

APPLIED SIGNAL AND IMAGE PROCESSING RESEARCH FOR HEALTHCARE: THE INOVA+ EXPERIENCE

Válter Rocha

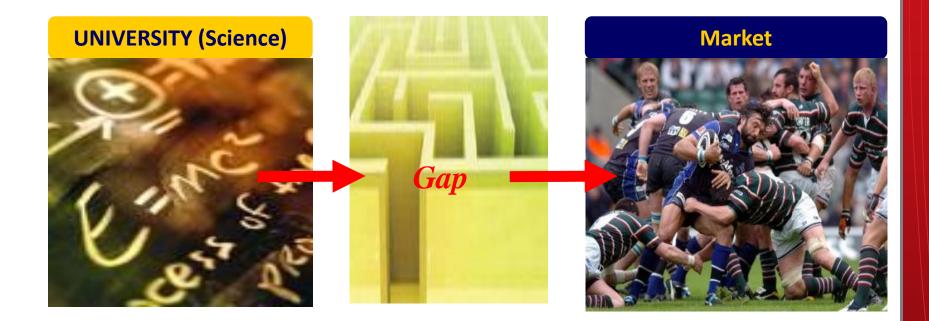
INOVA+ Company Profile	3
INOVA+ Projects	7
TROY	11
Tests	30
Results and Conclusions	42

INDEX

COMPANY PROFILE

INOVA+

INOVA+ is a Portuguese consultancy firm founded in 1997 with headquarters in Oporto and offices in Lisbon specialized in **innovation management.**


As the Portuguese leader in the **promotion and management of European funded projects, INOVA+** has a vast experience in the field both as partner and as co-ordinator.

It is connected to the INNOVA Group the largest private network for innovation services in Europe with offices in Portugal, Italy, Belgium, Luxembourg, France, Poland, Czech Republic and USA.

INOVA+

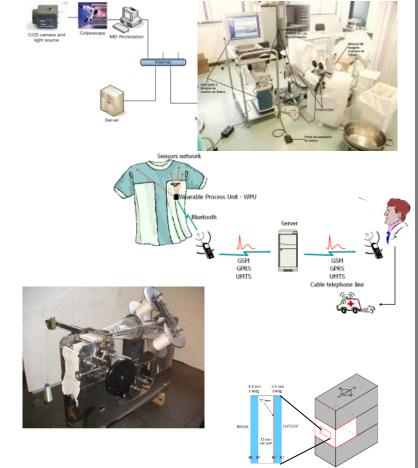
Promoting **entrepreneurship** and **technology transfer** by matching research results with the market demand.

INOVA+

Inovamais experience

RTD PROJECTS

PROJECTS


Lifelinger & Cervicare– A new ICT-Based Diagnosis Procedure and Tool set for Early Detection of Cervix Cancer – image processing, spectrometry, neural networks, data-mining, Electronic record.

ADAPT - Automatic Data Transfer (paper, EDI, Fax...to ERP) – XML, OCR, BD

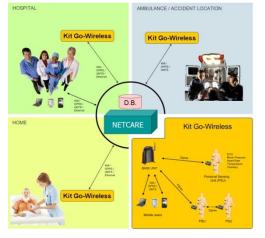
Heartronic – Prevention and early warning of cardiovascular anomalies – telemetry, embedded systems, neural networks

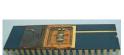
Multiweave – Weaving Machine for Producing Multiaxial Fabric – engineering, HW/SW control

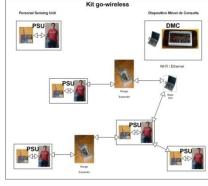
Termoglaze – Production of thermochromic glazing for energy saving applications – simulation using mathematic models to optimize the glazing layers

RTD PROJECTS

PROJECTS


NETCARE – Wireless telemetry for continuous health care – telemetry, embedded systems, bio-sensors, zigbee, universal gateway, Zephir integration, Hospital Information System, automatic alarms


Healthreats – Integrated Decision Support System for HEALTH THREATS and crises management (Sep/2010) – DSS, workflow

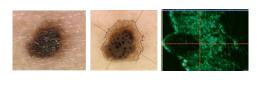

MAP – Microchip Analyzer of Proteins (Feb/2011) – data acquisition, analysis software

PHN - Personal Healthcare Networks (Aug/2011) - telemetry, embedded systems, bio-sensors, zigbee, universal gateway, automatic alarms, GIS

FIERCE - Future technologies for first responders in critical infrastructures (Aug/2011) - embedded systems, wireless sensors, zigbee, universal gateway, automatic alarms, GIS

RTD PROJECTS

PROJECTS

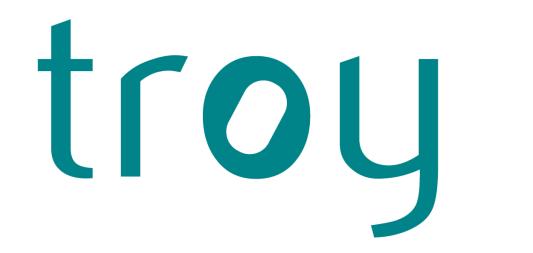

SkinMonitor – Diagnosis of skin cancer based on ICT tools –digital imaging, narrow band imaging, ultrasounds

NFCE – New functionalities for the endoscopic capsule – Automatic Diagnosis, spectrometry, Capsule movement control

PRK_TREATMENT - Exercise System for Parkinson continuous treatment and rehabilitation

AAL4ALL - Standard of Primary Care for AAL services

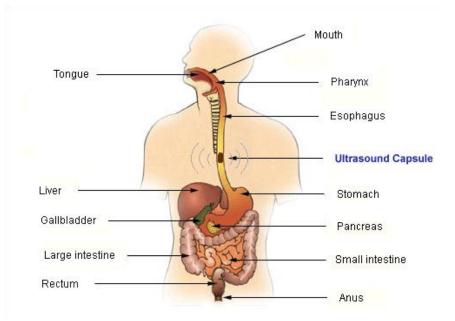
TICE.Healthy – Health and Life Quality Systems



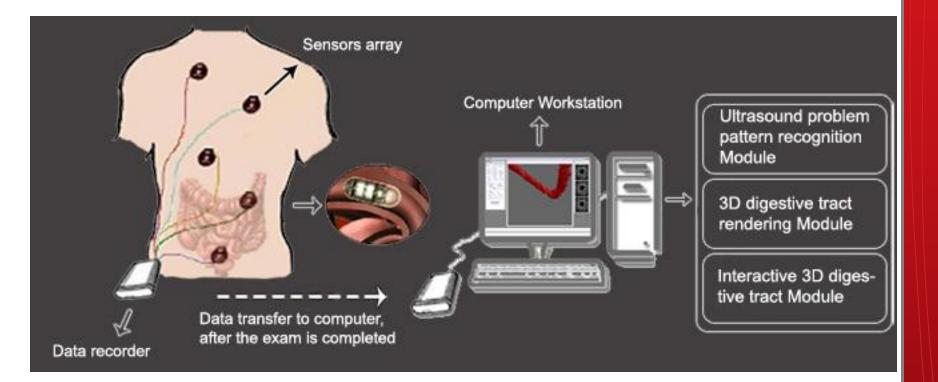
Endoscope Capsule Using Ultrasound Technology

Please Check the Video at:

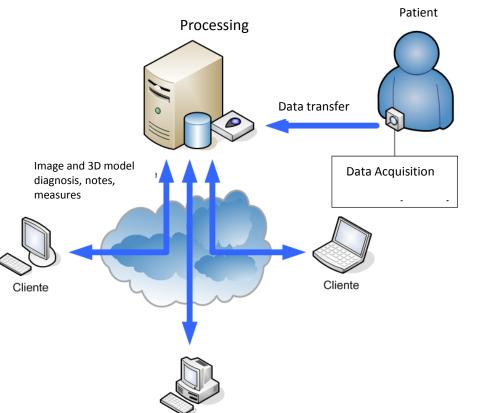
http://www.inovacao.net/troy/VideoTroy.swf



Drink it with a glass of water


Do your normal life

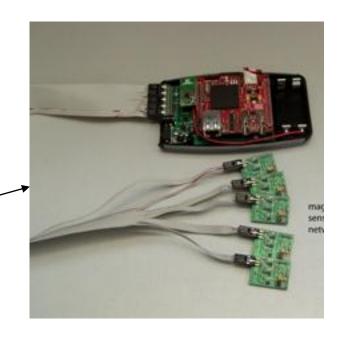
Return the data logger

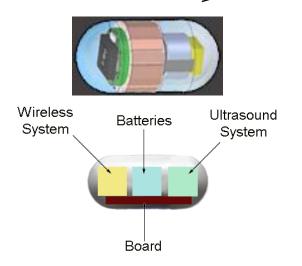

Get the results

Cliente

• Processing Server

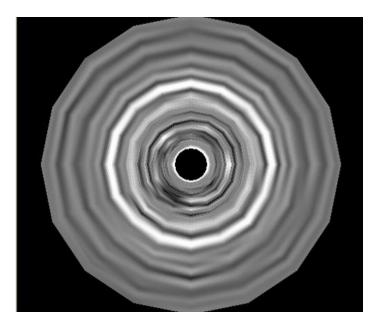
- Process
- Storage
- Simple Interface

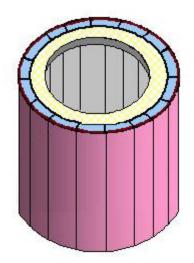

o Clients

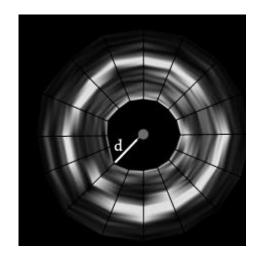

- Data Access
- Complex Interface 3D Model

System Architecture

Capsule Architecture Capsule localization system based in Magnets






Pre-Processing (2D images)

2D image from ultrasound raw data

- The objective is to transform the
- 2D ultrasound data in 2D images.
- The capsule is composed of 16 / 32 sensors.
- Each sensor sends an ultrasound signal.

Applied signal and image processing research for Healthcare: The Inovamais experience

Pre-Processing (2D Images)

Metadata on images

•••

Image, position, orientation, rotation and time

filename pos_x pos_y pos_z orient_x orient_y orient_z rotation time

.\Screen0000.bmp -10,000 -50,000 50,000 0,000 1,000 0,000 0,000 0 .\Screen0001.bmp -9,963 -47,713 49,917 0,016 1,000 -0,018 0,000 1

.\Screen0002.bmp -9,855 -45,356 49,674 0,032 0,999 -0,036 0,000 2

.\Screen0003.bmp -9,679 -42,934 49,279 0,047 0,997 -0,053 0,000 3

Test data was created based on ultra-sound images collected

Troy capsule data

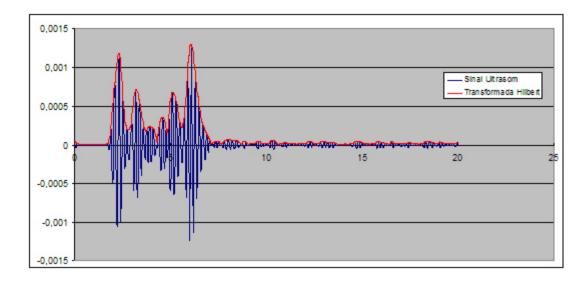
•••

Position, orientation, rotation, time, Raw data 16 sensors

Position,pos_x,pos_y,pos_z,Acceleration,orient_x,orient_y,orient_z, rotation,time, Sensor 0, 3000 values, Sensor 1,..., Sensor 15, 3000 values

Position,0,0,0,Acceleration,16567,64954,64314,Sensor n. 0,0,0,2075,2076,2074,2072,2074,2071,2072,2062,3842,4054,... Position,0,0,0,Acceleration,16547,64973,64372,Sensor n. 0,0,0,2072,2072,2070,2070,2069,2066,2064,2061,2141,3820,... Position,0,0,0,Acceleration,16564,64808,64424,Sensor n. 0,0,0,2060,2058,2060,2062,2062,2063,2065,2066,3825,3810,... Position,0,0,0,Acceleration,16570,64912,64352,Sensor n. 0,0,0,2043,2044,2046,2047,2046,2046,2048,2051,3836,3798,...

Test data collected at Roma

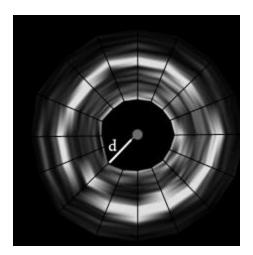

2D image from ultrasound raw data based on several consecutive slices

- 1. Hilbert transform applied to the calibrated signals;
- 2. Calculate maximums choosing them accordingly with MODA of X signals; MODA of the number of local "maximums" (contours)
- 3. Make mean and standard deviation of time and amplitude and exclude signals outside standard deviation; this is for signals not excluded in step before.
- 4. Calculate mean of valid maximums obtaining the contours.
- 5. Use the values of the fragment closer to the mean to apply the color.

Signal is processed into the Hilbert transform.

This transform creates an envelope around the signal which facilitates identification and analysis of the peaks of the oscillations.

Signal analysis Step 1/3


Calculating the distance to the center of the dish:

The contour is calculated using the formula:

d = t * 0.75

t is the instant of maximum time in millisecond

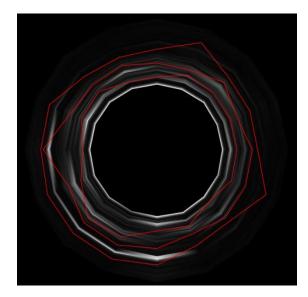
following pre-defined threshold.

Applied signal and image processing research for Healthcare: The Inovamais experience

Signal analysis Step 2/3

Calculation of the values that define the different sections of the various layers:

The average amplitude at intervals of 0.25 ms multiplied by 200 indicates the color intensity scale Gray.

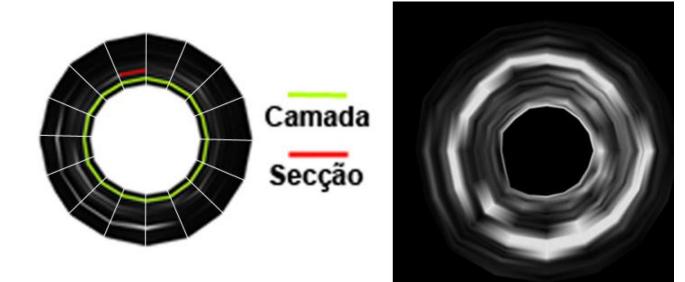


Signal analysis Step 3/3

Calculation of the different layers of the intestine: Using the same formula

d = t * 0.75

where t is the value of three peaks following the initial contour.



Applied signal and image processing research for Healthcare: The Inovamais experience

TROY

Final 2D reconstruction

The visual reconstruction of the 2D image is done after the analysis of all fragments. The reconstruction is done within a framework OpenGL.

3D Reconstruction

- Contour detection based on 2D
- images based on simulated annealing algorithm
- Contour detection based on US raw data using information from several consecutive slices
- 3D rendering based on triangulation
- of obtained points
- XML writer/parser for writing and reading 3D models

🔡 Troy Input		
Information of patient-		
Reference of capsule:		
Reference of Patient:		
Name:		
Sex:	🔿 Female 🔵 Male	
Age:	~	
Contact:		
Notes:		
Create i3DModel		
Find metadata		
	Ξ	
Find calibration	Save filename:	
Start C	Cancel	Done
[]		

3D Reconstruction

3D reconstruction is based on the triangulation of the contour points positioned in sequential images in accordance with the sensors placed on the abdomen.

The position, orientation and rotation information of each fragment are essential for this reconstruction.

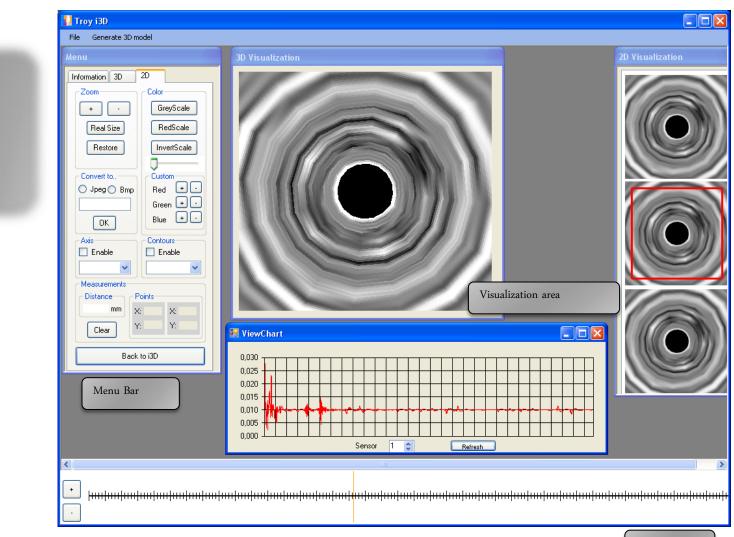
Presentation layer

•2D /3D Manipulation;

•Inside view Animation;

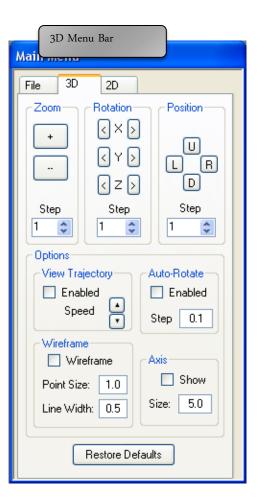
•Visualization Filters;

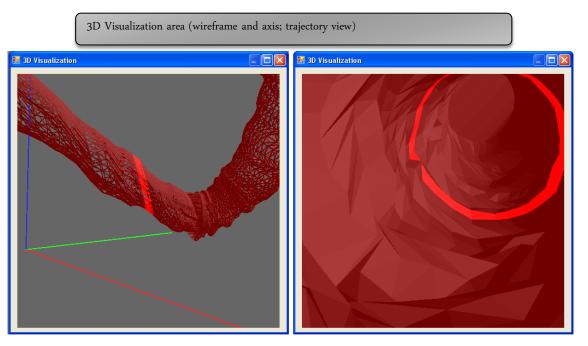
•Measures:

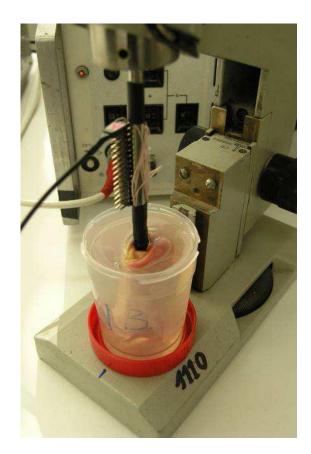

•Color scale:

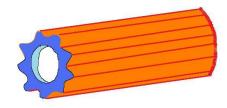
•Contours:

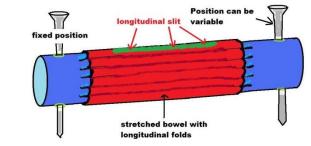
•Time bar.

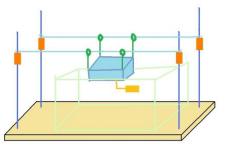

•US chart data


•Notes;


Time Bar

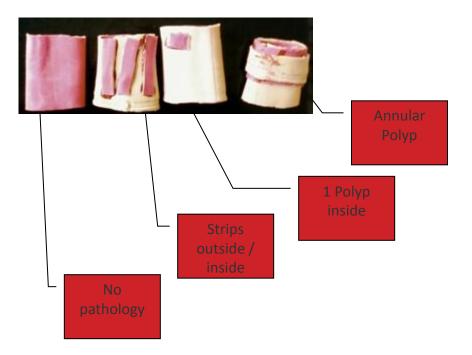



Planned Tests

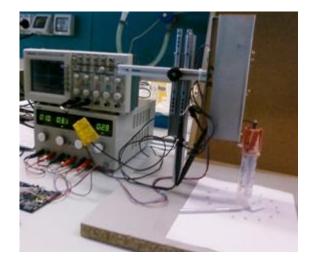

Planned phantom preparation

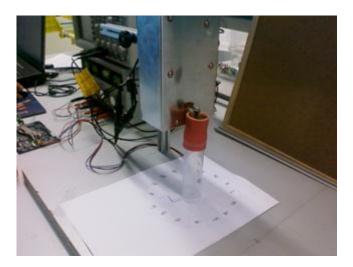
- 16 Longitudinal zones needed for correlation between circumferential sectors of bowel to corresponding crystals/channels.
- Several (>5) transversal zones corresponding to several positions of capsule during linear manual movement. Their role is to ensure approximate positioning of capsule and to make possible a correlation between position of normal or abnormal segments of bowel to corresponding signals, without seeing the probe.

Longitudinal folds to reshape the bowel.



Planned Tests


Tests were made to 4 smaller phantoms



Actual Tests

Setup of the testbed:

Applied signal and image processing research for Healthcare: The Inovamais experience

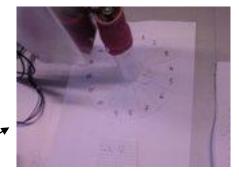
TROY

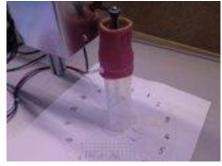
Actual Tests

Data acquisition

11 samples collected from each 5 phantoms With polyp in different positions With strips inside With strips outside With tumour / inflammation (annular polyp) Clean bowel (no pathology)

Each data file contains several captures from the same view (1/second)

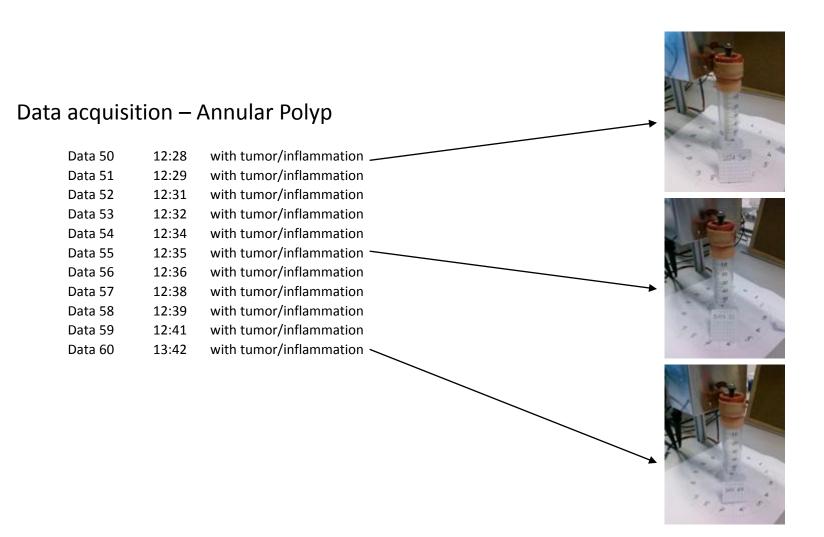

1 calibration set



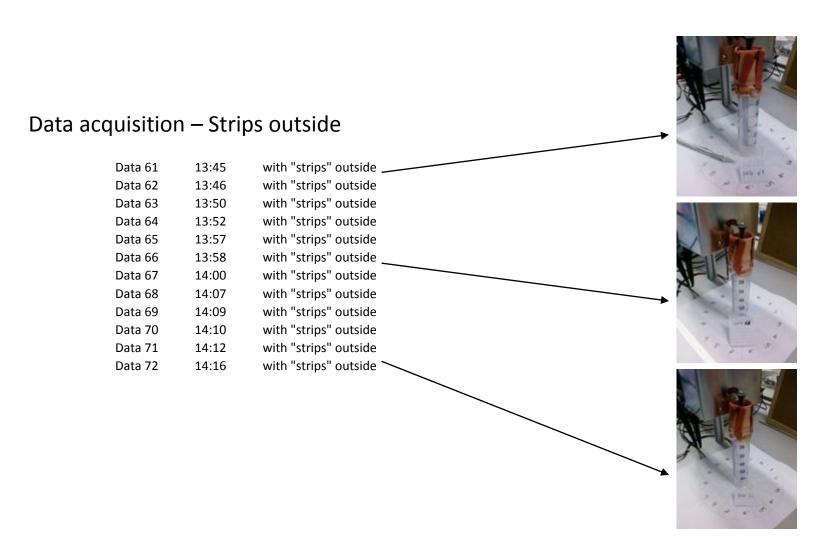
Data acquisition - Polyp

Data file name	Timing	Description
Data 28	11:29	no polyp
Data 29	11:30	no polyp
Data 30	11:32	no polyp
Data 31	11:34	no polyp
Data 32	11:39	no polyp
Data 33	11:40	no polyp
Data 34	11:42	no polyp
Data 35	11:43	no polyp
Data 36	11:46	with polyp
Data 37	11:48	with polyp
Data 38	11:50	with polyp

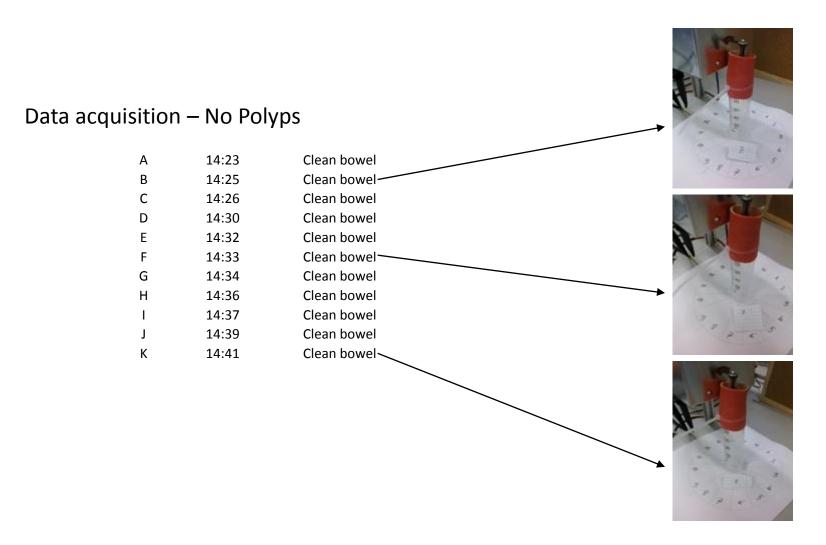
Other Remarks Polyp in pos 9 Polyp in pos 5 Polyp in pos 5-6 Polyp in pos 5-6 Polyp in pos 5-6

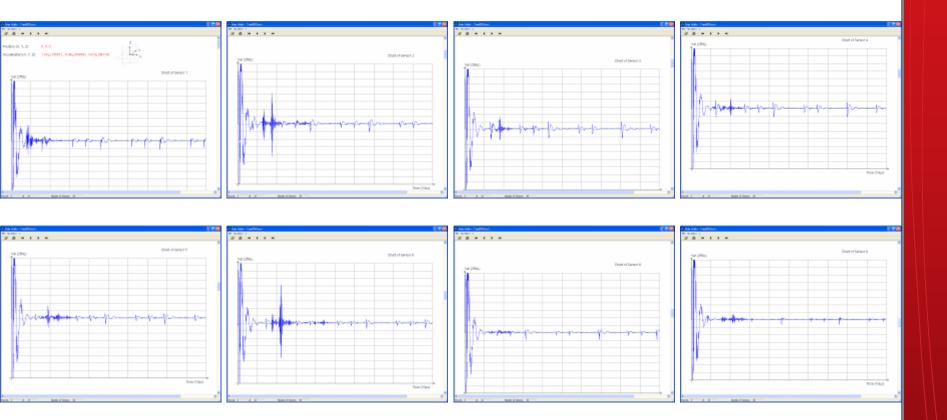

Applied signal and image processing research for Healthcare: The Inovamais experience

Actual Tests

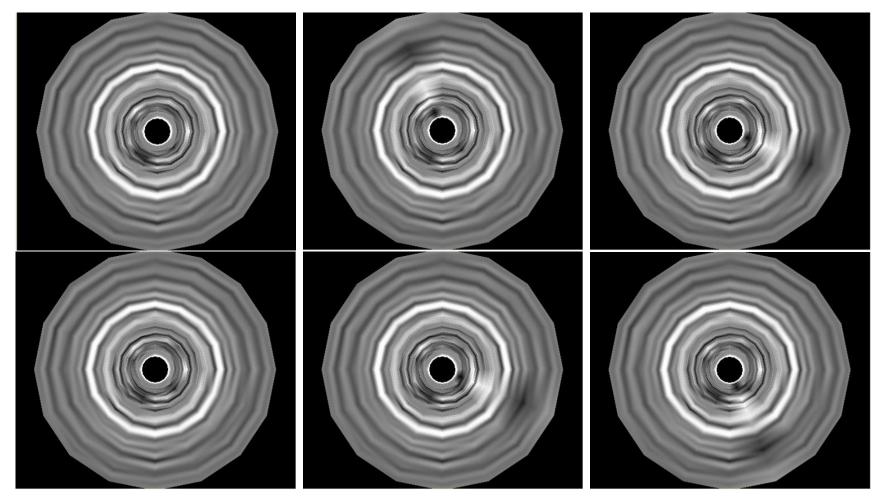


Applied signal and image processing research for Healthcare: The Inovamais experience





Actual Tests


Tests Results

Actual Tests

Tests Results

Applied signal and image processing research for Healthcare: The Inovamais experience

RESULTS AND CONCLUSIONS

Results / Conclusions

Based on these results it is possible to determine a set of classifiers for the TROY concept and its characterization as a screening test. The most significant parameters, according to Wilson and Jungner, are the following:

- · Specificity TN/(FP+TN).
- · Sensitivity TP/(TP+FN).
- · Prevalence (TP+FN)/(TP+FP+FN+TN).
- · Likelihood ratio + sensitivity/(1-specificity).
- · Likelihood ratio (1-sensitivity)/specificity.
- Positive predictive value TP/(TP+FP).
- \cdot Negative predictive value TN/(FN+TN).
- · Pretest odds prevalence/(1-prevalence).
- · Post-test odds pretest odds x likelihood ratio.
- · Post-test probability post-test odds/(post-test odds+1).

 Wilson J. M. G., Jungner G., "Principles and practice of screening for disease", World Health Organization, Public Health Paper 34 (1968)
UCI College of Medicine, "Evidence-based Medicine Guidebook" (2004)

Results / Conclusions

These parameters were calculated and are presented in the Table:

- The two most important parameters for a screening diagnostic exam are: sensitivity and specificity
- They show that the exam is very accurate in classifying as positive the abnormal cases and as negative the normal cases.
- The other parameters are also very interesting and demonstrate that the TROY system can be a very useful tool for screening possible disorders in the gastrointestinal tract.

Parameter	Value
Specificity	97%
Sensitivity	88%
Prevalence	80%
Likelihood ratio+	31,34
Likelihood ratio -	0,13
Positive predictive value	0,99
Negative predictive value	0,67
Pretest odds	3,91
Post-test odds	122,5
Post-test probability	99%

INOVA+ Company Profile	3
INOVA+ Projects	7
TROY	11
Tests	30
Results and Conclusions	42

PORTO

Email: inovamais@inovamais.pt Phone: +351 229 396 350 Fax: +351 229 396 351

LISBOA

Email: lisbon@inovamais.pt Phone: +351 214 211 383 Fax: +351 214 211 383

BRUSSELS

Email: innova-europe@innova-europe.eu Phone: +32 028 080 319 Fax: +32 025 026 543

LUXEMBURG

Email: innova-europe@innova-europe.eu Phone: +35 22 638 672 034 Fax: +35 22 638 672 995

ROME

Email: info@innova-eu.net Phone: +390 668 803 253 Fax: +390 668 806 997

PARIS

Phone: +33(0) 624 130 813 Fax: +33(0) 624 130 813

WARSAW

Phone: +48 223 897 071 Fax: +48 226 194 823

BOSTON

Email: info@innova-us.net Phone: +16 172 254 359 Fax: +16 172 254 441

www.inovamais.pt