sensitive

Good Detection
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Effects of Noise

• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is 

the edge??
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Where is the edge?  

Solution:  Smooth First

Look for peaks in 
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Derivative Theorem of Convolution

…saves us one operation.
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Laplacian of Gaussian (LoG)

Laplacian of Gaussian operator

Where is the edge?  Zero-crossings of bottom graph !

  fh
x

fh
x


















2

2

2

2

Laplacian of Gaussian
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2D Gaussian Edge Operators

Laplacian of Gaussian
Gaussian

Derivative of Gaussian (DoG)

Mexican Hat (Sombrero)

• is the Laplacian operator:



Mapi 17/18 - Computer Vision

Canny Edge Operator

• Smooth image I with 2D Gaussian:

• Find local edge normal directions for each pixel

• Compute edge magnitudes

• Locate edges by finding zero-crossings along the edge normal 

directions (non-maximum suppression)

 
 IG

IG




n

IG 

 
0

2

2






n

IG

 IG 
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Non-maximum Suppression

• Check if pixel is local maximum along gradient direction

– requires checking interpolated pixels p and r
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magnitude of the gradient
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After non-maximum suppression
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Canny Edge Operator

Canny with Canny with original 

• The choice of     depends on desired behavior

– large       detects large scale edges

– small      detects fine features



Mapi 17/18 - Computer Vision

Difference of Gaussians (DoG)

• Laplacian of Gaussian can be approximated by the

difference between two different Gaussians
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DoG Edge Detection

1(a) 2(b) (b)-(a)
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Outline
• Single Pixel Manipulation

• Frequency Space

• Digital Filters
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