Aula Prática 5

Docente: Miguel Tavares Coimbra

1. Edge detectors

- Implement a Sobel edge detector
 - i. Create the two required masks, one to estimate Gx, and another to estimate Gy.

-1	0	1
-2	0	2
-1	0	1
Soh	el -	Gx

-1	-2	-1			
0	0	0			
1	2	1			
Sobel - Gy					

ii. Obtain, for each pixel, the magnitude of the gradient.

$$|G/\approx |Gx|+|Gy|$$

- iii. Visualize the result in a spatial image format (i.e. display it as values between 0 and 255 for each pixel).
- Implement other edge detector filters.
 - i. Sobel 5x5
 - ii. Laplacian
 - iii. LoG operator
 - iv. Difference of Gaussians

Figure 1 – Results after applying a 3x3 Laplacian filter to the *lena.jpg* image. Constrast-stretching was used for clarity. Was is the cause for the 'little squares' effect? (Hint: Read the slides on image compression)

2. Erosion and Dilation

- Create two morphological filter functions that operate on binary images: Erosion and Dilation. Use a 3x3 kernel as shown in Figure 2.
- Apply these function to image Imagem_AP5_2, which is the results of the segmentation of image Imagem_AP5_1, degraded by salt and pepper noise.
- [Optional] Make your functions more flexible, by allowing them to receive an additional parameter with the operating kernel.

