VC 18/19 - TP9
 Region-Based Segmentation

Mestrado em Ciência de Computadores
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- Region-based Segmentation
- Morphological Filters

Topic: Region-based Segmentation

- Region-based Segmentation
- Morphological Filters

Why Region-Based Segmentation?

- Segmentation
- Edge detection and Thresholding not always effective.
- Homogenous regions
- Region-based segmentation.
- Effective in noisy images.

Definitions

- Based on sets.
- Each image R is a set of regions R_{i}.
- Every pixel belongs to one region.
- One pixel can only belong to a single region.

$$
R=\bigcup_{i=1}^{S} R_{i} \quad R_{i} \bigcap R_{j}=\varnothing
$$

Basic Formulation

Let R represent the entire image region. Segmentation partitions R into n subregions, $R_{1}, R_{2}, \ldots, R_{n}$, such that:
a) $\bigcup_{i=1}^{n} R_{i}=R$
b) $\quad R_{i}$ is a connected region, $i=1,2, \ldots, n$.
c) $\quad R_{i} \cap R_{j}=\phi$ for all i and $j, i \neq j$
d) $\quad P\left(R_{i}\right)=$ TRUE for $i=1,2, \ldots, n$.
e) $\quad P\left(R_{i} \cup R_{j}\right)=F A L S E$ for $i \neq j$.
a) Every pixel must be in a region
b) Points in a region must be connected.
c) Regions must be disjoint.
d) All pixels in a region satisfy specific properties.
e) Different regions have different properties.

F

How do we form regions?

- Region Growing
- Region Merging
- Region Splitting
- Split and Merge
- Watershed

What a computer sees

Region growing

- Groups pixels into larger regions.
- Starts with a seed region.
- Grows region by merging neighboring pixels.
- Iterative process
- How to start?
- How to iterate?
- When to stop?

- Seed Fixel
\uparrow Direction of Growth
(a) Start of Growing a Region

- Gown Fivels
* Fixels Being

Considered
(b) Growing Process After a Few Iterations

Region merging

- Algorithm
- Divide image into an initial set of regions.
- One region per pixel.
- Define a similarity criteria for merging regions.
- Merge similar regions.
- Repeat previous step until no more merge operations are possible.

Similarity Criteria

- Homogeneity of regions is used as the main segmentation criterion in region growing.
- gray level
- color, texture
- shape

- model
- etc.

Gray-Level Criteria

- Comparing to Original Seed Pixel - Very sensitive to choice of seed point.
- Comparing to Neighbor in Region
- Allows gradual changes in the region.
- Can cause significant drift.
- Comparing to Region Statistics
- Acts as a drift dampener.
- Other possibilities!

Region splitting

- Algorithm
- One initial set that includes the whole image.

- Similarity criteria.
- Iteratively split regions into sub-regions.
- Stop when no more splittings are possible.

The segmentation problem

Figure 5.23 A quad-tree representation of an 8×8 binary image.
[Machine Vision; David Vernon]

Split and Merge

- Combination of both algorithms.
- Can handle a larger variety of shapes.
- Simply apply previous algorithms consecutively.

The Watershed Transform

- Geographical inspiration.
- Shed water over rugged terrain.
- Each lake corresponds to a region.
- Characteristics
- Computationally complex.
- Great flexibility in segmentation.
- Risk of over-segmentation.

The Drainage Analogy

- Two points are in the same region if they drain to the same point.

Courtesy of Dr. Peter Yim at National Institutes of Health, Bethesda, MD

The Immersion Analogy

Catchment

[Milan Sonka, Vaclav Hlavac, and Roger Boyle]

Figure 5.51: Watershed segmentation: (a) original; (b) gradient image, 3×3 Sobel edge detection, histogram equalized; (c) raw watershed segmentation; (d) watershed segmentation using region markers to control oversegmentation. Courtesy W. Higgins, Penn State University.

Over-Segmentation

- Over-segmentation.
- Raw watershed segmentation produces a severely oversegmented image with hundreds or thousands of catchment basins.
- Post-Processing.
- Region merging.
- Edge information.
- Etc.

Topic: Morphological Filters

- Region-based Segmentation
- Morphological Filters

Mathematical Morphology

- Provides a mathematical description of geometric structures.
- Based on sets.
- Groups of pixels which define an image region.
- What is this used for?
- Binary images.
- Can be used for postprocessing segmentation results!
- Core techniques
- Erosion, Dilation.
- Open, Close.

Tumor Segmentation using Morphologic Filtering

Dilation, Erosion

- Two sets:
- Image
- Morphological kernel.
- Dilation (D)
- Union of the kernel with the image set.
- Increases resulting area.
- Erosion (E)
- Intersection.
- Decreases resulting area.

$$
\begin{gathered}
D(\mathrm{~A}, \mathrm{~B})=\mathrm{A} \oplus \mathrm{~B}=\bigcup_{\beta \in \mathrm{B}}(\mathrm{~A}+\beta) \\
E(\mathrm{~A}, \mathrm{~B})=\mathrm{A}(-\mathrm{B})=\bigcap_{\beta \in \mathrm{B}}(\mathrm{~A}-\beta) \\
\end{gathered}
$$

Dilation

- Example using a 3×3 morphological kernel

	00	0	0	6	6	¢	0	0	6	0	0	0	00
0	06	0	0	6	¢	¢	0	Q	6	0	0	0	00
0	00	1	1	1	4	¢	0	Q	¢	0	0	0	0 0
0	01	1	1	1	1	6	0	0	0	0	0	0	06
0	01	1	1	1	1	¢	0	0	0	1	1		00
0	01	1		1	0	¢	0	0	1	1	1		06
¢	08	1	1	6	¢	6	0	1	1	1	1		60
0	00	0	¢	6	¢	0	1	1	1	1	1	0	00
0	06	6	0	Q	Q	1	1	1	1		0		60
¢	06	¢	0	6	1	1	1	1	1	¢	0	0	00
	06	0	0	1	1	1	1	1	6	0	¢	0	06
¢	06	0	1	1	1	1	1	6	¢		¢	0	06
0	06	¢	1	1	1	1	1	1	1	1	¢	Q	6 0
¢	06	0	1	1	1	1	1	1	1	1	0	0	06
0	00	0	0	1	1	1	1	1	1	0	0	0	06
	00	0	0	0	4	0	0	0	Q	0	0		00

					¢	6	0	¢	¢	0		6	Q	0	0	0)	\%	6
	0		6	1	1	1	1	1	O	0	0	9	0	0	6	0		¢	6
	0		1	1	1	1	1	1	1	0		-	0	6	0	0			0
	0		1	1	1	1	1	1	1	0		¢	1	1	1	1	1		0
	0		1	1	1	1	1	1	1	0	T	1	1	1	1	1	1	1	0
	0		1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	0
	-		1	1	1	1	1	1	1	1	,	1	1	1	1	1	1		0
-	0		Q	1	1	1	1	1	1	1	,	1	1	1	1	1			0
\cdots	0		0	0	0	0	1	1	1	1	,	1	1	1	1	1	1		0
	0		0	6	0	1	1	1	1	1	,	1	1	1	1	0	0	0	0
	0		0	0	1	1	1	1	1	1	-	1	1	1	0	0			0
	0		0	0	1	1	1	1	1	1	,	1	1	1	1	0			0
	0		0	0	1	1	1	1	1	1		1	1	1	1	0)	¢	0
	0		0	Q	1	1	1	1	1	1		1	1	1	1	0)	0	0
	0		0		1	1	1	1	1	1		1	1	1		0)	0	0
			0		0	1	1	1	1	1		1	1	1	0	0	-		0

Erosion

- Example using a 3×3 morphological kernel

				0	Q	0	0	0	0	0	0	¢			\square
	0	b	0	¢	-	0	0	¢	0	0	0	¢	¢	0	0
Q	0	0	1	1	1	0	0	0	0	0	0	0	0		0
¢	¢	1	1	1	1	1	0	0	0	Q	0	0			0
¢	Q	1	1	1	1	1	¢	¢	¢	0	1	1	1		6
¢	0	1	1	1	1	0	0	O	0	1	1	1	1		0
¢	0	0	1	1	¢	¢	0	¢	1	1	1	1			0
¢	0	¢	0	0	¢	0	Q	1	1	1	1	1	4		0
¢	Q	¢	0	¢	Q	Q	1	1	1	1	1	6			\%
¢	0	¢	O	0	6	1	1	1	1	1	¢	0	0		0
6	0	¢	0	0	1	1	1	1	1	0	0	¢	0		0
¢	0	0	0	1	1	1	1	1	0	0	0	6	0		0
¢	0	0	Q	1	1	1	1	1	1	1	1	6	0		6
6	0	¢	0	1	1	1	1	1	1	1	1				6
¢	0	¢	Q	0	1	1	1	1	1	1	0	0	0	0	6
6	0	¢	0	0	¢	\%	Q	Q		6	Q	¢		0	

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Opening, Closing

- Opening
- Erosion, followed by dilation.
- Less destructive than an erosion.

- Adapts image shape to kernel shape.
- Closing
- Dilation, followed by erosion.
- Less destructive than a dilation.
- Tends to close shape irregularities.

Opening

- Example using a 3×3 morphological kernel

Closing

- Example using a 3×3 morphological kernel

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0
0	0	0	1	1	1	1	0	1	0	0	1	1	1	0	0
0	0	1	1	1	1	0	1	1	1	1	1	1	0	0	0
0	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0
0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0
0	1	1	0	0	0	0	1	1	1	0	1	0	0	0	0
0	1	1	1	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

\quad	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	
0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	0	
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	
0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	
0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	
0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	
0	1	0	0	0	1	1	1	1	1	0	0	0	0	0	0	
0	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	
0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	0	0	0	0	
0	1	1	1	0	0	0	1	1	0	0	0	0	0	0	0	
0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Core morphological operators

Dilation

Closing

Erosion

Opening

Example: Opening

Example: Closing

Connected Component Analysis

- Define 'connected'.
- 4 neighbors.
- 8 neighbors.

- Search the image for seed points.
- Recursively obtain all connected points of the seeded region.

Resources

- Gonzalez \& Woods - Chapter 7 and 8

