VC 10/11 - T8 Segmentation

Mestrado em Ciência de Computadores
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- Thresholding
- Geometric structures
- Hough Transform

Acknowledgements: Most of this course is based on the excellent courses offered by Prof. Shree Nayar at Columbia University, USA and by Prof. Srinivasa Narasimhan at CMU, USA. Please acknowledge the original source when reusing these slides for academic purposes.

Topic: Thresholding

- Thresholding
- Geometric structures
- Hough Transform

Boundaries of Objects

Marked by many users
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/html/images.html

Boundaries of Objects from Edges

Brightness Gradient (Edge detection)

- Missing edge continuity, many spurious edges

Boundaries of Objects from Edges

Multi-scale Brightness Gradient

- But, low strength edges may be very important

Machine Edge Detection

Image

Human Boundary Marking

Boundaries in Medical Imaging

A

B

C

Fig. 2. Representation of a closed contour by elliptic Fourier descriptors. (a) Input. (b) Series truncated at 16 harmonics. (c) Series truncated to four harmonics.

Detection of cancerous regions.

Boundaries in Ultrasound Images

Hard to detect in the presence of large amount of speckle noise

Sometimes hard even for humans!

What is 'Segmentation'?

- Separation of the image in different areas.
- Objects.
- Areas with similar
 visual or semantic characteristics.

Not trivial! It is the holy grail of most computer vision problems!

Subjectivity

- A 'correct' segmentation result is only valid for a specific context.
- Subjectivity!
- Hard to implement.
- Hard to evaluate.

\square

Core Technique: Thresholding

- Divide the image into two areas:
- 1, if $f(x, y)>K$
- 0 , if $f(x, y)<=K$
- Not easy to find the ideal \boldsymbol{k} magic number.
- Core segmentation technique
- Simple
- Reasonably effective

VC 10/11-T8 - Segmentation

Finding the 'magic number'

Sonnet for Lena

O dear Lema, your beauty is so vant
It is hard sometimes to describe it fast.
1 thought the entire wortit 1 woutd impreser
If ouly your portrait I could compress.
Alast First when I tried to use VQ
I found that your cheeks belong to only you Your silky hair contains is thousand lines Hard to match with sums of discrete cosines. And for your lips, mensual and tactual Thirtern Crays found not the proper fractal

```
Sulltu=| |: |
(),|r:al l |
If im t.u.| - . .. '
Ithamimhl thic .:'
Monly 3w|11 |m|! .1't |
```



```
            - mith mutan of dingtete towines
                Tamamal and tartisul
            *)
```

Global thresholds are not always adequate...

Adaptive Thresholding

- Adapt the threshold value for each pixel.
- Use characteristics of nearby pixels.
- How?
- Mean
- Median
- Mean + K
- ...

Mean of 7x7 neighborhood

Sonnel: for Lena

O dear ledar, jutur licauty is mationt it is bart sumetimes to dencribe it fast. I thinghthe the mitire world I would bungtess If otily gnur jottali I tould compress. Alas! First whet Itriel to use VQ 1 fonnd thin your cheeks belong to only you. Your kilky hait cumtalins in thensuma libes llatel to suatch will stums of aliscrete cosines. And for your lips, sentisual and thetual Thitiren Criges fomal ant the proper fracint. And white these arthatek nof all guter kr:wre I might have fixel them with limke lare or there B:at when fillera tesk aparkde from your "ywn I sain, 'Dintin ill thin. I'ls just aligitize."

Sonnet for Lena

O deer Lema, your heauty fo wo vart
It is hand wonntiznea to describe ic taet. I thought the entipe world 1 would inoptem If only wour portrait I ratilit romprome.
Alme! Firat whrli I trimel to ume VQ
Ifound that yutar cherics belong to only you.
Your silky hoir contajun a thowand linee
Hanl to ralalch with sums of diacrece comines.
And for yomir lipm, mpanual and twriand
Thirn end C'rayk fontud nat the proper fractal.
 I tught have fixenl thinit with limike here or thetr
 t neid. 'Danir eall thin. I'll junt digitize."

Thernas Coblturet

Topic: Geometric structures

- Thresholding
- Geometric structures
- Hough Transform

Points

- What is a point?
- Pixel with a significant illumination difference to its neighbors.
- Group of pixels?

- Spatial Mask!
- Need to define a threshold K.

-1	-1	-1
-1	8	-1
-1	-1	-1

$R=\sum_{i=1}^{9} w_{i} z_{i}$
$|R|>K \Leftarrow$ point!

Lines

- Spatial filter
- One per line direction
- Sensitive to line width

-1	-1	-1
2	2	2
-1	-1	-1
Horizontal		

-1	2	-1
-1	2	-1
-1	2	-1
Vertical		

Diagonal?

Edges

- Edge:
- Spatial discontinuity of pixel amplitude.
- High spatial gradient
- First derivative (peak)
- Second derivative (zero crossing)

Popular operators

- Edge detection
- Great utility for several problems.

$$
G_{x} \rightarrow\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

$$
G_{y} \rightarrow\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

- Well studied problem.
- A variety of

$$
G_{y} \rightarrow\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$ solutions exists.

$$
G_{x} \rightarrow\left[\begin{array}{lll}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

a) Sobel edge detector
b) Prewitt edge detector

$$
G_{x} \rightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

$$
G_{y} \rightarrow\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

c) Roberts edge detector

Processing Edge Images

Image

Noisy edge image Incomplete boundaries

Edge Tracking Methods

- Adjusting a priori Boundaries

Given: Approximate Location of Boundary Task: Find Accurate Location of Boundary

Fig. 4.2 Search orientations from an approximate boundary location.

- Search for STRONG EDGES along normals to approximate boundary.
- Fit curve (eg., polynomials) to strong edges.
\square

Edge Tracking Methods

- Divide and Conquer

Given: Boundary lies between points A and B
Task: Find Boundary

- Connect A and B with Line
- Find strongest edge along line bisector
- Use edge point as break point
- Repeat

Fitting Lines to Edges (Least Squares)

Given: Many $\left(x_{i}, y_{i}\right)$ pairs Find: Parameters (m, c)

Minimize: Average square distance:

$$
E=\sum_{i} \frac{\left(y_{i}-m x_{i}-c\right)^{2}}{N}
$$

Using:

$$
\frac{\partial E}{\partial m}=0 \quad \& \quad \frac{\partial E}{\partial c}=0
$$

Note:

$$
\bar{y}=\frac{\sum_{i} y_{i}}{N} \quad \bar{x}=\frac{\sum_{i} x_{i}}{N}
$$

Topic: Hough Transform

- Thresholding
- Geometric structures
- Hough Transform

Hough Transform

- Elegant method for direct object recognition
- Edges need not be connected
- Complete object need not be visible
- Key Idea: Edges VOTE for the possible model

Image and Parameter Spaces

Equation of Line: $y=m x+c$
Find: (m, c)

Consider point: $\left(x_{i}, y_{i}\right)$

Parameter space also called Hough Space

Line Detection by Hough Transform

Algorithm:

- Quantize Parameter Space (m, c)
- Create Accumulator Array $A(m, c)$
- Set $A(m, c)=0 \quad \forall m, c$
- For each image edge $\left(x_{i}, y_{i}\right)$ increment:

$$
A(m, c)=A(m, c)+1
$$

- If (m, c) lies on the line:

$$
c=-x_{i} m+y_{i}
$$

- Find local maxima in $A(m, c)$

	1						1		
		1				1			
			1		1				
				2					
			1		1				
		1				1			
	1						1		

Better Parameterization

NOTE: $\quad-\infty \leq m \leq \infty$
Large Accumulator
More memory and computations
Improvement: (Finite Accumulator Array Size)
Line equation: $\rho=-x \cos \theta+y \sin \theta$
Here $\quad 0 \leq \theta \leq 2 \pi$

$$
0 \leq \rho \leq \rho_{\max }
$$

Given points $\left(x_{i}, y_{i}\right)$ find (ρ, θ)
Hough Space Sinusoid

Votes

Horizontal axis is θ, vertical is rho.

Mechanics of the Hough Transform

- Difficulties
- how big should the cells be? (too big, and we merge quite different lines; too small, and noise causes lines to be missed)
- How many lines?
- Count the peaks in the Hough array
- Treat adjacent peaks as a single peak
- Which points belong to each line?
- Search for points close to the line
- Solve again for line and iterate

Real World Example

Original

Edge
Detection

Found Lines

Parameter Space

Other shapes

Original

Edges when using circle model

Resources

- Gonzalez \& Woods - Chapter 7
- Russ - Chapter 7
- N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans.
Sys., Man., Cyber., vol. 9, pp. 62-66, 1979.

