VC 18/19 – TP2 Image Formation

Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- 'Computer Vision'?
- The Human Visual System
- Image Capturing Systems

Topic: Computer Vision?

- 'Computer Vision'?
- The Human Visual System
- Image Capturing Systems

Computer Vision

"The goal of Computer Vision is to make useful decisions about real physical objects and scenes based on sensed images",

Shapiro and Stockman, "Computer Vision", 2001

Components of a Computer Vision System

Topic: The Human Visual System

- 'Computer Vision'?
- The Human Visual System
- Image Capturing Systems

Our Eyes

-Iris is the diaphragm that changes the aperture (pupil) -Retina is the sensor where the fovea has the highest resolution

Focusing

Changes the focal length of the lens

VC 18/19 - TP2 - Image Formation

ORTO

Myopia and Hyperopia

Astigmatism

The cornea is distorted causing images to be un-focused on the retina.

Blind Spot in the Eye

Close your right eye and look directly at the "+"

Colour

• Our retina has:

- Cones Measure the frequency of light (colour)
 - 6 to 7 millions
 - High-definition
 - Need high luminosity
- Rods Measure the intensity of light (luminance)
 - 75 to 150 millions
 - Low-definition
 - Function with low luminosity

Topic: Image Capturing Systems

- 'Computer Vision'?
- The Human Visual System
- Image Capturing Systems

Camera Obscura, Gemma Frisius, 1544

Lens Based Camera Obscura, 1568

1544 1568

1837

Still Life, Louis Jaques Mande Daguerre, 1837

Components of a Computer Vision System

Pinhole and the Perspective Projection

Pinhole Camera

- Basically a pinhole camera is a box, with a tiny hole at one end and film or photographic paper at the other.
- Mathematically: out of all the light rays in the world, choose the set of light rays passing through a point and projecting onto a plane.

Pinhole Photography

Image Size inversely proportional to Distance

Reading: http://www.pinholeresource.com/

Magnification

From perspective projection:

Magnification:

Image Formation using Lenses

- Lenses are used to avoid problems with pinholes.
- Ideal Lens: Same projection as pinhole but gathers more light!

• f is the focal length of the lens – determines the lens's ability to refract light

Focus and Defocus

Gaussian Law:

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$
$$\frac{1}{i'} + \frac{1}{o'} = \frac{1}{f}$$

 $(i'-i) = \frac{f}{(o'-f)} \frac{f}{(o-f)} (o-o')$

• In theory, only one scene plane is in focus.

Depth of Field

- Range of object distances over which image is <u>sufficiently well</u> focused.
- Range for which *blur circle* is less than the resolution of the sensor.

http://images.dpchallenge.com/images_portfolio/27920/print_preview/116336.jpg

Chromatic Aberration

longitudinal chromatic aberration (axial)

transverse chromatic aberration (lateral)

Image Sensors

Considerations

- Speed
- Resolution
- Signal / Noise Ratio
- Cost

Image Sensors

• Convert light into an electric charge

CCD (charge coupled device)

Higher dynamic range High uniformity Lower noise

CMOS (complementary metal Oxide semiconductor) Lower voltage

Higher speed

Lower system complexity

CCD Performance Characteristics

- Linearity Principle: Incoming photon flux vs. Output Signal
 - Sometimes cameras are made non-linear on purpose.
 - Calibration must be done (using reflectance charts)---covered later
- Dark Current Noise: Non-zero output signal when incoming light is zero

• Sensitivity: Minimum detectable signal produced by camera

Sensing Brightness

So the pixel intensity becomes

$$I = k \int_{-\infty}^{\infty} q(\lambda) p(\lambda) d\lambda$$

How do we sense colour?

• Do we have infinite number of filters?

Three filters of different spectral responses

Sensing Colour

• Tristimulus (trichromatic) values (I_R, I_G, I_R)

$$I_{R} = k \int_{-\infty}^{\infty} h_{R}(\lambda) p(\lambda) d\lambda$$

$$I_G = k \int_{-\infty}^{\infty} h_G(\lambda) p(\lambda) d\lambda$$

$$I_{B} = k \int_{-\infty}^{\infty} h_{B}(\lambda) p(\lambda) d\lambda$$

Sensing Colour

VC 18/19 - TP2 - Image Formation

PORTO

Resources

- J.C. Russ Chapters 1 and 2
- L. Shapiro, and G. Stockman Chapter 1
- "Color Vision: One of Nature's Wonders" in http://www.diycalculator.com/spcvision.shtml

