
Formal Modelling of Emotions in BDI Agents

David Pereira1, Eugénio Oliveira2, and Nelma Moreira1

1 DCC-FC & LIACC – University of Porto
Rua Campo Alegre, 1021/1055

4169-007 Porto, Portugal
{dpereira,nam}@ncc.up.pt

2 DEEC-FE & LIACC – University of Porto
Rua Dr. Roberto Frias, s/n Lab. I 1212 - NIAD&R

4200-465 Porto, Portugal
eco@fe.up.pt

Abstract. Emotional-BDI agents are BDI agents whose behaviour is
guided not only by beliefs, desires and intentions, but also by the role of
emotions in reasoning and decision-making. The EBDI logic is a formal sys-
tem for expressing the concepts of the Emotional-BDI model of agency.
In this paper we present an improved version of the EBDI logic and show
how it can be used to model the role of three emotions in Emotional-BDI
agents: fear, anxiety and self-confidence. We also focus in the computa-
tional properties of EBDI which can lead to its use in automated proof
systems.

1 Introduction

Emotional-BDI agents are BDI agents whose behaviour is guided not only by
beliefs, desires and intentions, but also by the role of emotions in reasoning and
decision-making. This conceptual model was developed by Pereira et al. [1] and
a first version of the EBDI logic was presented in [2], where a first formalisation of
fear was given. In this paper we present an improved version of the EBDI logic in
order to model the role of three emotions in Emotional-BDI agents: fear, anxiety
and self-confidence. The aim of this paper is to show how EBDI logic has enough
expressivity to model some of the properties of these emotions, following Oliveira
& Sarmento’s model of emotional agent [3,4,5].

The main motivation for the current work was to provide a formal system
in which the concepts of the Emotional-BDI model of agency could be logically
expressed. Using these concepts we can specify distinct behaviours which are
expected from agents under the influence of emotions. The existing formal sys-
tems for rational agency such as Rao & Georgeff’s BDI logics [6,7] and Meyer’s
et al. KARO framework [8,9,10,11] do not allow a straightforward representa-
tion of emotions. However, both have properties which we can combine in order
to properly model Emotional-BDI agents.

The EBDI logic is an extension of the BDICTL logic, equipped with explicit refer-
ence to actions, capabilities and resources. The choice of BDICTL, and not the more

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 62–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formal Modelling of Emotions in BDI Agents 63

powerful BDICTL∗ , was motivated by our interest in automated proof methods that
will allow the development of executable specification languages of rational agency
or of formal verification systems for the Emotional-BDI model of agency.

This paper is organised as follows. In Section 2 we define the EBDI logic. This
logic is based in BDICTL logic and we begin by presenting the new operators that
were added. Besides the syntax and semantics of EBDI, we present the axiom
systems for the new modal operators. We also establish the decidability of EBDI-
formulae, by transforming EBDI-formulae into equivalent BDICTL ones. In Section
3 we use the EBDI-logic to define a set of conditions which are pre-requisites for
defining how emotions are activated in Emotional-BDI agents and also special
purpose actions which are executed by the agent when it ”feels” these emotions.
In Section 4 we model the activation and effects of each of the emotions in
Emotional-BDI agents using the previous conditions. In Section 5 we give some
information about the ongoing implementation work on the decision procedures
of EBDI. In Section 6 some related work is considered. Finally, in Section 7 we
present some conclusions about this work and point some topics for ongoing and
future research in the EBDI logic.

2 The EBDI Logic

The EBDI is an extension of Rao & Georgeff’s BDICTL. This extension adds new
modal operators for representing the concepts of fundamental desires, capabil-
ities, action execution and resources. The semantics of EBDI is therefore given
by the satisfiability of EBDI-formulae on extended BDICTL-models, considering
accessibility-relations and functions for modelling the new operators.

2.1 Informal Description

The BDICTL logic is a multi-modal logic which combines Emerson’s et al.
branching-time logic CTL [12] and modal operators for representing the men-
tal states of belief (Bel), desire (Des) and intention (Int) as defined by Bratman
et al. in [13]. The underlying model of BDICTL has a two dimensional struc-
ture. One dimension is a set of possible worlds that correspond to the differ-
ent perspectives of the agent representing his mental states. The other is a set
of temporal states which describe the temporal evolution of the agent. A pair
〈world, temporal state〉 is called a situation. In the EBDI logic we added the fol-
lowing modal operators:

Fundamental desire: a fundamental desire is a desire which represents vital
conditions to the agent, like its life or alike propositions. We model this
concept using the modal operator Fund.

Actions: in EBDI we consider regular actions as defined in Propositional Dy-
namic Logic PDL [14]. In this way we can refer to the actions that the agent
performs, in particular when he is under the influence of emotions. Given a
finite set of atomic actions, regular actions are derived through the usual test
operator ? and regular action operations (sequence, disjunction and Kleene
closure).

64 D. Pereira, E. Oliveira, and N. Moreira

Capabilities: a capability represents the operational structure of the execution
of an action. This concept is similar to KARO’s ability. This is represented
by the modal operator Cap.

Resources: resources are the means (physical or virtual) for engaging the exe-
cution of actions. For the modelling of resources we consider the operators:

– Needs(a, r): the atomic action a needs a unit of the resource r to be
executed.

– Availableq(r): the agent has q units of the resource r, with 0 ≤ q ≤MAX ,
MAX > 0.

– Savedq(r): the agent has q units of resource r saved for future usage.

We also consider the operator Res for representing the availability or not of all
the resources needed to execute a regular action. We consider both Available
and Saved operators for the following reasons: the Available operator provides
only information about the available resources at the agent’s current state
of execution. No extra-information is given about the amount of resources
available in the future. However, this last information is important for agent
decision-making. If an agent considers that it would be inevitable to execute
some action in the future, it may also consider necessary to protect the
needed resources from being badly used and therefore not available when
really needed. This ”protection” of resources is given by the Saved operator.
If a unit of a resource r is saved it cannot be used in other actions. It must
first be freed and made available by the agent.

In terms of actions we consider three families of special purpose atomic ac-
tions, for the management of resource availability:

– get(r): the agent gets one more unit of the resource r and this unit becomes
available for being used.

– save(r): the agent saves one unit of the resource r which was previously
made available to the agent.

– free(r): the agent frees one unit of the resource r which has been previously
saved by the agent and makes it available to be used.

2.2 Syntax

As in BDICTL we distinguish between state formulae, which are evaluated in a
single situation, and path formulae which are evaluated along a path.

Definition 1. Considering a non-empty set of propositional variables P , a finite
set of atomic actions AAt that include the set of resource availability manage-
ment actions, a finite set of resource symbols R and a set of resource quantities
{0, . . . ,MAX}, with MAX > 0, the language of EBDI-formulae is given by the
following BNF-grammar:

– state-formulae:
ϕ ::= p | ¬ϕ |ϕ ∧ ϕ | 〈α〉ϕ |Eψ |Aψ |Bel(ϕ) |Des(ϕ) | Int(ϕ) |

Fund(ϕ) |Needs(a, r) |Availableq(r) | Savedq(r) |Cap(α) |Res(α)
where p ∈ P, a ∈ AAt, r ∈ R and 0 ≤ q ≤MAX.

Formal Modelling of Emotions in BDI Agents 65

– path-formulae:
ψ ::= Xϕ | (ϕUϕ)

– regular actions (ARa):
α ::= id | a ∈ AAt |ϕ? |α;α |α+ α |α∗

In addition, we introduce the following abbreviations: �, ⊥, ϕ∨ψ and ϕ→ ψ are
abbreviations of ¬(p∧¬p) (with p being a fixed element of P), ¬�, ¬(¬ϕ∧¬ψ)
and ¬(ϕ ∧ ¬ψ), respectively; AFϕ, EFϕ, AGϕ and EGϕ are abbreviations of
A(�Uϕ), E(�Uϕ), ¬EF¬ϕ and ¬AF¬ϕ, respectively. The formula [α]ϕ stands
for ¬〈α〉¬ϕ. Iterated action αn, with n ≥ 0, are inductively defined by α0 = id
and α(n+1) = α;αn. Informally, X means next temporal state, U true until, F in a
future temporal state, G globally true. The path quantification modal operators E
and A mean, respectively, in one path and in all paths. The regular action modal
operator 〈α〉 means possibly true after a execution of α.

2.3 Semantics

EBDI-formulae are interpreted in extended BDICTL models, called EBDI-models.
We follow Schild’s approach to BDICTL [15], by considering a situation as a pair
δ = 〈w, s〉, where s is a temporal state of the non-empty set T and w refers to
a world (mental state perspective) from the non-empty set W .

Definition 2. Given a non-empty set of situations Δ, a non-empty set of propo-
sitional variables P , a finite set of atomic actions AAt, a set of resource symbols
R and a positive constant MAX, we define an EBDI-model as a tuple:

M = 〈Δ,RT , {Ra : a ∈ AAt},B,D, I,F , V, C, avl, svd, needs〉
such that:

– RT ⊆ Δ×Δ is a temporal accessibility-relation, such that:
• it is serial, i.e., ∀δ ∈ Δ, ∃δ′ ∈ Δ such that (δ, δ′) ∈ RT ;
• if (〈wi, sj〉, 〈wk, sl〉) ∈ RT , then wi = wk.

– Ra ⊆ RT is an atomic action accessibility-relation, with a ∈ AAt;
– B,D, I,F ⊆ Δ×Δ are accessibility-relations for the mental state operators.

These relations have the following property (considering O ∈ {B,D, I,F}):

if (〈wi, sj〉, 〈wk, sl〉) ∈ O then sj = sl;

– V : P → ℘(Δ) is a propositional variable labelling function;
– C : AAt → ℘(Δ) is a capability labelling function;
– needs : AAt → ℘(R) is a function that defines which resource symbols in R

are needed to execute each action of AAt;
– avl : Δ × R → {0, . . . ,MAX} is a function that for each situation defines

which quantity of each resource is available;
– svd : Δ × R → {0, . . . ,MAX} is a function that for each situation defines

which quantity of each resource is saved.

66 D. Pereira, E. Oliveira, and N. Moreira

As in BDICTL path-formulae are evaluated along a path πδ = (δ0, δ1, δ2, . . .), such
that δ = δ0 and ∀i ≥ 0, (δi, δi+1) ∈ RT . The kth element of a path πδ is denoted
by πδ[k].

The accessibility-relation and the capability labelling function for atomic ac-
tions are extended to regular actions α, as usual in PDL and KARO. We denote
them, respectively, by RA

α and cAα .
For the modelling of resources the functions avl and svd verify the following

properties:

– the total amount of resources which the agent can deal with cannot be greater
than MAX :
∀δ ∈ Δ, ∀r ∈ R, 0 ≤ avl(δ, r) + svd(δ, r) ≤MAX .

– the execution of an atomic action consumes one unit of each resource needed
for the execution of that action:
∀r ∈ needs(a), ∀(δ, δ′) ∈ Ra, avl(δ′, r) = avl(δ, r) − 1.

Also, we assume that for the resource management atomic actions we have:

needs(get(r)) = needs(save(r)) = needs(free(r)) = ∅, ∀r ∈ R

The availability of resources for executing regular actions is given by:

res : ARa → ℘(Δ)

resa =

⎧
⎨

⎩

{δ | if r ∈ needs(a) then avl(r, δ) ≥ 1}, ifneeds(a) �= ∅

Δ, otherwise.
resϕ? = Δ

resα;β = {δ | δ ∈ resα ∧ ∃(δ, δ′) ∈ RA
α , δ

′ ∈ resβ}
resα+β = resα ∪ resβ

resα∗ = ∪n≥0(resαn)

The intuition behind the value of the resource availability function res for
α∗ is that the iterated execution of α is bounded to the existence of a finite
amount of resources. We are now in conditions to define the satisfiability for an
EBDI-formula.

Definition 3. Let M be an EBDI-model and δ a situation. The satisfiability of
an EBDI-formula is defined inductively as follows:

– state formulae satisfaction rules:
• M, δ |= p iff δ ∈ V (p)
• M, δ |= ¬ϕ iff M, δ �|= ϕ
• M, δ |= ϕ ∧ ψ iff M, δ |= ϕ e M, δ |= ψ
• M, δ |= Eψ iff exists a path πδ such that M,πδ |= ψ
• M, δ |= Aψ iff for all paths πδ, M,πδ |= ψ
• M, δ |= 〈α〉ϕ iff exists (δ, δ′) ∈ RA

α such that M, δ′ |= ϕ
• M, δ |= Bel(ϕ) iff for all (δ, δ′) ∈ B, M, δ′ |= ϕ
• M, δ |= Des(ϕ) iff for all (δ, δ′) ∈ D, M, δ′ |= ϕ

Formal Modelling of Emotions in BDI Agents 67

• M, δ |= Int(ϕ) iff for all (δ, δ′) ∈ I, M, δ′ |= ϕ
• M, δ |= Fund(ϕ) iff for all (δ, δ′) ∈ F , M, δ′ |= ϕ
• M, δ |= Cap(α) iff δ ∈ cAα
• M, δ |= Needs(a, r) iff r ∈ needs(a)
• M, δ |= Availableq(r) iff avl(δ, r) = q
• M, δ |= Savedq(r) iff svd(δ, r) = q
• M, δ |= Res(α) iff δ ∈ resα

– path formulae satisfaction rules:
• M,πδ |= Xϕ iff M,πδ[1] |= ϕ
• M,πδ |= ϕ1Uϕ2 iff ∃ k ≥ 0 such that M,πδ[k] |= ϕ2 and ∀j, 0 ≤ j <
k

(
M,πδ[j] |= ϕ1

)

2.4 Properties of EBDI

The axiomatic characterisation of EBDI’s modal operators of time and BDI mental
states are the same as in BDICTL-logic. The modal operator Fund, for fundamental
desires, follows the axiom set of Des and Int operators, which is the KD system
[16], i.e., F is a serial accessibility-relation. The Bel operator verifies the KD45
axioms, i.e., B is an equivalence relation. The temporal operators follow the
axioms of CTL and the action execution operators verify the axioms of PDL.
Since both branching-time and regular action execution structures coexist, we
have the following properties:

Theorem 1. Let M be an EBDI-model, a an atomic action and α a regular
action. We have:

1. if M, δ |= 〈a〉ϕ then M, δ |= EXϕ, a �= id.
2. if M, δ |= 〈α〉ϕ then M, δ |= EFϕ.
3. if M, δ |= 〈α∗〉ϕ then M, δ |= E(〈α〉�Uϕ).

Proof (sketch). In the first case, let M, δ |= 〈a〉ϕ. Then it exists (δ, δ′) ∈ Ra such
that M, δ′ |= ϕ. By definition, (δ, δ′) ∈ RT and it exists πδ = (δ, δ′, . . .) such
that M,πδ[1] |= ϕ. Again, by definition, we have M, δ |= EXϕ .

In the second case, we proceed by induction in the structure of α. The base
case proves along the lines of the previous proof. For the induction step, we
present here only the case of α = β + γ we have M, δ |= 〈β〉ϕ or M, δ |= 〈γ〉ϕ.
By the induction hypothesis we M, δ |= EFϕ or M, δ |= EFϕ, which is equivalent
M, δ |= EFϕ. The other cases are proved analogously.

For the last case proceed again by induction on α. We only present the base
case. Let α = a. By definition it exists n ≥ 0 such that M, δ |= 〈an〉ϕ. Therefore
it exists δ′ such that (δ, δ′) ∈ RA

an and M, δ′ |= ϕ. Considering now the path πδ =
(πδ[0], πδ[1], . . . , πδ[n − 1]).π′ such that πδ[n] = π′[0] = δ′. Since ∀(πδ[i], πδ[i +
1]) ∈ RA

a , for 0 ≤ i ≤ n − 1 by definition we have M,πδ[i] |= 〈a〉� for the
same i and M,πδ[n] |= ϕ. By definition and considering the path πδ we have
M, δ |= E(〈a〉�Uϕ).

Capabilities are characterised similarly to abilities in the KARO framework.
The axioms for the Cap modal operator are:

68 D. Pereira, E. Oliveira, and N. Moreira

– Cap(ϕ?) ↔ �
– Cap(α;β) ↔ Cap(α) ∧ 〈α〉Cap(β)
– Cap(α+ β) ↔ Cap(α) ∨ Cap(β)
– Cap(α∗) ↔ Cap(α) ∧ 〈α〉Cap(α∗)
– Cap(α) ∧ 〈α∗〉(Cap(α) → 〈α〉Cap(α)) → Cap(α∗)

Resource availability for regular actions follows almost the same axioms that
characterise the Cap operator. However, the unbounded composition operator ∗

behaves differently, bounding the execution of an action α∗ to a finite number
of compositions of α. This composition stops when there are no resources to
execute α once more. The Res operator verifies the following axioms:

– Res(get(r)) ↔ �
– Res(save(r)) ↔ �
– Res(free(r)) ↔ �
– Res(ϕ?) ↔ �
– Res(a) ↔ ∧

r∈R

(
Needs(a, r) → ∨MAX

n=1 Availablen(r)
)

– Res(α;β) ↔ Res(α) ∧ 〈α〉Res(β)
– Res(α+ β) ↔ Res(α) ∨ Res(β)
– Res(α∗) ↔ Res(α) ∧ 〈α〉Res(α∗)
– Res(α∗) ∧ 〈α∗〉(Res(α) → 〈α〉Res(α)) → Res(α∗)

Resources are also characterised by axioms which deal with the modal operators
Available, Needs and Saved. First we define some abbreviations that represent,
respectively, the maximum quantity of available and saved resources, in a situ-
ation:

– MaxAvlq(r) =def Availableq(r) ∧ ¬Available(q+1)(r)
– MaxSvdq(r) =def Savedq(r) ∧ ¬Saved(q+1)(r)

The following axioms characterise the interaction between action execution and
resource availability, considering a �∈ {get(r), save(r), free(r) | r ∈ R}:

– MaxAvlq(r) ∧ Needs(a, r) → [a]MaxAvl(q−1)(r), 0 < q ≤MAX
– MaxAvlq(r) ∧ ¬Needs(a, r) → [a]MaxAvlq(r), 0 ≤ q ≤MAX

The following axioms characterise the dynamics of the availability of resources,
considering both resource availability limits and the execution of the special
actions to manage them. We have:

– resource availability limits:

• Available0(r), ∀r ∈ R
• Saved0(r), ∀r ∈ R

• Availableq(r) → Available(q−1)(r), 1 < q ≤MAX

• Savedq(r) → Saved(q−1)(r), 1 < q ≤MAX

Formal Modelling of Emotions in BDI Agents 69

– resource availability and resource management actions:

• Needs(get(r), r′) → ⊥, ∀r, r′ ∈ R
• Needs(save(r), r′) → ⊥, ∀r, r′ ∈ R
• Needs(free(r), r′) → ⊥, ∀r, r′ ∈ R

• MaxAvlq(r) → [get(r)]MaxAvl(q+1)(r), for 0 ≤ q < MAX

• MaxAvlq(r)∧MaxSvdq′
(r) → [save(r)](MaxAvl(q−1)(r)∧MaxSvd(q′+1)(r)),

with 0 ≤ q + q′ ≤MAX

• MaxAvlq(r)∧MaxSvdq′
(r) → [free(r)](MaxAvl(q+1)(r)∧MaxSvd(q′−1)(r)),

with 0 ≤ q + q′ ≤MAX

2.5 Decidability

The decidability of EBDI is obtained by transforming an original EBDI-formula ϕ
into a new formula ϕ′ which is evaluated in a modified EBDI-model. This mod-
ified model is a BDICTL-model which considers the accessibility relation F and
special propositional variables which represent the execution of atomic actions,
capabilities and resource availability. Let L be an EBDI language and P the set of
propositional variables. We define a new language L′ equal to L except that it
has a new set of propositions P ′ that is the union of the following disjunct sets:

– the set of propositional variables P ,
– the set of propositional variables which represent the atomic actions:
{done a | a ∈ AAt},

– the set of propositional variables which represent the capabilities for atomic
actions:
{cap a | a ∈ AAt},

– the set of propositional variables which represent the resources for atomic
actions:
{res a | a ∈ AAt},

– a set of propositional variables for representing the various quantities of
resources available:
{avl q r, svd q r | q ∈ {0, . . . ,MAX}, r ∈ R},

– a set of propositional variables for representing the resources needed for the
execution of each atomic action:
{needs a r | a ∈ AAt, r ∈ R}.

Considering an EBDI-model M , the modified model M ′ is defined as follows,
extending the propositional labelling function of M .

Definition 4. Let M be an EBDI-model such that:

M = 〈Δ,RT , {Ra : a ∈ AAt},B,D, I,F , V, C, avl, svd, needs〉,

a model M ′ is a tuple:

70 D. Pereira, E. Oliveira, and N. Moreira

M ′ = 〈Δ,RT ,B,D, I,F , V ′〉,

such that V ′ : P ′ → ℘(Δ) is defined as follows, where a ∈ Aat, p ∈ P and r ∈ R:

– V ′(p) = V (p),
– V ′(done a) = {δ′ | (δ, δ′) ∈ RA

a },
– V ′(cap a) = C(a),
– V ′(res a) = resa,
– V ′(avl q r) = {δ |M, δ |= Availableq(r)},
– V ′(svd q r) = {δ |M, δ |= Savedq(r)},
– V ′(needs a r) = {δ |M, δ |= Needs(a, r)}.

Note that in V ′ only atomic actions are considered. Therefore, any EBDI-formula
must be normalised into an equivalent one where only atomic actions can occur.

Definition 5. For all EBDI-formula ϕ there exists a normalised formula ϕ′ ≡
ξ(ϕ), such that the normalisation ξ is inductively defined as follows:

– normalisation of regular action formulas:
ξ(〈a〉ϕ) = 〈a〉ξ(ϕ),
ξ(〈ψ?〉ϕ) = ξ(ψ ∧ ϕ),
ξ(〈α〉(ϕ ∨ ψ)) = ξ(〈α〉ϕ) ∨ ξ(〈α〉ψ),
ξ(〈α;β〉ϕ) = ξ(〈α〉〈β〉ϕ),
ξ(〈α + β〉ϕ) = ξ(〈α〉ϕ) ∨ ξ(〈β〉ϕ),
ξ(〈id〉ϕ) = ξ(ϕ),
ξ(〈α(n+1)〉ϕ) = ξ(〈α〉〈αn〉ϕ),
ξ(〈α∗〉ϕ) = ξ(E(〈α〉�Uϕ)).

– normalisation of capability formulas:
ξ(Cap(a)) = Cap(a),
ξ(Cap(ϕ?)) = �,
ξ(Cap(α;β)) = ξ(Cap(α) ∧ 〈α〉Cap(β)),
ξ(Cap(α+ β)) = ξ(Cap(α)) ∨ ξ(Cap(β)),
ξ(Cap(α∗)) = ξ(E(Cap(α) ∧ 〈α〉Cap(α))U�)).

– normalisation of resource formulas:
ξ(Needs(a, r)) = Needs(a, r),
ξ(Availableq(r)) = Availableq(r),
ξ(Savedq(r)) = Savedq(r),
ξ(Res(a)) = Res(a),
ξ(Res(ϕ?)) = �,
ξ(Res(α;β)) = ξ(Res(α) ∧ 〈α〉Res(β)),
ξ(Res(α+ β)) = ξ(Res(α)) ∨ ξ(Res(β)),
ξ(Res(α∗)) = ξ(E(Res(α) ∧ 〈α〉�))U¬Res(α))).

Formal Modelling of Emotions in BDI Agents 71

– normalisation of other formulas:
ξ(�) = �,
ξ(p) = p,
ξ(¬ϕ) = ¬(ξ(ϕ)),
ξ(ϕ ∧ ψ) = ξ(ϕ) ∧ ξ(ψ),
ξ(Aψ) = A(ξ(ψ)),
ξ(Eψ) = E(ξ(ψ)),
ξ(Xϕ) = X(ξ(ϕ)),
ξ(ϕ1Uϕ2) = (ξ(ϕ1)Uξ(ϕ2)),
ξ(Bel(ϕ)) = Bel(ξ(ϕ)),
ξ(Des(ϕ)) = Des(ξ(ϕ)),
ξ(Int(ϕ)) = Int(ξ(ϕ)),
ξ(Fund(ϕ)) = Fund(ξ(ϕ)),

After normalisation, we apply the transformation defined below, so that the
resulting formula can be evaluated in a model M ′.

Definition 6. Let ϕ be an normalised EBDI-formula. The transformation of ϕ
to ϕ′ is given by τ , inductively defined as follows:

– propositional-formulae:
τ(�) = �,
τ(p) = p,
τ(¬ϕ) = ¬(τ(ϕ)),
τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ).

– temporal-formulae:
τ(Aψ) = A(τ(ϕ)),
τ(Eψ) = E(τ(ϕ)),
τ(Xϕ) = X(τ(ϕ)),
τ(ϕ1Uϕ2) = (τ(ϕ1)Uτ(ϕ2)).

– action execution formulae:
τ(〈a〉ϕ) = EX(done a ∧ τ(ϕ)),
τ([a]ϕ) = AX(done a→ τ(ϕ)).

– mental-state formulae:
τ(Bel(ϕ)) = Bel(τ(ϕ)),
τ(Des(ϕ)) = Des(τ(ϕ)),
τ(Int(ϕ)) = Int(τ(ϕ)),
τ(Fund(ϕ)) = Fund(τ(ϕ)),

– capabilities and resources formulae:
τ(Cap(a)) = cap a,
τ(Res(a)) = res a,
τ(Needs(a, r)) = needs a r,
τ(Availableq(r)) =

∧
0≤s≤q(avl s r),

τ(Savedq(r)) =
∧

0≤s≤q(svd s r).

Now we can present the following theorem.

72 D. Pereira, E. Oliveira, and N. Moreira

Theorem 2. Let M be an EBDI-model, δ a situation and ϕ a normalised EBDI-
formula. If M, δ |= ϕ then M ′, δ |= τ(ϕ).

Proof. (Sketch). Proof is done by induction of the structure of ϕ. We present here
only the case ϕ = Cap(a). Assume that M, δ |= Cap(a). By definition, δ ∈ C(a).
By definition of M ′ we get δ ∈ V ′(cap a) which is equivalent to M ′, δ |= cap a.
Since τ(Cap(a)) = cap a we get M ′, δ |= τ(Cap(a)).

Using this theorem, we obtain the decidability of a EBDI-formula ϕ by trans-
forming it into τ(ξ(ϕ)) and applying to the latter the tableau construction for
BDICTL, with a rule for expanding formulas containing the Fund modal operator.
The algorithm for building such tableau is based on the decision procedures for
BDICTL, developed by Rao & Georgeff in [6]. In particular we use the notions of
fully extended propositional tableau and of a fragment DAG[w,ϕ] as defined in
the cited work of Rao & Georgeff.

Definition 7. Let ψ be a EBDI-formula and τ(ξ(ψ)) = ϕ. The tableau construc-
tion for EBDI is defined as follows:

1. build a tree with just one node w0, called root, such that L(w0) = {ϕ}.
2. repeat (a) − (d) until none apply:

(a) build a propositional tableau: if w is a leaf, L(w) is not inconsistent,
L(w) is not a propositional tableau and ψ is the smaller witness of this
fact, then:
i. if ψ is ¬¬γ, create a node w′, son of w, such that L(w′) = L(w)∪{γ},
ii. if ψ is γ ∧ θ, create a node w′, son of w, such that L(w′) = L(w) ∪

{γ, θ},
iii. if ψ is ¬(γ ∧ θ), create two nodes w′ and w′′, sons of w, such that

L(w′) = L(w) ∪ {¬γ} e L(w′′) = L(w) ∪ {¬θ}.
(b) build a fully extended propositional tableau: if w is a leaf, L(w) is not

inconsistent, L(w) is not a fully extended propositional tableau and ψ is
a witness of this fact, then create two nodes w′ e w′′, sons of w, such
that L(w′) = L(w) ∪ {ψ} e L(w′′) = L(w) ∪ {¬ψ},

(c) extend CTL-formulas: if w is a leaf, L(w) is not inconsistent, L(w) is
a fully extended propositional tableau and contains the formulas AXϕ1,
. . . ,AXϕn,EXψ1, . . .,EXψm, then create m successors i, each containing
the set {ϕ1, . . . , ϕn, ψi},

(d) create mental states operator successors: if w is a leaf, L(w) is not in-
consistent and L(w) is a fully extended propositional tableau, then:
i. if L(w) contains ¬Bel(ϕ1), . . . ,¬Bel(ϕn),Bel(ψ1), . . . ,Bel(ψm), then

create n B-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};
ii. if L(w) contains ¬Des(ϕ1), . . . ,¬Des(ϕn),Des(ψ1), . . . ,Des(ψm), then

create n D-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};
iii. if L(w) contains ¬Int(ϕ1), . . . ,¬Int(ϕn), Int(ψ1), . . . , Int(ψm), then

create n I-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};
iv. if L(w) contains ¬Fund(ϕ1), . . . ,¬Fund(ϕn),Fund(ψ1), . . . ,Fund(ψm),

then create n F-successors wi, each containing {¬ϕi, ψ1, . . . , ψm};

Formal Modelling of Emotions in BDI Agents 73

(e) mark nodes as ”satisfiable”: if w is not marked as ”satisfiable”, then
mark it as so if:
i. L(w) is not a fully extended CTL tableau and exists a successor w′

of w which is marked as ”satisfiable”;
ii. L(w) is a fully extended CTL tableau and all formulas AXϕ and EXϕ

are satisfied (through the existence of a fragment DAG[w,ϕ]) and all
the B,D,I,F-successors are marked as ”satisfiable”,

iii. L(w) is a fully extended CTL tableau and don’t exist formulas of
the type AXϕ, nor the type EXϕ, nor the type ¬Bel(ϕ), nor the type
¬Des(ϕ), nor the type ¬Int(ϕ) nor the type ¬Fund(ϕ), and L(W) is
not inconsistent.

3. if the root of the tableau is marked as ”satisfiable” then return ”ϕ is satisfi-
able”. Otherwise return ”ϕ is not satisfiable”.

Extending the work of Rao & Georgeff [6], we have the decidability of EBDI:

Theorem 3. The EBDI logic is decidable.

Proof. The extension of the syntax and semantics of BDICTL to support the Fund
operator is similar to the proof of the decidability of the modal operators of Des
and Int in [6].

3 Preliminaries for Modelling Emotions in EBDI

In this section we present a series of concepts which will be useful for modelling
emotions in EBDI. These concepts refer to conditions that are the basis for mod-
elling the activation of emotions and the consequences that these emotions have
in the behaviour of the agent.

3.1 Resource Management Actions

We begin by defining special regular actions for dealing with resource manage-
ment. For that we consider the following abbreviations for regular actions:

– If(ϕ, α) =def (ϕ?;α)
– IfE(ϕ, α, β) =def If(ϕ, α) + If(¬ϕ, β)
– WhileDo(ϕ, α) =def ((ϕ?;α)∗);¬ϕ?

We also consider a special function which, given a finite set of regular actions S,
returns the composition of all the actions in S, in some order (in this function
we consider that regular actions commute). This function, which we denominate
by eval set, is inductively defined as:

eval set : ℘(ARa) → ARa

eval set(∅) = id
eval set({α} ∪ S) = α; eval set(S), α �∈ S

Based on the atomic actions for the of resource management, we define the
following set of resource management regular actions:

74 D. Pereira, E. Oliveira, and N. Moreira

GET: the agent gets all the resources needed to execute some atomic action.
Considering:
Cond1(a, r) = Needs(a, r) ∧ MaxAvl0(r)
we have:
GET(a) = eval set({If(Cond1(a, r), get(r)) | r ∈ R})

SAVE: the agent saves a unit of each resource needed to execute an atomic
action. Considering:
Cond2(a, r) = Needs(a, r) ∧ MaxSvd0(r)
we have:
SAVE(a) = eval set({If(Cond2(a, r), IfE(Avl(r), save(r), get(r); save(r)))
| r ∈ R})

FREE: the agent frees the resources previously saved for executing an atomic
action. Considering:
Cond3(a, r) =def Needs(a, r) ∧ Saved1(r)
we have:
FREE(a) = eval set({If(Cond3(a, r), free(r)) | r ∈ R})

All these definition scale for regular actions α ∈ ARa and we can work with
for instance FREE(α) instead of FREE(a).

3.2 Proposition Achievement

For the agent to succeed in the execution of an action it must have both the
capability and resources for that action. We denote the existence of both of them
as effective capability. Formally we have:

– EffCap(α) =def Cap(α) ∧ Res(α)

The agent also considers if it can or cannot execute some action to achieve the
truth of some proposition. Formally we have:

– Can(α, ϕ) =def Bel(〈α〉ϕ ∧ EffCap(α))
– Cannot(α, ϕ) =def Bel(¬〈α〉ϕ ∨ ¬EffCap(α))

3.3 Risk and Favourable Conditions

The activation of emotions is based on conditions of the environment that show
to be positive or negative to the desires and fundamental desires of the agent.
First we define the following conditions:

Risk condition: a proposition ϕ is said to be at risk if there is a next situation
in which ¬ϕ is true:
AtRisk(ϕ) =def EX(¬ϕ)

Possibly at risk: a proposition ϕ is said to be possibly at risk if there exists a
future situation where ¬ϕ is true. Formally this is defined as:
PossAtRisk(ϕ) =def EF(¬ϕ)

Formal Modelling of Emotions in BDI Agents 75

Safe: a proposition ϕ is said to be safe if it will always be true in the future.
Formally we have:
Safe(ϕ) =def AF(ϕ)

On believing on the above, and the propositions being either fundamental
desires or only desires, the agent distinguishes between three types of conditions
for activating emotions:

1. Threats: a threat is a condition of the environment in which a fundamen-
tal desire is in imminent risk of failure. We consider the following kinds of
threats:

– a fundamental desire ϕ is said to be threatened if the agent believes that
ϕ is at risk:
Threatened(ϕ) =def Bel(AtRisk(ϕ)) ∧ Fund(ϕ)

– a fundamental desire ϕ is said to be threatened by a proposition ψ if the
agent believes that the truth of ψ implies ϕ being at risk:
ThreatProp(ψ, ϕ) =def Bel(ψ → AtRisk(ϕ)) ∧ Fund(ϕ)

– a fundamental desire ϕ is said to be threatened by the execution of an
action a if the agent believes that the successful execution of a will put
ϕ at risk:
ThreatAct(a, ϕ) =def Bel(〈a〉AtRisk(ϕ))∧Fund(ϕ) ThreatsEffC(a, ϕ) =def

Bel(¬EffCap(a) → AtRisk(〈a〉ϕ)) ∧ Fund(ϕ)

2. Not favourable: a condition is not favourable if it reveals a possible failure
of one of the agent’s desires, in the future. As in the case of the threats, we
consider the following kinds of not favourable conditions:

– NotFavourable(ϕ) =def Bel(PossAtRisk(ϕ)) ∧ Des(ϕ)
– NotFavourableProp(ψ, ϕ) =def Bel(ψ → PossAtRisk(ϕ)) ∧ Des(ϕ)
– NotFavourableAct(α, ϕ) =def Bel(〈α〉PossAtRisk(ϕ)) ∧ Des(ϕ)

Note that here we consider regular actions instead of atomic ones since the
risk condition is not bounded to verify in a next situation.

3. Favourable: a condition is said to be favourable if it refers to a current sit-
uation of the environment in which a desire of the agent has the possibility
to be achieved. We define the following kinds of favourable conditions:

– Favourable(ϕ) =def Bel(Safe(ϕ)) ∧ Des(ϕ)
– FavourableProp(ϕ, ψ) =def Bel(ψ → Safe(ϕ)) ∧ Des(ϕ)
– FavorableAct(α, ϕ) =def Bel(〈α〉Safe(ϕ)) ∧ Des(ϕ)

4 Modelling Emotions in EBDI

In this section we present the modelling of three emotions within EBDI logic:
Fear, Anxiety and Self-Confidence. For each of these emotions we model both
its activation conditions and the effects that their presence have in the future

76 D. Pereira, E. Oliveira, and N. Moreira

behaviour of an Emotional-BDI agent. This modelling is based in the work of
Oliveira & Sarmento in [4].

The activation condition of each of the emotions corresponds precisely to a
condition defined in the previous section. We opted by this approach to avoid the
logical omniscience problem [17]. The use of a notation Emotion(F (ϕ)) allows
a more intuitive meaning and can help in the future development of a formal
calculus for (emotional) EBDI-formulae.

4.1 Fear

The activation of fear occurs when a fundamental desire of the agent is put at
risk of failure. Using other words, fear is activated when the agent detects a
threat. Therefore we have the following kinds of fear:

– Fear(¬ϕ) ≡ Threatened(ϕ)
– Fear(ψ → ¬ϕ) ≡ ThreatsProp(ψ, ϕ)
– Fear(〈a〉¬ϕ) ≡ ThreatsAct(a, ϕ)

The main effect of fear is bringing the agent into a cautious perspective towards
the environment and, in particular, to the threat he detected. Depending on
the kind of threat, the agent will aim at avoiding that threat. We consider the
following behaviours under the effect of fear:

– if the agent can avoid a threat through the execution of an action a the he
intends to execute it:
Fear(¬ϕ) ∧ Can(a, ϕ) → Int(〈a〉ϕ)

– if the agent cannot avoid the threat through an action a then he does not
intend to execute it:
Fear(¬ϕ) ∧ Cannot(a, ϕ) → ¬Int(〈a〉ϕ)

– if the agent can avoid a proposition which is a threat, or can make the
proposition and the fundamental desire coexist – both through the execution
of an action – then the agent intends to execute that action:
Fear(ψ → ¬ϕ) ∧ Can(a,¬ψ) → Int(〈a〉¬ψ)
Fear(ψ → ¬ϕ) ∧ Can(a, ψ ∧ ϕ) → Int(〈a〉(ψ ∧ ϕ))

– if the execution of an action is a threat to the agent then the agent will
not intend to execute it (possibly for achieving some proposition ψ) until it
causes no fear:
Fear(〈a〉¬ϕ) → A(¬Int(〈a〉�)U¬Fear(〈a〉ϕ))

– if the agent believes that an action a for which it does not have resources
can eliminate the threat, then one of the following conditions apply:
1. the agent can eliminate the fear by freeing previously saved resources to

execute other action:
Fear(¬ϕ) ∧ Cannot(a, ϕ) ∧ Bel([FREE(α)]Can(a, ϕ)) → Int(〈FREE(α); a〉ϕ)

2. the agent believes it can get the resources for a before compromising its
fundamental desire:
Fear(¬ϕ) ∧ Cannot(a, ϕ) ∧ Bel([GET(α)]Can(a, ϕ)) → Int(〈GET(α); a〉ϕ)

Formal Modelling of Emotions in BDI Agents 77

4.2 Anxiety

The activation of anxiety occurs when the desires of the agent can be at risk
in the future. Therefore, anxiety works as preventive alert system towards fu-
ture situations which may compromise the overall performance of the agent. We
consider the following kinds of anxiety activation:

– Anx(EF¬ϕ) ≡ NotFavourable(ϕ)
– Anx(ψ → EF¬ϕ) ≡ NotFavourableProp(ψ, ϕ)
– Anx(〈α〉EF¬ϕ) ≡ NotFavourableAct(α, ϕ)

The effects of anxiety are mainly preparing the agent to face future risk condi-
tions, or to avoid them before they occur. We consider the following cases:

– if an action α guarantees that the desire will not be at risk, the agent intends
to execute α. If he does not have enough resources, he will save them:
Anx(EF¬ϕ) ∧ Can(α,AFϕ) → Int(〈α〉AFϕ)
Anx(EF¬ϕ) ∧ Int(〈α〉AFϕ) ∧ ¬Res(α) → 〈SAVE(α)〉Int(〈α〉AFϕ)

– if a proposition causes anxiety and the agent has a way to either negate that
proposition or make that proposition coexist with the desire possibly at risk,
then the agent will execute that action:
Anx(ψ → EF¬ϕ) ∧ Can(α,AF(¬ψ ∨ (ψ ∧ ϕ)) → Int(〈α〉AF(¬ψ ∨ (ψ ∧ ϕ)))

– if the execution of an action is causing anxiety and the execution of that
action is an intention of the agent, the agent will not intend it until it becomes
harmful:
Anx(〈α〉EF¬ϕ) ∧ Int(〈α〉ϕ) → AX(A(¬Int(〈α〉ϕ)UBel(AFϕ)))

4.3 Self-confidence

Self-confidence represents the well-being of the agent relatively to the future
achievement of one of its desires. Using other words, if a desire is in a favourable
condition to be achieved, the agent feels self-confidence about its achievement.
We consider the following kinds of self-confidence:

– SConf(ϕ) ≡ Favourable(ϕ)
– Sconf(ψ → ϕ) ≡ FavourableProp(ψ, ϕ)
– SConf(〈α〉ϕ) ≡ FavourableAct(α, ϕ)

Self-confidence deals mostly with the maintainance of intentions. Since the de-
sires are considered to be achievable, the agent only cares about maintaining
them in the set of intentions until he believes he achieved them. We consider the
following kinds of behaviour:

– if the agent already intends a desire to which he is self-confident about, the
agent will continue to intend it until he believes it is achieved:
SConf(ϕ) ∧ Int(〈α〉ϕ) → A(Int(〈α〉ϕ)UBel(ϕ))

– if the agent still does not intend the desire, he will begin to intend it from
the next situation on:
SConf(ϕ) ∧ Can(α, ϕ) ∧ ¬Int(〈α〉ϕ) → AXInt(〈α〉ϕ)

78 D. Pereira, E. Oliveira, and N. Moreira

– if a proposition causes self-confidence about a desire, then the agent will
start intending that proposition and also intend both the proposition and
the desire itself:
SConf(ψ → ϕ) ∧ Can(α, ψ) ∧ ¬Int(〈α〉ψ) → AXInt(〈α〉ϕ)
SConf(ψ → ϕ) → Int(ψ ∧ ϕ)

– if the agent has the resources needed to execute an action which will guaran-
tee the achievement of a desire to which it is self-confident about, then the
agent will free those resources and intend to get them right before executing
the action:
SConf(〈α〉ϕ) ∧ Int(〈α〉ϕ) ∧ Saved(α) → 〈FREE(α)〉Int(〈GET(α);α〉ϕ)

4.4 Usability of EBDI

The main goal behind the development of EBDI was to provide a language ex-
pressive enough to specify conditions where emotions are triggered and the effect
that the presence of such emotions have in the behaviour of the agent. The for-
mulas we presented in the Sections 4.1, 4.2 and 4.3 are not supposed to be all
present but rather combined to fit the special needs of the environment and role
of the agent. This combination should define the emotional state of the agent.
This mental state works on top of the properties already present in the BDI
logic.

Lets consider a scenario where a fire-fighter agent is fighting a nearby fire. It
is acceptable that the agent may fear of being burned, although believing that
he can extinguish the fire. The emotional state would contain:

1. Fear(¬healthy)
2. SConf(extinguished fire)

The result of this emotional state could be getting back to protect from very
close fire but still continuing to throw it water, which is formalised as:

1. Fear(¬healthy) ∧ Can(get back, healthy) → Int(〈get back〉)healthy
2. A(Int(〈through water〉extinguished)UBel(extinguished))

We could select different conditions to model for instance another fire-fighter
agent fighting the fire, a police agent, etc.

5 Implementation

We have implemented the tableau algorithm presented in Section 2.5 for deter-
mining the satisfiability of EBDI-formulas. Our implementation was done in the
Prolog language. Currently we are implementing EBDI syntax and semantics as a
module of the Coq interactive theorem prover system [18]. Our aim is to provide
a computational mean of doing model-checking for EBDI-formulae. We base our
approach in the work of de Wind [19] in implementing normal modal logic in
Coq plus some implementations of formal concepts present in the EBDI logic and
already implemented in Coq, as CTL logic.

Formal Modelling of Emotions in BDI Agents 79

6 Related Work

The work which more relates to the one we present in this paper is the one of
Meyer in [20], where he proposes the formal modelling of happiness, sadness,
anger and fear in the KARO logical framework.

Meyer suggests the introduction of a modal operator Goalm(ϕ) which repre-
sents a so called maintainance goal. This modal operator is used to model fear
with a similar intuition as the one behind our Fund(ϕ) modal operator, i.e., to
define a more important kind of desire. In terms of modelling the evolution of the
agent, Meyer uses computational sequences of atomic actions to refer to future
states of an agent, while we use the standard CTL’s temporal operators.

In a more recent work, Meyer and Dastani introduce the modelling of emotions
previously done in an agent oriented programming language [21]. In this work
the authors present transition rules for the generation of each of the emotions
modelled in [20]. This generated emotions are then feed into the programming
language’s deliberation process which determine the effects that these emotions
have in the mental states of an agent.

Comparing both approaches we conclude that:

1. Our approach provides a more expressive language to model emotions in
BDI agents. The combination of time and action execution and the detailed
definition of resources and resource-management notions fits in the needs of
emotional agent architecture [3,1,2].

2. The new operators which we introduced were conveniently defined syntacti-
cally and semantically. The work of Meyer introduces similar concepts but
just in the language of its logic. Our work also has a strong focus on the
logical foundations of EBDI whereas Meyer’s work focus only in expressing
emotional states of rational agents.

Despite the differences, both logical frameworks try to model rational agents
with emotions in the same context: they are not interested about the internal
structure of the emotions, but only in specifying at which conditions they are
activated and how their presence influence the behaviour of the agent.

7 Conclusions and Future Work

In this paper we have presented an improved version of the EBDI logic to model
the activation and effects of emotions in the behaviour exhibited by a Emotional-
BDI agent. The emotions analysed were fear, anxiety and self-confidence. This
formalisation was based in the BDICTL logic, which was extended with the notions
of fundamental desire, explicit reference to actions, capabilities and resources.

We have shown that the satisfiability of EBDI-formulae can be reduced to the
satisfiability of BDICTL-formulae. We have implemented an extended version of
the BDICTL’s tableau decision procedure for EBDI-formulae.

Currently we are developing a library for the Coq interactive theorem prover
system [18] with the purposes of reasoning and model-checking specifications of
Emotional-BDI agents within the EBDI framework.

80 D. Pereira, E. Oliveira, and N. Moreira

As a future work, it would be interesting to add a notion of graded importance
to the Fund modal operator in order to provide a more accurate notion of the
importance of a desire to the decision-making process of an agent, in the line of
the work done by Godo et al. in [22].

Acknowledgements

We kindly thanks the reviewers for their constructive comments which helped
improving this work.

This work was partially founded by Fundao para a Cincia e Tecnologia (FCT)
and program POSI.

References

1. Pereira, D., Oliveira, E., Moreira, N., Sarmento, L.: Towards an architecture for
emotional BDI agents. In: Carlos Bento, A.C., Dias, G. (eds.) EPIA 2005 12th
Portuguese Conference on Artificial Intelligence, Universidade da Beira Interior,
December 2005, pp. 40–46. IEEE, Los Alamitos (2005); ISBN 0-7803-9365-1

2. Pereira, D., Oliveira, E., Moreira, N.: Modelling emotional BDI agents. In: Work-
shop on Formal Approaches to Multi-Agent Systems (FAMAS 2006), Riva Del
Garda, Italy (August 2006)

3. Oliveira, E., Sarmento, L.: Emotional valence-based mechanisms and agent person-
ality. In: Bittencourt, G., Ramalho, G. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507,
pp. 152–162. Springer, Heidelberg (2002)

4. Oliveira, E., Sarmento, L.: Emotional advantage for adaptability and autonomy.
In: AAMAS, pp. 305–312 (2003)

5. Sarmento, L., Moura, D., Oliveira, E.: Fighting fire with fear. In: Proceedings of
2nd European Workshop on Multi-Agent Systems (EUMAS 2004) (December 2004)

6. Rao, A.S., Georgeff, M.P.: Decision procedures for BDI logics. J. Log. Comput.
8(3), 293–342 (1998)

7. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture.
In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1991),
pp. 473–484. Morgan Kaufmann publishers Inc., San Francisco (1991)

8. van der Hoek, W., van Linder, B., Meyer, J.J.C.: A logic of capabilities. In: Nerode,
A., Matiyasevich, Y. (eds.) LFCS. LNCS, vol. 813, pp. 366–378. Springer, Heidel-
berg (1994)

9. Schmidt, R.A., Tishkovsky, D., Hustadt, U.: Interactions between knowledge, ac-
tion and commitment within agent dynamic logic. Studia Logica 78(3), 381–415
(2004)

10. van Linder, B., van der Hoek, W., Meyer, J.J.C.: Formalising abilities and oppor-
tunities of agents. Fundamenta Informaticae 34(1-2), 53–101 (1998)

11. van der Hoek, W., van Linder, B., Meyer, J.J.C.: On agents that have the ability
to choose. Studia Logica 66(1), 79–119 (2000)

12. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science. Formal Models and Sematics (B), vol. B, pp. 995–1072 (1990)

13. Bratman, M.E., Israel, D., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational Intelligence 4, 349–355 (1988)

Formal Modelling of Emotions in BDI Agents 81

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
15. Schild, K.: On the relationship between bdi logics and standard logics of concur-

rency. Autonomous Agents and Multi-Agent Systems 3(3), 259–283 (2000)
16. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics

of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)
17. Whitsey, M.: Logical omniscience: A survey (2003)
18. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. In: Coq’Art: The Calculus of
Inductive Constructions. Texts in Theoretical Computer Science. Springer, Heidel-
berg (2004)

19. de Wind, P.: Modal logic in coq. Master’s thesis, Vrije Universiteit in Amsterdam
(2001)

20. Meyer, J.J.C.: Reasoning about emotional agents. In: de Mántaras, R.L., Saitta,
L. (eds.) ECAI, pp. 129–133. IOS Press, Amsterdam (2004)

21. Dastani, M., Meyer, J.J.C.: Programming agents with emotions. In: Brewka, G.,
Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, pp. 215–219. IOS Press, Am-
sterdam (2006)

22. Casali, A., Godo, L., Sierra, C.: Graded bdi models for agent architectures. In
Leite, J.A., Torroni, P. (eds.) CLIMA V. In: Leite, J.A., Torroni, P. (eds.) CLIMA
2004. LNCS (LNAI), vol. 3487, pp. 126–143. Springer, Heidelberg (2005)

	Introduction
	The EBDI Logic
	Informal Description
	Syntax
	Semantics
	Properties of EBDI
	Decidability

	Preliminaries for Modelling Emotions in EBDI
	Resource Management Actions
	Proposition Achievement
	Risk and Favourable Conditions

	Modelling Emotions in EBDI
	Fear
	Anxiety
	Self-confidence
	Usability of EBDI

	Implementation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

