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Abstract— Temporal Lobe Epilepsy is the most common type 
of adult focal epilepsy. The brain activity that characterizes the 
patients having this disorder is the main window for diagnosis 
and is studied relying electroencephalogram recordings. 
Another characteristic of this disorder is the typical motor 
manifestations in different parts of the human body, such as 
manual or oral automatisms. These seizure induced movements 
can now be quantified using sophisticated video processing 
technology. We aim to explore this technical possibility and 
shed light on its relation with intracranial electrical activity. 
We tackle the problem by exploring the similarity and 
synchrony of electrical activity and movement signals, as well 
as their rhythms. We use a modified version of the chi-squared 
statistical association test applied to time series – the Cramér V 
measure. 

I. INTRODUCTION 

emporal lobe epilepsy (TLE) is the most common type of 
adult focal epilepsy [1]. This type of epilepsy is drug 
resistant and many times associated to brain hippocampus 
sclerosis. The brain electrical activity of these patients is the 
main window for diagnosis and is studied relying on surface 
electroencephalograms (EEG) and intracranial recordings. It 
presents typical spiking patterns that have been studied for 
many years to provide clear information on the disease [2]. 

Another characteristic of this neurological disorder are its 
typical seizure motor manifestations in different parts of the 
human body [2]. During seizures patients “lose contact” with 
the world, presenting uncoordinated and erratic body 
movements. For example, it is known that abdominal auras, 
which evolve into seizures characterized by oral and manual 
automatisms (automotor seizures) clearly point to a TLE [3]. 
Epileptologists empirically use these movement patterns to 
aid their diagnosis. It is now possible to quantify this seizure 
induced movements using sophisticated video processing 
technology [4, 5]. 

Video processing technology or 3D motion systems have 
been used extensively to quantify human movement in a 
variety of application areas. In motion pictures and games 
they have been used to help understand and replicate human 
motion in computer created characters; in sports they have 
been used to perfect certain actions that may be significantly 
improve the performance of the athlete; in military, to train 
personnel; in virtual reality, for live tele-presence and 
realistic avatars; in medicine, for orthopaedists and 
prosthetists, it is useful to obtain quantitative gait analysis 
and an objective documentation of walking ability; and in 
education, for photo-realistic 3D virtual teachers and 
students [6]. It is obvious that quantifying movement in 
epileptic seizures can help to objectively document and 
analyse movement patterns that would otherwise be affected 

by the specialist inherent subjectivity. 
We aim to explore this technical possibility and 

investigate relations of its characteristics with intracranial 
electrical activity. We use information captured 
synchronously before and during seizures, both from seizure 
3D movement quantification and EEG readings. To be able 
to find a relation between seizure movement and EEG would 
yield significative impact in the clinical community, and in 
understanding epilepsy in general. Our goals are twofold: to 
investigate quantitative characteristics of seizure movements 
such as similarity and synchrony to TLE electrical activity, 
and to analyse the rhythms of seizure movements. 

This document is organized as follows. In section II we 
present the system that allows the recording of both 
electrical activity and movement, and its configuration. In 
section III we describe our approach to achieve the goals we 
set. We follow in section IV with the experimental analysis 
and present some results. Finally, in V we present some 
further research, and we draw some conclusions in section 
VI. 

II. SYSTEM SETUP AND CONFIGURATION 
The movement and EEG data is obtained from the Epilepsy 
Monitoring Unit of the University of Munich. This unit 
contains the infrastructure that allows capturing the data of 
epileptic activity. This includes rooms, 3D and vision, 64 
channels Video-EEG, and computing systems that allow the 
synchronization and capture of the signals before and during 
seizures. The vision system is composed by 4 cameras, 
having high resolution (1280 x 1024 pixels), and high frame 
rate (200 Hz). The cameras are sensible to infra-red light, so 
that they are immune to noise and work also at night. In 
order to capture the patients’ movements, 10 sets of infra-red 
reflecting blobs are distributed along their body. Software 
developed in the project allows the synchronization and 
recording of both movement and electrical activity signals. 

III. METHOD 
We explore the relation between seizure movement and 

electrical activity by means of its similarity and synchrony. 
Similarity is measured in terms of statistical association of 
the two signals. Synchrony is measured in terms of variation 
of similarity as measured across a certain delay range. We 
tackle the investigation of the movement rhythms by 
analysing the movement signal’s power spectral density. 

A. Similarity and Synchrony 
We will now formalize the concepts of similarity and 
synchronize upon which we base our work. 
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Definition 1. Similarity: Let X be the signal of the seizure 
movement quantified as displacement of a specific blob in 
the vertical axis, and Y be the electrical activity of a specific 
electrode in the scalp. The similarity of signals X and Y is the 
statistical association between the two signals, as measured 
by the V measure [8]. 

V is a measure of the degree of association, or strength of 
dependence of two or more variables, and it was introduced 
by Cramér [9] in 1946. It can be interpreted as the squared 
departure from independence in a scale between zero and 
one [8]. Although it is not a metric, it displays the symmetry 
property. It is fast to calculate and is mostly used with 
categorical variables. Nevertheless, we use the method in [8] 
to quantify the dependence of two numerical time series. 

Algorithm: 
1) First, each signal is discretized according to slope and 
polarity. Slope is the set of successive variations (increasing, 
decreasing) of the signal, and polarity is the set of the signal 
states (positive, negative). Each of the four different slope-
polarity combinations is attributed a different symbol, as 
depicted in Table I. 
 

Table I – Slope and polarity combinations 
Slope Polarity Symbol 
↑ + a 
↑ - b 
↓ + c 
↓ - d 

 
The discretized sequence has the length of the original signal 
minus one. 
2) Using the previously converted symbols as classes, we 
can build a contingency table. We fill the contingency table 
by counting the co-occurrences of each symbol in each 
position of the sequences. 
3) We then employ the chi-squared statistical test over the 
just built contingency table, as follows: 
 

                             (1) 

   
  where Oij and Eij are respectively the actual and expected 
number of co-occurrences of symbols i and j. 
4) Finally, we apply the Cramér’s coefficient method to T 
in order to normalize it in the [0, 1] interval. This coefficient 
can be obtained by: 
 

                                 (2) 

   
  where N is the total count of the contingency table, and 
assuming I=J. This coefficient provides a meaningful 
interpretation for the strength of the association between the 
two sequences. 

In order to properly define synchrony we need to first 
introduce the definition of time series subsequence. 

Definition 2. Subsequence: Given a signal T of length m, a 
subsequence C of T is a sampling of length n≤m of 
contiguous positions from T, that is, C = tp, ..., tp+n-1 for 1≤ 
p≤m-n+1 [10]. 

Definition 3. Synchrony: Let X of length m be the signal 
of the seizure movement quantified as displacement of a 
specific blob in the vertical axis, Y of length n be the 
electrical activity of a specific electrode in the scalp, and 
m<n. Given X, Y, the index s of Ys (s>1) captured in the 
same instant of X1, the index e of Ye captured in the same 
instant of Xn, and a maximum delay d. The synchrony of X 
and Y is the vector Vs, calculated as follows: 

 
FOR EACH POINT i in  [-d, +d ]: 

Eegi = Subsequence(length=xl, start=Ys+i, end=Ye+i) 
     Vsi  = Similarity(X, Eegi) 
END 
RETURN Vs 
 

The synchrony of two signals intends to capture the intuition 
that some subsequences of the electrical activity signal that 
precede the seizure by a certain number of milliseconds 
might most strongly be associated with the movement. It 
contains the variations of similarity as searched along a 
delay interval. 

B. Rhythms 
We analyse the movement rhythms by measuring the 

synchrony between the movement and electrical activity. As 
in the previous case, we measure synchrony in terms of 
association in function of a delay. However, in this case we 
use the power spectral density (PSD) of the signals. 

IV. RESULTS 
Following the method described in the previous section, 

we hereby describe our experimental analysis. First we 
describe the material, then the experimental methodology 
and the obtained results. 

A. Material 
To perform our experiments we have data from one 

patient. These data include the period during and before a 
seizure, being both movement and electrical activity data 
recorded synchronously. 

We take as an instance of movement data the left (OSL) 
and right (OSR) thigh displacement in the vertical axis, and 
the instantaneous velocity for these data, respectively OSL’ 
and OSR’. Similarly, we take as electrical activity instances 
the central (C3, C4), temporal (T7, T8), parietal (P3, P4), 
and frontal (F3, F4) electrodes. We also list as material our 
MATLAB implementations of similarity and synchrony. 

B. Results 
We will now outline our experimental methodology for 

the similarity and synchrony relation of the movement and 
electrical activity, and then for the rhythms. 
1) Similarity and Synchrony 

For each electrical activity instance, we calculate the 



  

synchrony in the interval [-2500ms, 2500ms] with the 
opposite hemisphere’s movement velocity. The velocity is 
used instead of the original displacement, because we 
believe that what is of interest is not the actual displacement 
per se, but the velocity at which it occurs. With the velocity 
concept, we can more faithfully represent the energy 
concept, than with the displacement itself. It is likely that a 
movement of one centimetre for the left or right, for 
example, is not very important. Instead, the velocity at 
which that displacement occurs is a carrier of more 
information for our endeavour. We intend to discover if 
there is some specific delay that presents a higher degree of 
association with the velocity the patient performs the 
movement. We use the maximum delay of 2500 
milliseconds because it is believed that this relation, if 
existent, is likely not to precede the seizure by a large 
amount of time. This value is apparently a good starting 
point. We use the opposite hemisphere’s electrodes and 
blobs (even-number electrodes indicate the right 
hemisphere), because it is now proved scientifically that 
brain hemispheres control the opposite part of the body. 

In Figure 1 we show the graphical representation of the 
synchrony vector between movement velocity OSL’ and 
electrode C4. 

 

 
Figure 1 – Synchrony between OSL’ and C4 

 
It can be observed that the absolute association results as 

measured by the V measure are overall very low. However, 
interesting behaviour can be observed if we regard the 
relative results, as the delay changes. There is a clear peak of 
association in the -150 frames delay, which is about 0.75 
seconds before the seizure occurs. Notice that no prior 
knowledge was incorporated in this first experiment: this 
means no pre-processing, no artefact removal; we are just 
working with the raw data. 

In the next experiment, we incorporate the knowledge that 
EEG is typically described in terms of rhythmic activity 
which is divided into frequency bands. These bands are 
believed to have a certain biological significance most likely 
related to the activities being performed by the individual. 
Up to 3 Hz in frequency we have Delta waves, in the 4-7 Hz 
range the Theta waves, 8-12 Hz correspond to Alpha waves, 
Beta waves range from 12-30 Hz, and finally in the 26-100 
band the Gamma waves. We take this knowledge into 
consideration, and intent to quantify which relation exists 

between each particular band and the original movement. 
We apply the following methodology: for each instance of 
the electrical activity, we apply band-pass filters according 
to the bands described above. Then, we calculate the 
synchrony between the original movement velocity signal 
and the electrical activity for each band. 

We show results for the synchrony between velocity OSL’ 
and the following electrode-band pairs: C4-Delta, C4-Theta, 
C4-Alpha, C4-Beta, and C4-Gamma in Figure 2. 

 

 
Figure 2 – Synchrony between OSL’ and C4 by band 

 
It can be observed that although the absolute results 

continue to be overall low, we can see a peak in specific 
delays, which may indicate a relation of movement and 
electrical activity that may precede the seizure. Also, we 
noticed an increase in the absolute V result at 0.75 
milliseconds before the seizure, reaching the value of 0.12. 
Another observation that can be noticed is the clear 
distinction if we compare the synchrony for each band. We 
represent this idea graphically in Figure 3. 

 

 
Figure 3 – Variation of maximum and mean V for the different bands 

 
As it can be observed, both the maximum and mean V 

decrease as we move from lower frequency bands to higher 
frequency bands. This might show that lower frequency 
bands are indeed more strongly associated with seizure 
movements. However it also may be a consequence of the 
fact that lower frequency band filters act as a low-pass filter 
which smooth the signal, improving the V result. These 
hypotheses need further experimentation.  

C. Rhythms 
We calculate the power spectral density of each electrical 
activity signal. Then, we calculate the PSD of the opposite 



  

hemisphere’s movement velocity. Finally, we obtain the 
synchrony of the two PSD in the interval [-2500ms, 
+2500ms]. In Figure 1 we plot the results for the T7 
electrode and OSR’ PSD. 
 

 
Figure 4 – Synchrony of OSR’ and T7 PSD 

 
As one can observe, there is one clear peak in the 

similarity between the brain’s electrical activity about half 
second before the seizure. This, when proved empirically 
with more patients data, might be an indicator that the 
frequency of the rhythms of the electrical activity and 
movement’s velocity are indeed similar before the seizure 
actual occurs. 

V. FUTURE WORK 
We first outline some directions to overcome some 

limitations of our work, and then present some new 
directions which we believe are promising. 

Regarding the limitations of our work, the first one is to 
use a Laplacian montage of the EEG electrodes. Using this 
type of montage, each channel represents the difference 
between an electrode and a weighted average of the 
surrounding electrodes [12]. This seems to be more accurate 
than our approach in which we use the actual channel 
readings. Also, in the rhythms analysis, it would be 
interesting to use more sophisticated approaches to calculate 
the PSD, such as the Welch method. 

We now present two possible new approaches for further 
work. The first one is to use approaches from the time series 
data mining community to build contingency tables  in the 
V calculation. One of those is SAX [11]. SAX is a clever 
way to discretize signals: it first divides the signal in a 
number of frames, then it averages the signal points that lie 
in each frame, then it divides the signal amplitude in a set of 
equiprobable intervals, and finally it attributes a different 
symbol to each frame according to the interval the average 
of that frame lies into. 

Other one is to apply pattern recognition algorithms in 
time windows that contain information that can help predict 
seizures. One way to obtain such information rich windows 
is to identify the regions that immediately precede the 
seizures. With these regions identified these could be used to 

train pattern recognition algorithms. One pattern that is 
found to be frequent in these regions is likely to be useful in 
the prediction of new seizures.  

VI. CONCLUSION 
In this work we investigate the relation of epilepsy seizure 

movements with brain electrical activity in terms of 
similarity and synchrony, as well as rhythms of such 
movements. 

Our results are overall low in terms of association. 
However, indicators observed in terms of relative value of 
association are both interesting and promising. 

We need to perform further research, perhaps a more 
comprehensive experimental analysis, with more patients’ 
data, better exploring pre-processing (smoothing and 
filtering), and with the intuition that the overall signal state 
is more important than immediate variations (that may be 
cause by noise or artefacts). We also think is necessary to 
empirically demonstrate the thesis that as band frequency 
increases, association decreases. 

Finally, we need to be aware that association, or 
correlation, doesn’t imply causality. This fact is important if 
we are going to derive prediction algorithms using the 
measure used in this work. 
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