VC 13/14 – T17 Pattern Recognition

Mestrado em Ciência de Computadores

Mestrado Integrado em Engenharia de Redes e

Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- Introduction to Pattern Recognition
- Statistical Pattern Recognition
- Classifiers

Topic: Introduction to Pattern Recognition

- Introduction to Pattern Recognition
- Statistical Pattern Recognition
- Classifiers

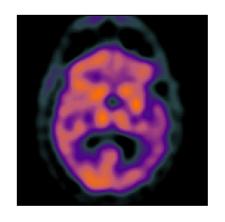
http://www.flickr.com/photos/kimbar/2027234083/

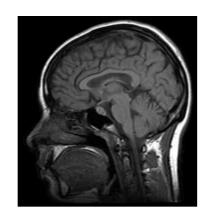
http://www.flickr.com/photos/genewolf/2031802050/

http://www.flickr.com/photos/masheeebanshee/413465808/

Decisions

- I can manipulate images.
- I want to make decisions!





- Classify / Identify features.
- Recognize patterns.

One definition

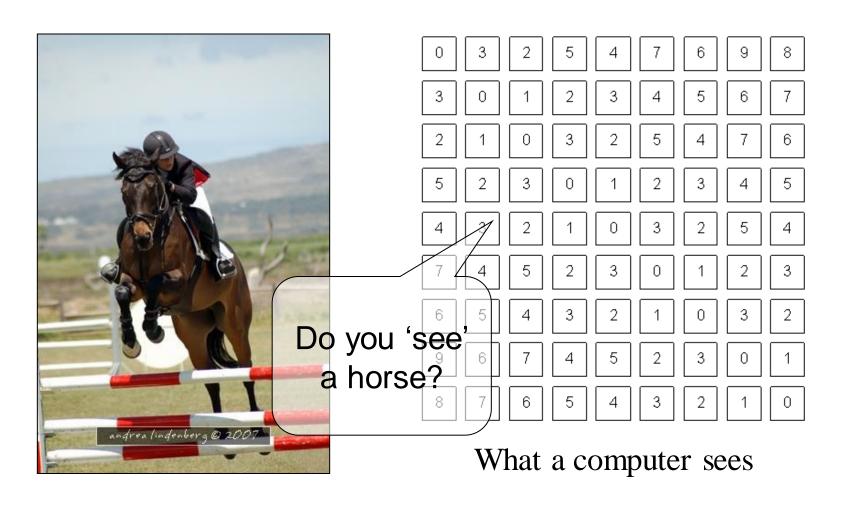
Pattern recognition

"the act of taking in raw data and taking an action based on the category of the data".

Wikipedia

- How do I do this so well?
- How can I make machines do this?

The problem



Mathematics

- We only deal with numbers.
 - How do we represent knowledge?
 - How do we represent visual features?
 - How do we classify them?
- Very complex problem!!
 - Let's break it into smaller ones...

Typical PR system

Sensor

Gathers the observations to be classified or described

Feature Extraction

Computes numeric or symbolic information from the observations;

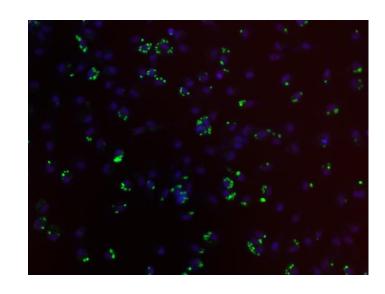
Classifier

Does the actual job of classifying or describing observations, relying on the extracted features.

Sensor

- In our specific case:
 - Image acquiring mechanism.
 - Let's assume we don't control it.

One observation = One Image Video = Multiple Observations



Feature Extraction

- What exactly are features?
 - Colour, texture, shape, etc.
 - Animal with 4 legs.
 - Horse.
 - Horse jumping.
- These vary a lot!
- Some imply some sort of 'recognition'
 - e.g. How do I know the horse is jumping?

Broad classification of features

- Low-level
 - Colour, texture
- Middle-level
 - Object with head and four legs.
 - Object moving up.
 - Horse
- High-level
 - Horse jumping.
 - Horse competition.

Low-level features

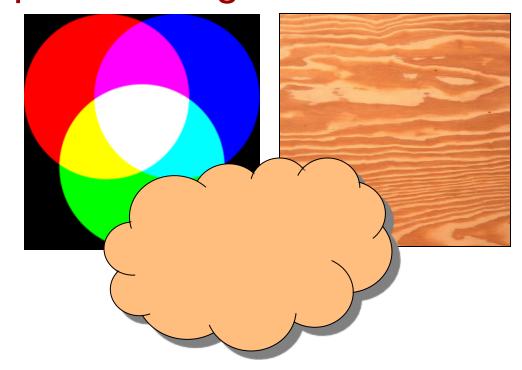
Objective

Directly reflect specific image and video

features.

Colour

- Texture
- Shape
- Motion
- Etc.



Middle-level features

- Some degree of subjectivity
- They are typically one solution of a problem with multiple solutions.
- Examples:
 - Segmentation
 - Optical Flow
 - Identification
 - Etc.

High-level features

- Semantic Interpretation
- Knowledge
- Context
- Examples:

- The virus attacks the cell with some degree of intelligence.
- This person is running from that one.

How do humans do this so well?

The semantic gap

Fundamental problem of current research!

Low-level:

- -Colour
- -Texture
- -Shape

-...

High-level:

- -Interpretation
 - -Decision
- -Understanding

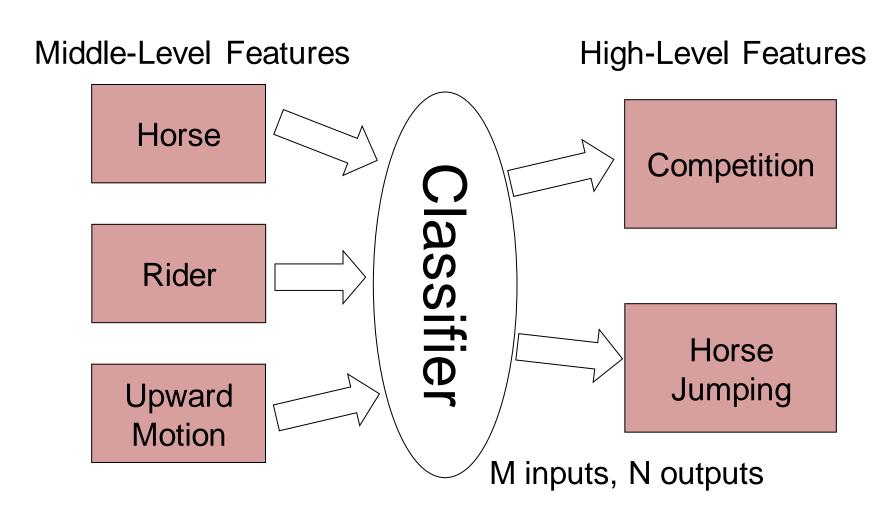
-..

Now what?? How do i cross this bridge?

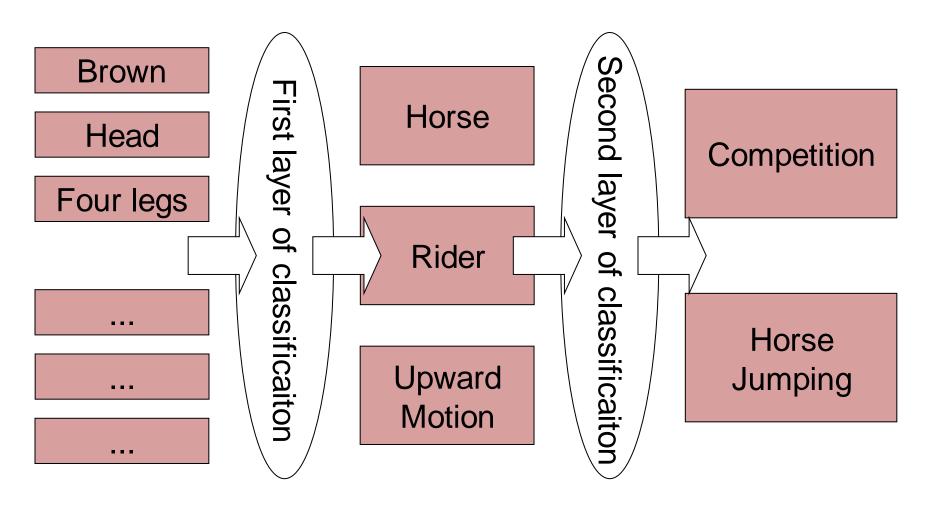
Features & Decisions

Various Possible How do I Middle-Level **Solutions** High-Level Features Low-Level Features decide? **Decision Decision** Features One Solution

Classification



Layers of classification



Classifiers

- How do I map my M inputs to my N outputs?
- Mathematical tools:
 - Distance-based classifiers.
 - Rule-based classifiers.
 - Neural Networks.
 - Support Vector Machines

— ...

Types of PR methods

- Statistical pattern recognition
 - based on statistical characterizations of patterns, assuming that the patterns are generated by a probabilistic system.
- Syntactical (or structural) pattern recognition
 - based on the structural interrelationships of features.

Topic: Statistical Pattern Recognition

- Introduction to Pattern Recognition
- Statistical Pattern Recognition
- Classifiers

Is Porto in Portugal?

Porto is in Portugal

- I want to make decisions.
 - Is Porto in Portugal?
- I know certain things.
 - A world map including cities and countries.
- I can make this decision!
 - Porto <u>is</u> in Portugal.
- I had enough a priori knowledge to make this decision.

What if I don't have a map?

- I still want to make this decision.
- I observe:
 - Amarante has coordinates x_1,y_1 and is in Portugal.
 - Viseu has coordinates x_2 , y_2 and is in Portugal.
 - Vigo has coordinates x_3 , y_3 and is in Spain.
- I classify:
 - Porto is close to Amarante and Viseu so Porto is in Portugal.
- What if I try to classify Valença?

Statistical PR

- I used statistics to make a decision.
 - I can make decisions even when I don't have full a priori knowledge of the whole process.
 - I can make **mistakes**.

What pattern?

- How did I recognize this pattern?
 - I learned from previous observations where I knew the classification result.
 - I classified a new observation.

Back to the Features

- Feature F_i $F_i = [f_i]$
- Feature F_i with N values.

$$F_i = [f_{i1}, f_{i2}, ..., f_{iN}]$$

 Feature vector F with M features.

$$F = [F_1 | F_2 | ... | F_M]$$

- Naming conventions:
 - Elements of a feature vector are called coefficients.
 - Features may have one or more coefficients.
 - Feature vectors may have one or more features.

Back to our Porto example

- I've classified that Porto is in Portugal.
- What feature did I use?
 - Spatial location
- Let's get more formal
 - I've defined a feature vector \mathbf{F} with one feature \mathbf{F}_1 , which has two coefficients \mathbf{f}_{1x} , \mathbf{f}_{1y} .

$$F = [F_1] = [f_{1x}, f_{1y}]$$

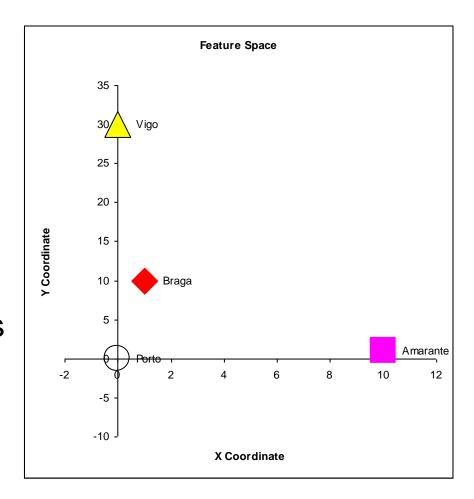
Feature Space

Feature Vector

- Two total coefficients.
- Can be seen as a feature 'space' with two orthogonal axis.

Feature Space

 Hyper-space with N dimensions where N is the total number of coefficients of my feature vector.



A Priori Knowledge

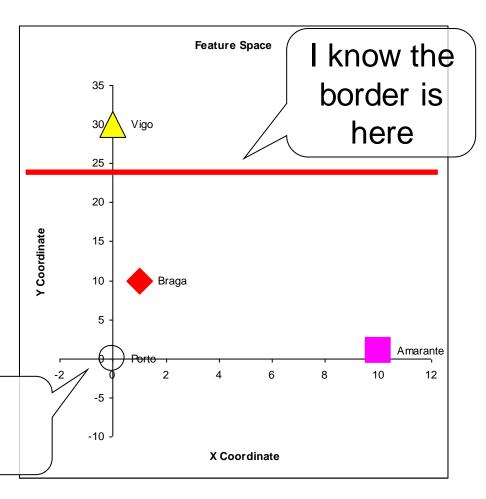
 I have a precise model of my feature space based on a priori knowledge.

City is in Spain if $F_{1Y}>23$

Great models = Great classifications.

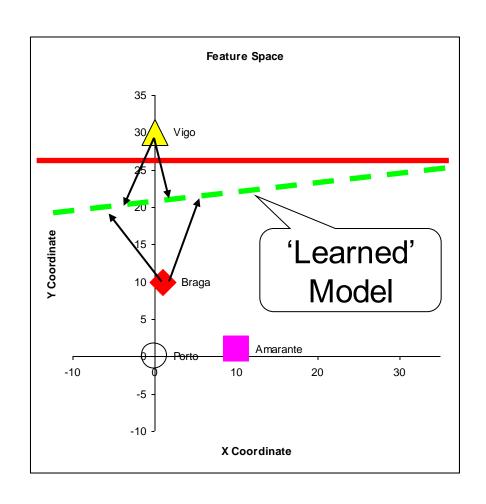
 $F_{1Y}(London) = 100$ London is in Spain (??)

Porto <u>is</u> in Portugal!



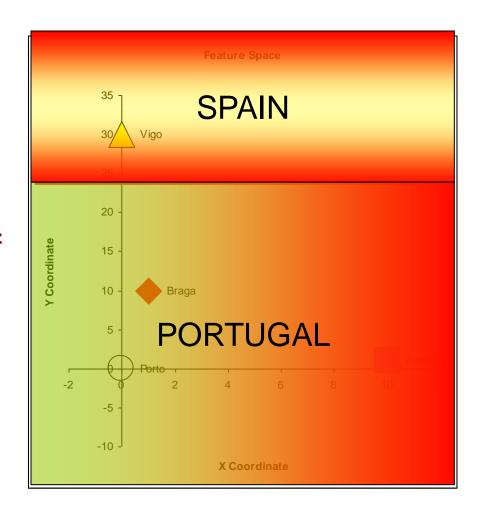
What if I don't have a model?

- I need to learn from observations.
 - Derive a model.
 - Direct classification.
- Training stage.
 - Learn model parameters.
- Classification



Classes

- In our example, cities can belong to:
 - Portugal
 - Spain
- I have two classes of cities.
- A class represents a sub-space of my feature space.



Classifiers

 A Classifier C maps a class into the feature space.

$$C_{\text{Spain}}(x, y) = \begin{cases} true & , y > K \\ false & , otherwise \end{cases}$$

- Various types of classifiers.
 - Nearest-Neighbours.
 - Bayesian.
 - Soft-computing machines.
 - Etc...

Topic: Classifiers

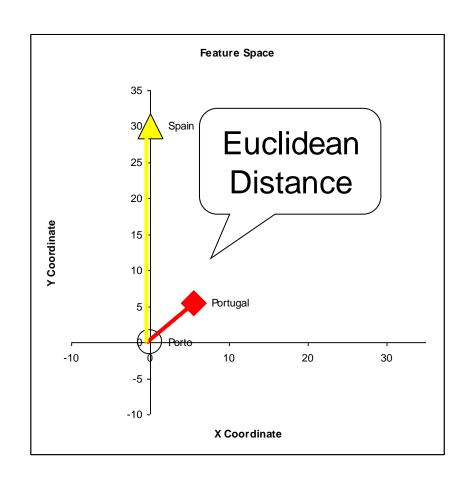
- Introduction to Pattern Recognition
- Statistical Pattern Recognition
- Classifiers

Distance to Mean

 I can represent a class by its mean feature vector.

$$C = \overline{F}$$

- To classify a new object, I choose the class with the closest mean feature vector.
- Different distance measures!



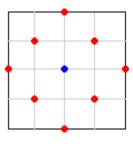
Possible Distance Measures

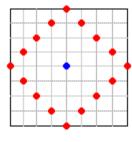
L1 Distance

L1 =
$$\frac{1}{N} \sum_{x=1}^{N} |S(x) - v(x)|$$

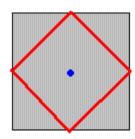
 Euclidean Distance (L2 Distance)

L2 =
$$\frac{1}{N} \sum_{x=1}^{N} (S(x) - v(x))^2$$





L1 or Taxicab Distance



Gaussian Distribution

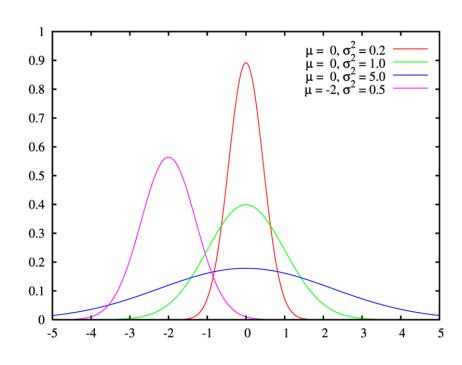
Defined by two parameters:

– Mean: μ

Variance: σ²

- Great approximation to the distribution of many phenomena.
 - Central Limit Theorem

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-u)^2}{2\sigma^2}\right)$$



Multivariate Distribution

For N dimensions:

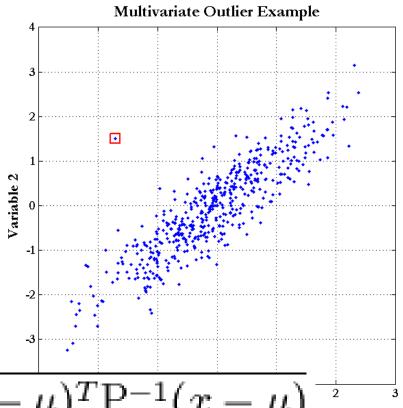
$$f_X(x_1, \dots, x_N) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

- Mean feature vector: $u = \overline{F}$
- Covariance Matrix:

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \qquad \mu_i = \mathrm{E}(X_i) \qquad \Sigma_{ij} = \mathrm{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

Mahalanobis Distance

- Based on the covariance of coefficients.
- Superior to the Euclidean distance.



$$D_M(x) = \sqrt{(x-\mu)^T P^{-1}(x-\mu)}$$

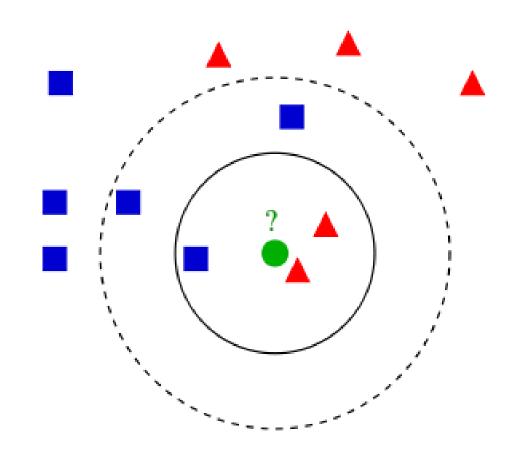
K-Nearest Neighbours

Algorithm

- Choose the closest K neighbours to a new observation.
- Classify the new object based on the class of these K objects.

Characteristics

- Assumes no model.
- Does not scale very well...



Resources

- Gonzalez & Woods, 3rd Ed, Chapter 12.
- Andrew Moore, Statistic Data Mining Tutorial, http://www.autonlab.org/tutorials/