VC 13/14-T2 Image Formation

Mestrado em Ciência de Computadores
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- ‘Computer Vision’?

- The Human Visual System
- Image Capturing Systems

Acknowledgements: Most of this course is based on the excellent courses offered by Prof. Shree Nayar at Columbia University, USA and by Prof. Srinivasa Narasimhan at CMU, USA. Please acknowledge the original source when reusing these slides for academic purposes.

Topic: Computer Vision?

- ‘Computer Vision’?
- The Human Visual System
- Image Capturing Systems

Computer Vision

"The goal of Computer Vision is to make useful decisions about real physical objects and scenes based on sensed images",

Shapiro and Stockman, "Computer Vision", 2001

U.PORTO C

Components of a Computer Vision System

U.PORTO

Topic: The Human Visual System

- ‘Computer Vision’?
- The Human Visual System
- Image Capturing Systems

Our Eyes

-Iris is the diaphragm that changes the aperture (pupil)
-Retina is the sensor where the fovea has the highest resolution

Focusing

shorter focal length
Changes the focal length of the lens

Myopia and Hyperopia

Astigmatism

The cornea is distorted causing images to be un-focused on the retina.

Blind Spot in the Eye

Close your right eye and look directly at the " + "

Colour

- Our retina has:
- Cones - Measure the frequency of light (colour)
- 6 to 7 millions
- High-definition
- Need high luminosity
- Rods - Measure the intensity of light (luminance)
- 75 to 150 millions
- Low-definition
- Function with low luminosity

Topic: Image Capturing Systems

- ‘Computer Vision’?
- The Human Visual System
- Image Capturing Systems

A Brief History of Images

1544

Camera Obscura, Gemma Frisius, 1544 U.PORTO

A Brief History of Images

A Brief History of Images

U.PORTO [

A Brief History of Images

A Brief History of Images

Components of a Computer Vision System

Scene Interpretation

U.PORTO

Pinhole and the Perspective Projection

Pinhole Camera

- Basically a pinhole camera is a box, with a tiny hole at one end and film or photographic paper at the other.
- Mathematically: out of all the light rays in the world, choose the set of light rays passing through a point and projecting onto a plane.

Pinhole Photography

©Charlotte Murray Untitled, 4" x 5" pinhole photograph, 1992

Image Size inversely proportional to Distance
Reading: http://www.pinholeresource.com/

U.PORTO ©

Magnification

From perspective projection:

$$
\begin{aligned}
& \frac{x^{\prime}}{f^{\prime}}=\frac{x}{z} \quad \frac{y^{\prime}}{f^{\prime}}=\frac{y}{z} \\
& \frac{x^{\prime}+\delta x^{\prime}}{f^{\prime}}=\frac{x+\delta x}{z} \quad \frac{y^{\prime}+\delta y^{\prime}}{f^{\prime}}=\frac{y+\delta y}{z}
\end{aligned}
$$

Magnification:

$$
\begin{gathered}
m=\frac{d^{\prime}}{d}=\frac{\sqrt{\left(\delta x^{\prime}\right)^{2}+\left(\delta y^{\prime}\right)^{2}}}{\sqrt{(\delta x)^{2}+(\delta y)^{2}}}=\frac{f^{\prime}}{z} \\
\frac{\text { Area }_{\text {image }}}{\text { Area }_{\text {scene }}}=m^{2}
\end{gathered}
$$

Image Formation using Lenses

- Lenses are used to avoid problems with pinholes.
- Ideal Lens: Same projection as pinhole but gathers more light!

- Gaussian Thin Lens Formula: $\frac{1}{i}+\frac{1}{o}=\frac{1}{f}$
- f is the focal length of the lens - determines the lens's ability to refract light

Focus and Defocus

- Gaussian Law:

$$
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \quad \square \quad\left(i^{\prime}-i\right)=\frac{f}{\left(o^{\prime}-f\right)} \frac{f}{(o-f)}\left(o-o^{\prime}\right)
$$

$$
\frac{1}{i^{\prime}}+\frac{1}{o^{\prime}}=\frac{1}{f}
$$

- In theory, only one scene plane is in focus.

Depth of Field

- Range of object distances over which image is sufficiently well focused.
- Range for which blur circle is less than the resolution of the sensor.

\square

Chromatic Aberration

longitudinal chromatic aberration (axial)
transverse chromatic aberration (lateral)

Image Sensors

-

- Resolution
- Signal / Noise Ratio
- Cost

Considerations

- Speed

U.PORTO ©

Fig. 4. Typical 512×512 CCD.

Image Sensors

- Convert light into an electric charge

CCD (charge coupled device)
Higher dynamic range
High uniformity
Lower noise

INCIDENT LIGHT

CMUS (complementary metal
Oxide semiconductor)
Lower voltage
Higher speed
Lower system complexity

U.PORTO

C

CCD Performance Characteristics

- Linearity Principle: Incoming photon flux vs. Output Signal
- Sometimes cameras are made non-linear on purpose.
- Calibration must be done (using reflectance charts)---covered later
- Dark Current Noise: Non-zero output signal when incoming light is zero
- Sensitivity: Minimum detectable signal produced by camera

Sensing Brightness

Incoming light has a spectral distribution $p(\lambda)$

So the pixel intensity becomes

$$
I=k \int_{-\infty}^{\infty} q(\lambda) p(\lambda) d \lambda
$$

How do we sense colour?

- Do we have infinite number of filters?

Three filters of different spectral responses

Sensing Colour

- Tristimulus (trichromatic) values $\left(I_{R}, I_{G}, I_{B}\right)$

Camera's spectral response functions: $h_{R}(\lambda), h_{G}(\lambda), h_{B}(\lambda)$

$$
\begin{aligned}
& I_{R}=k \int_{-\infty}^{\infty} h_{R}(\lambda) p(\lambda) d \lambda \\
& I_{G}=k \int_{-\infty}^{\infty} h_{G}(\lambda) p(\lambda) d \lambda \\
& I_{B}=k \int_{-\infty}^{\infty} h_{B}(\lambda) p(\lambda) d \lambda
\end{aligned}
$$

Sensing Colour

Bayer pattern
Foveon X3 ${ }^{\text {TM }}$

U.PORTO C

Resources

- J.C. Russ - Chapters 1 and 2
- L. Shapiro, and G. Stockman - Chapter 1
- "Color Vision: One of Nature's Wonders" in http://www.diycalculator.com/spcvision.shtml

