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Outline

• Spatial filters

• Frequency domain filtering

• Edge detection
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Topic: Spatial filters

• Spatial filters

• Frequency domain filtering

• Edge detection
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Images are Discrete and Finite
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Spatial Mask

• Simple way to 

process an image.

• Mask defines the 

processing function.

• Corresponds to a 

multiplication in 

frequency domain. Convolution – Mask 

‘slides’ over the image

Mask Image
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Example

• Each mask position 

has weight w.

• The result of the 

operation for each 

pixel is given by:

1 2 1

0 0 0

-1 -2 -1

2 2 2

4 4 4

4 5 6

Mask Image

=1*2+2*2+1*2+…
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Definitions

• Spatial filters

– Use a mask (kernel) over an image region.

– Work directly with pixels.

– As opposed to: Frequency filters.

• Advantages

– Simple implementation: convolution with the 
kernel function.

– Different masks offer a large variety of 
functionalities.
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Averaging

Let’s think 

about 

averaging 

pixel values

For n=2, convolve pixel values with 1 2 1

2D images: 
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Which is faster?
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The convolution kernel
2n

8n

nlarge

Repeated averaging  Gaussian smoothing

Averaging
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Gaussian Smoothing
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Filter size N …can be very large

(truncate, if necessary)
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2D Gaussian is separable!
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Use two 1D

Gaussian

Filters!
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• A Gaussian kernel gives less weight to pixels further 
from the center of the window

• This kernel is an approximation of a Gaussian function:

Gaussian Smoothing

1 2 1

2 4 2

1 2 1
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2

8.2 4

original
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Mean Filtering

• We are degrading the 

energy of the high spatial 

frequencies of an image 

(low-pass filtering).

– Makes the image 

‘smoother’.

– Used in noise reduction.

• Can be implemented with 

spatial masks or in the 

frequency domain. 1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
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http://www.michaelbach.de/ot/cog_blureffects/index.html

http://www.michaelbach.de/ot/cog_blureffects/index.html
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http://www.michaelbach.de/ot/cog_blureffects/index.html

http://www.michaelbach.de/ot/cog_blureffects/index.html
http://www.michaelbach.de/ot/cog_blureffects/index.html
http://www.michaelbach.de/ot/cog_blureffects/index.html
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Median Filter

• Smoothing is averaging

(a) Blurs edges 

(b) Sensitive to outliers

(a)

(b)

– Sort            values around the pixel 

– Select middle value (median)

– Non-linear (Cannot be implemented with convolution)

• Median filtering

12 N

sort median
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3x3

5x5

7x7

Salt and pepper noise Gaussian noise
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Border Problem

What a computer sees

1 2 1

2 4 2

1 2 1

How do we apply 

our mask to this 

pixel?



VC 18/19 - TP7 - Spatial Filters

Border Problem

• Ignore

– Output image will be smaller than original

• Pad with constant values

– Can introduce substantial 1st order derivative values

• Pad with reflection

– Can introduce substantial 2nd order derivative values
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Topic: Frequency domain filtering

• Spatial filters

• Frequency domain filtering

• Edge detection
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Image Processing in the Fourier 

Domain

Does not look anything like what we have seen

Magnitude of the FT
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Convolution in the Frequency Domain

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|
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Lets the low frequencies 

pass and eliminates the 

high frequencies.

Generates image with overall

shading, but not much detail

Low-pass Filtering
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Lets through the high 

frequencies (the detail), 

but eliminates the low 

frequencies (the overall 

shape). It acts like an 

edge enhancer. 

High-pass Filtering
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Boosting High Frequencies
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The Ringing Effect

http://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm

An ideal low-pass filter causes ‘rings’ 

in the spatial domain!



VC 18/19 - TP7 - Spatial Filters

Topic: Edge detection

• Spatial filters

• Frequency domain filtering

• Edge detection
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Edge Detection

• Convert a 
2D image 
into a set of 
curves
– Extracts 

salient 
features of 
the scene

– More 
compact 
than pixels
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Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity
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How can you tell that a pixel is 

on an edge?
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Edge Types

Step Edges

Roof Edge Line Edges
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Real Edges

Noisy and Discrete!

We want an Edge Operator that produces:

– Edge Magnitude

– Edge Orientation

– High Detection Rate and Good Localization
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Gradient

• Gradient equation: 

• Represents direction of most rapid change in intensity

• Gradient direction:

• The edge strength is given

by the gradient magnitude
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Theory of Edge Detection
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• Partial derivatives (gradients):
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Rotationally symmetric, non-linear operator
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Theory of Edge Detection
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• Laplacian:
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Discrete Edge Operators

• How can we differentiate a discrete image?

Finite difference approximations:
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1, jiI 1,1  jiI
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• Second order partial derivatives:

 jijiji III
x

I
,1,,122

2

2
1

 






 
1,,1,22

2

2
1

 



jijiji III

y

I

• Laplacian :

2

2

2

2
2

y

I

x

I
I











2

2 1


 I

Convolution masks :

1 0

4 1

0

1

0 1 0

or 26

1



4 1

20 4

1

4

1 4 1

Discrete Edge Operators

(more accurate)
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The Sobel Operators

• Better approximations of the gradients exist

– The Sobel operators below are commonly used

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1
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Comparing Edge Operators

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 1

Gradient:

Roberts (2 x 2):

Sobel (3 x 3):

Sobel (5 x 5):
-1 -2 0 2 1

-2 -3 0 3 2

-3 -5 0 5 3

-2 -3 0 3 2

-1 -2 0 2 1

1 2 3 2 1

2 3 5 3 2

0 0 0 0 0

-2 -3 -5 -3 -2

-1 -2 -3 -2 -1

0 1

-1 0

1 0

0 -1

Good Localization

Noise Sensitive

Poor Detection

Poor Localization

Less Noise Sensitive

Good Detection
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Effects of Noise

• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is 

the edge??
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Where is the edge?  

Solution:  Smooth First

Look for peaks in 
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Derivative Theorem of Convolution

…saves us one operation.
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Laplacian of Gaussian (LoG)

Laplacian of Gaussian operator

Where is the edge?  Zero-crossings of bottom graph !
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2D Gaussian Edge Operators

Laplacian of Gaussian
Gaussian

Derivative of Gaussian (DoG)

Mexican Hat (Sombrero)

• is the Laplacian operator:
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Canny Edge Operator

• Smooth image I with 2D Gaussian:

• Find local edge normal directions for each pixel

• Compute edge magnitudes

• Locate edges by finding zero-crossings along the edge normal 

directions (non-maximum suppression)
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Non-maximum Suppression

• Check if pixel is local maximum along gradient direction

– requires checking interpolated pixels p and r
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magnitude of the gradient
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After non-maximum suppression
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Canny Edge Operator

Canny with Canny with original 

• The choice of     depends on desired behavior

– large       detects large scale edges

– small      detects fine features
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Difference of Gaussians (DoG)

• Laplacian of Gaussian can be approximated by the

difference between two different Gaussians
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DoG Edge Detection

1(a) 2(b) (b)-(a)
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Unsharp Masking
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Resources

• Gonzalez & Woods – Chapter 3


