
T15 - Tracking 

Computer Vision, FCUP, 2013 

Miguel Coimbra 

Slides by Prof. Kristen Grauman 



 





Pset 5 

Nearest neighbor action classification with 

Motion History Images + Hu moments 

Depth map sequence Motion History Image 
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Normalized Euclidean distance 
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Normalize according to variance in each dimension 

What does this do for our distance computation? 
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Leave-one-out cross validation 

• Cycle through data points, treating each one as 

the “test” case in turn, and training with the 

remaining labeled examples. 

 

• Report results over all such test cases 



Outline 

• Today: Tracking 

– Tracking as inference 

– Linear models of dynamics 

– Kalman filters 

– General challenges in tracking 



Tracking: some applications 

Body pose tracking, 

activity recognition 

Surveillance 

Video-based 

interfaces 

Medical apps 

Censusing a bat 

population 
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Why is tracking challenging?  

 



Optical flow for tracking? 

If we have more than just a pair of frames, we could 

compute flow from one to the next: 

 

 

 

 

 

 

 

 

But flow only reliable for small motions, and we may have 

occlusions, textureless regions that yield bad estimates 

anyway… 

 

… 

… 



Motion estimation techniques 

• Direct methods 
• Directly recover image motion at each pixel from spatio-temporal 

image brightness variations 

• Dense motion fields, but sensitive to appearance variations 

• Suitable for video and when image motion is small  

 

• Feature-based methods 
• Extract visual features (corners, textured areas) and track them 

over multiple frames 

• Sparse motion fields, but more robust tracking 

• Suitable when image motion is large (10s of pixels) 

 
 



Feature-based matching for motion 

Interesting point 
Best matching 

neighborhood 
Time t Time t+1 

Search 

window 

Search window is centered at the point 

where we last saw the feature, in image I1. 

 

Best match = position where we have the 

highest normalized cross-correlation value. 
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Example: A Camera Mouse 

Video interface: use feature tracking as mouse 

replacement 

• User clicks on the feature to 

be tracked  

• Take the 15x15 pixel square 

of the feature  

• In the next image do a 

search to find the 15x15 region 

with the highest correlation  

• Move the mouse pointer 

accordingly  

• Repeat in the background 

every 1/30th of a second  

 
James Gips and Margrit Betke 

http://www.bc.edu/schools/csom/eagleeyes/ Kristen Grauman 



Example: A Camera Mouse 

Specialized software for communication, games 

James Gips and Margrit Betke 

http://www.bc.edu/schools/csom/eagleeyes/ 
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A Camera Mouse 

Specialized software for communication, games 

James Gips and Margrit Betke 

http://www.bc.edu/schools/csom/eagleeyes/ 
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Feature-based matching for motion 

• For a discrete matching search, what are the 

tradeoffs of the chosen search window size? 

 

 

 

 

• Which patches to track? 
• Select interest points – e.g. corners 

• Where should the search window be placed? 
• Near match at previous frame 

• More generally, taking into account the expected 

dynamics of the object 
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Detection vs. tracking 

… 

t=1 t=2 t=20 t=21 
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Detection vs. tracking 

… 

Detection: We detect the object independently in 

each frame and can record its position over time, 

e.g., based on blob’s centroid or detection 

window coordinates 
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Detection vs. tracking 

… 

Tracking with dynamics: We use image 

measurements to estimate position of object, but 

also incorporate position predicted by dynamics, 

i.e., our expectation of object’s motion pattern. 
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Detection vs. tracking 

… 

Tracking with dynamics: We use image 

measurements to estimate position of object, but 

also incorporate position predicted by dynamics, 

i.e., our expectation of object’s motion pattern. 
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Tracking with dynamics 

• Use model of expected motion to predict where 

objects will occur in next frame, even before seeing 

the image. 

• Intent:  

– Do less work looking for the object, restrict the search. 

– Get improved estimates since measurement noise is 

tempered by smoothness, dynamics priors. 

• Assumption: continuous motion patterns: 

– Camera is not moving instantly to new viewpoint 

– Objects do not disappear and reappear in different 

places in the scene 

– Gradual change in pose between camera and scene 
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Tracking as inference 

• The hidden state consists of the true parameters 

we care about, denoted X. 
 

• The measurement is our noisy observation that 

results from the underlying state, denoted Y. 

 

• At each time step, state changes (from Xt-1 to Xt ) 

and we get a new observation Yt. 
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State vs. observation 

Hidden state : parameters of interest 

Measurement : what we get to directly observe 
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Tracking as inference 

• The hidden state consists of the true parameters 

we care about, denoted X. 
 

• The measurement is our noisy observation that 

results from the underlying state, denoted Y. 
 

• At each time step, state changes (from Xt-1 to Xt ) 

and we get a new observation Yt. 
 

• Our goal: recover most likely state Xt  given 

– All observations seen so far. 

– Knowledge about dynamics of state transitions. 
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Time t Time t+1 

Tracking as inference: intuition 

Belief 

Measurement 

Corrected prediction 
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old belief 

measurement 

Belief: prediction 

Corrected prediction 

Belief: prediction 

Tracking as inference: intuition 

Time t Time t+1 
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Independence assumptions 

• Only immediate past state influences current state 

 

 
• Measurement at time t depends on current state 

dynamics model 

observation model 

   110 ,,   tttt XXPXXXP 

   tttttt XYPXYXYXYP  ,,,, 1100 
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• Prediction: 

– Given the measurements we have seen up to 

this point, what state should we predict? 

 

 

• Correction: 

– Now given the current measurement, what 

state should we predict? 

 

 

Tracking as inference 

 10 ,, tt yyXP 

 tt yyXP ,,0 
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Questions 

• How to represent the known dynamics that govern the 

changes in the states? 
 

• How to represent relationship between state and 

measurements, plus our uncertainty in the measurements? 
 

• How to compute each cycle of updates? 

Representation: We’ll consider the class of linear 

dynamic models, with associated Gaussian pdfs. 

 

Updates: via the Kalman filter. 
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Notation reminder 

• Random variable with Gaussian probability 

distribution that has the mean vector μ and 

covariance matrix Σ. 

• x and μ are d-dimensional, Σ is d x d. 

),(~ Σμx N

d=2 d=1 

If x is 1-d, we 

just have one 

Σ parameter -

 the 

variance: σ2 
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Linear dynamic model 

• Describe the a priori knowledge about  

– System dynamics model: represents evolution 

of state over time. 

 

 

 

– Measurement model: at every time step we 

get a noisy measurement of the state. 

);(~ 1 dtt N ΣDxx 

);(~ mtt N ΣMxy

n x n n x 1 n x 1 

m x n n x 1 m x 1 
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Example: randomly 

drifting points 

• Consider a stationary object, with state as position 

• Position is constant, only motion due to random 
noise term. 

• State evolution is described by identity matrix D=I 

 

 

);(~ 1 dtt N ΣDxx 



Example: Constant 

velocity (1D points) 

time 

measurements 

states 1
 d

 p
o

s
it

io
n

  
1 d position  
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• State vector: position p and velocity v 

 

 

 

 

 

 

• Measurement is position only 

Example: Constant 

velocity (1D points) 
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Questions 

• How to represent the known dynamics that govern the 

changes in the states? 
 

• How to represent relationship between state and 

measurements, plus our uncertainty in the measurements? 
 

• How to compute each cycle of updates? 

Representation: We’ll consider the class of linear 

dynamic models, with associated Gaussian pdfs. 

 

Updates: via the Kalman filter. 
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The Kalman filter 

• Method for tracking linear dynamical models in 

Gaussian noise 

• The predicted/corrected state distributions are 

Gaussian 

– Only need to maintain the mean and covariance 

– The calculations are easy 
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Kalman filter 

Know prediction of 

state, and next 

measurement  

Update distribution over 

current state. 

Know corrected state 

from previous time step, 

and all measurements up 

to the current one   

Predict distribution over 

next state. 

Time advances: t++ 

Time update 

(“Predict”) 

Measurement update 

(“Correct”) 

Receive 

measurement 

 10 ,, tt yyXP 



tt  ,

Mean and std. dev. 

of predicted state: 

 tt yyXP ,,0 



tt  ,

Mean and std. dev. 

of corrected state: 
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1D Kalman filter: Prediction 

• Have linear dynamic model defining predicted state 

evolution, with noise 

 
 

• Want to estimate predicted distribution for next state 

 

 

• Update the mean: 

 

 

• Update the variance: 
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1D Kalman filter: Correction 

• Have linear model defining the mapping of state 

to measurements: 
 

 

 

• Want to estimate corrected distribution given 

latest meas.: 

 

• Update the mean: 

 

 

• Update the variance: 
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Prediction vs. correction 

• What if there is no prediction uncertainty 

 

 

 
 

• What if there is no measurement uncertainty 
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The measurement is ignored! 

The prediction is ignored! 
Lana Lazebnik 



Kalman filter processing 

time 

o state 

x measurement 

*  predicted mean estimate 

+ corrected mean estimate 

bars:  variance estimates 

before and after measurements 

Constant velocity model 
p

o
s
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n

 

Time t Time t+1 Kristen Grauman 
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Kalman filter processing 

time 

o state 

x measurement 

*  predicted mean estimate 

+ corrected mean estimate 

bars:  variance estimates 

before and after measurements 

Constant velocity model 
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Time t Time t+1 Kristen Grauman 
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A bat census 

http://www.cs.bu.edu/~betke/research/bats/ 
Kristen Grauman 



Video synopsis 

• http://www.vision.huji.ac.il/video-synopsis/ 
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Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 



Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 

– Which measurements go with which tracks? 



Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 

• Deformable and articulated objects 



Recall:  

tracking via deformable contours 

1. Use final contour/model extracted at frame  t  as 

an initial solution for frame t+1 

2. Evolve initial contour to fit exact object boundary 

at frame t+1 

3. Repeat, initializing with most recent frame. 

Visual Dynamics Group, Dept. Engineering Science, University of Oxford. 

http://www.robots.ox.ac.uk/~vdg/~vdg/


Tracking: issues 

• Initialization 

– Often done manually 

– Background subtraction, detection can also be used 

• Data association, multiple tracked objects 

– Occlusions, clutter 

• Deformable and articulated objects 

• Constructing accurate models of dynamics 

– E.g., Fitting parameters for a linear dynamics model 

• Drift 

– Accumulation of errors over time 



Drift 

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 

Appearance. PAMI 2007. 

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Summary 

• Tracking as inference 

– Goal: estimate posterior of object position given 
measurement 

• Linear models of dynamics 

– Represent state evolution and measurement 
models 

• Kalman filters 

– Recursive prediction/correction updates to refine 
measurement 

• General tracking challenges 

 


