FAdo and GUlItar: Tools for Automata
Manipulation and Visualization*

André Almeida, Marco Almeida**, José Alves, Nelma Moreira,
and Rogério Reis

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

{bernarduh, sobuy,mfa,nam,rvr}@ncc.up.pt

Abstract. FAdo is an ongoing project which aims to provide a set
of tools for symbolic manipulation of formal languages. To allow high-
level programming with complex data structures, easy prototyping of
algorithms, and portability (to use in computer grid systems for exam-
ple), are its main features. Our main motivation is the theoretical and
experimental research, but we have also in mind the construction of a
pedagogical tool for teaching automata theory and formal languages. For
the graphical visualization and interactive manipulation a new interface
application, GUlItar, is being developed. In this paper, we describe the
main components of the FAdo system as well as the basics of the graphi-
cal interface and editor, the export/import filters and its generic interface
with external systems, such as FAdo.

1 Introduction

The FAdo [pro0g] project aims to provide an open source extensible high-perfor-
mance software library for the symbolic manipulation of automata and other
models of computation. A first implementation currently includes most stan-
dard operations for the manipulation of regular languages [MRO05], a Turing
machine simulator and parsing tools for context-free languages. An automata
random generator package was released, based on previous theoretical work
on enumeration and generation of initially connected deterministic finite au-
tomata (ICDFA) [AMRO7]. Although there are several software packages for
the symbolic manipulation of formal languages they either are not open source,
have restricted purposes, or are no longer being maintained. Examples include:
Grail+ [RW94,Yu09], Automate [CHI1|, Amore [JPTWIOQ], Fire Station [FWQ9]
and OpenFst [Ril09]. An exception to this is the Vaucanson package [LRGS04]
whose basic structures, due to its orientation to more algebraic applications
of automata, are too heavy for the combinatorial and algorithmic simulations
we think useful for complexity studies of formal languages. JFLAP [RE06] is

* This work was partially funded by Fundagao para a Ciéncia e Tecnologia (FCT) and
Program POSI, and by project ASA (PTDC/MAT/65481/2006).
** Marco Almeida is funded by FCT grant SFRH/BD/27726/2006.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 6574} 2009.
© Springer-Verlag Berlin Heidelberg 2009

66 A. Almeida et al.

a specialized pedagogical tool with an extensive coverage of formal language
topics taught in undergraduate computer science courses. The possibility of in-
teractively experimenting with the construction proofs is a major feature of this
system. The FAdo system was first developed for pedagogical purposes. How-
ever the necessity of easily prototyping new algorithms, testing algorithm per-
formance with large datasets, and the combinatorial nature of formal languages
representations led us to continue FAdo development. The use of Python, a high-
level object-oriented language with high-level data types and dynamic typing,
ensures a system which is modular, extensible, clearly and easily implemented,
and portable. Specialized and optimized data structures and performance critical
algorithms may be written in a low-level language like C, and easily interfaced
with Python, via the Cython language extension [BB09]. Here, we will describe
the main components of the FAdo system for regular languages manipulation.

GUTItar is a visualization software tool for various types of automata (stan-
dard, weighted, pushdown, transducers, Turing machines, etc.). Its purposes in-
clude automatic and assisted diagram drawing, algorithm animation, interactive
editing and export/import filters. Automatic graph drawing has been a very ac-
tive research area and several commercial software packages are now available for
general and specific applications (database design, information systems, bioin-
formatics, social networks, etc.) [BERT99, [Gra08, [JM04]. In contrast, automata
diagrams (labelled multi-digraphs) require additional aesthetics and graphical
constraints: left-to-right reading, initial states on the left and final states on the
right, edge shapes and label placements, etc. We intend to design and imple-
ment tools for automatic drawing of automata diagrams according to common
accepted aesthetics principles. As a first step, in this paper, we describe the basic
GUlItar framework that includes assisted diagram drawing, interactive editing,
and export/import filters.

2 FAdo: Tools for Regular Languages Manipulation

Regular languages can be represented by regular expressions (r.e.) or finite au-
tomata, among other formalisms. Finite automata may be deterministic (DFA)
or non-deterministic (NFA). In FAdo these representations are implemented
as Python classes, as presented in Figure [l The class FA implements the ba-
sic structure of a finite automaton shared by DFAs and NFAs. This class also
provides methods for manipulating these structures. The class DFA and NFA
implements DFAs and NFAs, respectively. The class EFA implements gener-
alized NFAs that are used in the conversion between finite automata and r.e.
There are two representations for r.e.: the class RE implements, in a object-
oriented manner, the usual inductive definition (it is elegant, but not efficient)
and the class ACIRE implements irreducible regular expressions modulo ACIA,
i.e., associativity of the concatenation and disjunction, commutativity of the dis-
junction, and idempotence of both disjunction and Kleene star operations. Dis-
junctions are represented as sets, which are efficiently implemented in Python.
Concatenated r.e. are kept in an ordered list. The idempotence of the Kleene star

FAdo and GUItar: Tools for Automata Manipulation and Visualization 67

¢ ¢ <—> | NtA =] DiA |

| RE | @[ACRE |
EFA
RE
Large Random ADFA ICDFA
random
sets DB generators generator generator
generator

Fig. 1. FAdo classes for regular languages

is assured by not allowing double stared r.e. Whether or not a r.e. accepts the
empty word is tabulated as a ACIRE attribute, to avoid unnecessary recursive
calls. Elementary regular languages operations as union, intersection, concate-
nation, complementation and reverse are implemented for each class. Several
conversions between these representations are implemented: NFA — DFA:
subset construction; NFA — RE: recursive method; EFA — RE: state elimi-
nation, with possible choice of state orderings; RE — N F A: Thompson method,
Glushkov method, follow, Brzozowski, and partial derivatives.

For DFAs several minimization algorithms are available (some with C imple-
mentations): Moore, Hopcroft, incremental algorithms of Watson and Daciuk. Br-
zozowski minimization is available for NFAs. Language equivalence of two DFAs
can be determined by reducing their correspondent minimal DFA to a canonical
form [AMROT], or by the Hopcroft and Karp algorithm. Language equivalence
of two r.e. is implemented in the ACIRE class using variants of a rewrite sys-
tem [AMRO8a)]. The class ACIRE has also several simplification methods for r.e.

2.1 Generators and Random Samples

We have designed and implemented several exact and random generators for
some classes of automata and regular expressions. An exact and a uniform ran-
dom generator are available for ICDFAs [AMROT]. Based on new canonical forms
we also developed exact generators for acyclic (trim) deterministic finite au-
tomata (ADFA)[AMRO8D], and for minimal ADFA (MADFA) [AMRO08c]. For
the uniform generation of random r.e. we implemented the method described
by Mairson [Mai94] for the generation of context-free languages. Random (non-
uniform) generators for NFAs that allow to generate initially connected NFAs
(with one initial state) and to control the transition density are also implemented.

68 A. Almeida et al.

For a given number of states and symbols, the number of DFAs grows in
a way that experimental tests over the complete universe quickly become im-
practical [AMRO7]. For statistical analysis (or experimental results), a subset
of manageable size from which we can make inferences or extrapolations to the
whole universe may be used.

As the probability of any individual member of the universe being selected is ex-
actly the same as any other individual member, a uniform random generator pro-
duces a true, unbiased, random sample. In order to have a reasonable sized (enough
for statistically significant results), consistent, random sample readily available,
we designed and implemented an SQL database to store the uniformly generated
DFAs (and r.e.). We used the PostgreSQL open source relational database system
[DBMOS] to store the random samples of both DFAs and r.e.

Database. The ICDFAs database keeps and makes available random samples
of automata with n € {10,20,...,90,100} states, each over an alphabet of
ke {2,3,4,...,18,20,25,30,...,45,50} symbols. Besides the automaton struc-
ture, the database stores some properties such as minimality, being trimmed,
acyclic, etc. This allows to obtain, with a simple SQL query, some automata
datasets with specific properties. For efficiency reasons, besides its unique string
representation [AMROT], the database is used to store the pre-parsed internal
FAdo representation of each ICDFA. This avoids the need to parse an automa-
ton’s description every single time we need to manipulate it. By similar reasons,
each automaton’s final states set is stored in two different ways: as a comma
separated list of integers and as a bitmap.

REs Database. The r.e. database is similar to the ones pertaining to finite
automata. Pre-parsed representations of each object is kept in the database,
both in the ACIRE and RE representation, to avoid overhead parsing time in
any algorithm process.

3 GUltar: Interactive Visualization

The GUItar graphical interface allows the interactive visualization of generic
graph diagrams and the execution of external graph manipulation tools. It is
implemented with the wzPython [SRZD06] graphical toolkit. Figure [2 shows the
interactive diagram editor. The basic frame has a menu bar, a tool bar, and
a notebook that manipulates multiple pages. The menu bar and the tool bar
are dynamically built from XML [Con08a] configuration files and event handler
files, allowing an easy extensibility and modularity. Each notebook page con-
tains a canvas for diagram drawing and manipulation. The canvas is based on
the wzPython’s Floatcanvas component [Bar0O8] which allows to draw and to in-
teract with graphic objects. It provides zooming, panning and binding mouse
clicks on object to callbacks. It allows the addition of new objects and to alter
its interactive behavior. To draw graph transitions a new FloatCanvas object
called ArrowSpline was created. This object defines splines with or without ar-
row heads. It allows the access to the spline interpolation points, which was not

FAdo and GUItar: Tools for Automata Manipulation and Visualization 69

—-ox
File Edit State Arrow Zoom Simulator StylesManagers Foreign Functions

[B %@QHQ’T@ ¢« % % ¥ [H @
nfa0l x
jStBtES
3

’4—
Style: ’7j_‘

b Reset | Apply
-| Arrows

3->4

Style: |default v
Reset | Apply

Switched page

Fig. 2. GUItar graphical interface

possible in the native implementation. The main classes of GUTtar are presented
in Figure[3] and are summarized in the next subsections.

3.1 Drawing a Graph

A graph is defined by a set of nodes and a set of edges. The class DrawGraph
allows the display and the editing of a graph diagram, and its main components
are a canvas, a set of node objects, a set of edge objects and a grid. Nodes and
edges can be added, edited, moved or deleted. Node labels can be automatically
generated according to a given specification. The grid uses a general coordinate
system to manage node positions and prevent objects to overlap. Each object
can occupy several grid cells. To assist diagram editing a specialized graphical
user interface (GUI) mode, a draw assistant and an undo/redo manager were
implemented. Objects properties can be inspected and changed in the properties
panel.

Nodes. The Node class has an identifier (ID), a position, canvas objects and a
style. This class has methods to change node position and to determine borders
for docking edges.

Edges. The Edge class has an ID, an origin and an target nodes, a canvas Ar-
rowSpline object, and a label object (with side and position).This class has meth-
ods to edit ArrowSpline control points, change nodes dock points and change
label location.

70 A. Almeida et al.

> MenuBar
[o | > TooBar |
> Exportimport
> FFC
\4
| NoteBook ! »| PropertiesPanel
—>| FloatCanvas |—— GuiFAMode
—>| GraphClassifier l— GraphClassifierUl User

FAStyle
NodeManager
L NodeStyle [

—>| EdgeManager

EdgeStyle

N —
> UndoRedo |

DrawGraph || DiagramGrid

>
Grid
—>| Node

—>| Edge

—>| LabelGenerator

] DrawAssistant |

Ly Embedding |

Fig. 3. A GUlItar overview

Labels. A label can be simple (text string) or composed of several components.

Embeddings. The embedding is the layout of the nodes and edges in the plane.
Currently a integer coordinate embedding is provided.

Editing Mode. The GUIFA Mode class implements an user interface that allows
several interactions with the graphical objects, essentially mouse based events,
such as addition, deletion, selection, or movement of objects, as well as activa-
tion of pop-up menus. It also provides movement in the canvas viewport. The
DrawAssistant class helps to place the edges and the loops. The edges can be
edited by dragging their control points freely or using stepwise movements. To
support undo and redo actions, the Undo/Redo manager assigns an ID to each
kind of action, a method that handles the undo event, and the ID of the reverse
action. The handler method receives as an argument the information needed to
undo/redo the action. For each performed action, its ID and the information

FAdo and GUItar: Tools for Automata Manipulation and Visualization 71

that the Undo handler method needs are pushed into the Undo stack. The Undo
and the Redo methods pop an action from the stack and call the handler method
with the appropriated information.

Complex style managers. In general, automata diagrams provide several
graphical information on state or transition representations. For instance, an
initial state representation can have a side arrow, or a final state representation
can have a doubled line border. Instead of having a few special styles built-in,
GUltar provides a Node Style Manager that allows the construction of node
styles with complex graphical objects. A node style can have several graphic
objects, as components. Two of these are mandatory: the primary object and
the primary label. Primary objects must be ellipses or rectangles, and they
ensure that there is always a docking object for the edges. The primary label
must be text. For each object, its usual style properties such as line color, line
width, line style, fill color, fill style, sizes, fonts, etc. can be defined. A node style
can be previewed while it is being defined (or edited), and saved in the GUItar
internal database. A set of tags (key/value pairs) may also be associated with
each node style. The Edge Style Manager permits the definition of edge styles. An
edge style is characterized by the graphical properties of the edge’s ArrowSpline
canvas object. It is possible to specify the number of heads and their shapes,
line style properties, and loop properties.

Graph Classifier. The GraphClassifer class allows the definition of graph
classes by specifying graphic properties of each object. The GraphClassifica-
tionUI class provides an user interface to visualize and to create new classes.
Graph, digraph, or multidigraph are the default classes.

Automatic graph drawing. A simple layout algorithm for visualizing graphs
without any embedding information is implemented. An automatic placement
based on physical forces simulation is also available.

3.2 Foreign Function Calls

GUlItar provides a generic foreign function calls (FFC) interface between the
diagram graphical editor and external manipulation tools, as the FAdo toolkit.
The FFCs have two components: a description on a XML configuration file and
a Python module. The description includes the module path and the methods
that will be imported by GUItar. Each method must have a name, a return
type, and, for each argument its type and a possible default value. Each module
may have a menu in the main GUItar’s frame, or be accessed from a general
FFC menu. At startup, GUItar loads the FFC configurations and builds the
FFC menus.

3.3 Export/Import

Diagram descriptions and embeddings are saved in a XML format that was
defined as a dialect of the GraphML language [Gro08]. GraphML is a simple

72 A. Almeida et al.

language to describe the structural properties of a graph and has a flexible
extension mechanism to add application-specific data. Extensions are provided
by a key/data mechanism that can be added to each graph element. For efficiency
reasons, for the GUItar internal information our dialect encodes this mechanism
directly. A fragment of the GUItar Relax NG schema, is presented below, where
diag_data represent the embedding information, and draw_data correspond to
general drawing information.

include "styles.rnc" graph_diag,
guitar = element guitar { graph_class,
attribute version {text}, stylex
graphx* }
¥ node_diag = element diag_data {
graph = element graph { attribute x {text},
attribute id {text}, attribute y {text}}
element node { node_draw = element draw_data {
attribute id {text}, attribute style {text},
label, attribute x {text},
node_diag, attribute y {text} }
node_draw, node_auto = element auto_data {
node_automata attribute initial {1 | 0},
Ix, attribute final {1 | 0} }
element edge { edge_draw = element draw_data {
attribute id {text}, attribute style {text},
attribute source {text}, element point{
attribute target {text}, attribute x {text},
label, attribute y {text}} * }
edge_diag, label = element label {
edge_draw attribute type {"sim"|"com"},
Fx, (dict*|text),
label_draw }

GUlItar exports its objects in three other formats: basic GraphML, dot and
Vaucanson-g [LS08]. GUItar can also import from GraphML and FAdo au-
tomata format. These export/import methods are implemented as XSLT trans-
formations [Con08b|] from the GUItar format. We are developing XSLT trans-
formations for the fsmaml format [Gro09).

4 Conclusions

The development of a solid and reliable symbolic manipulation package for for-
mal languages is not a simple task. Being written in a high-level programming
language and kept in an free software license promotes its usability by the
scientific community. Visualization tools, and specially automatic drawing of
automata diagrams, are challenging and important for both research and peda-
gogical purposes.

FAdo and GUItar: Tools for Automata Manipulation and Visualization 73
References

[AMRO7] Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with
a string automata representation. Theoret. Comput. Sci. 387(2), 93—-102
(2007)

[AMRO08a] Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite sys-
tem revisited. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS,
vol. 5148, pp. 46-56. Springer, Heidelberg (2008)

[AMRO8b] Almeida, M., Moreira, N., Reis, R.: Exact generation of acyclic determin-
istic finite automata. In: DCFS 2008, Charlottetown, Canada (2008)

[AMRO8c] Almeida, M., Moreira, N., Reis, R.: Exact generation of minimal acyclic
deterministic finite automata. I. J. of F. of Com. Sci. 19(4), 751-765 (2008)

[Bar08] Barker, C.: Floatcanvas, http://morticia.cs.dal.ca/FloatCanvas/| (ac-
cess date: 1.12.2008)
[BB09] Behnel, S., Bradshaw, R.: Cython: C-extensions for Python,

http://www.cython.org/| (access date: 03.01.2009)

[BERT99] Battista, G., Eades, P., Tamassia, R., Tolli, I.G.: Graph Drawing, Algo-
rithms for the Visualisation of Graphs. Prentice Hall, Englewood Cliffs
(1999)

[CH91] Champarnaud, J.M., Hanset, G.: AUTOMATE, a computing package for
automata and finite semigroups. J. of Symb. Comput. 12, 197-220 (1991)

[Con08a] World Wide Web Consortium. XML specification WWW page,
http://www.w3.org/TR/xml| (access date: 1.12.2008)

[Con08b] World Wide Web Consortium. XSLT specification WWW page,
http://www.w3.org/TR/xslt| (access date: 1.12.2008)

[DBMO08] PostgreSQL DBMS. PostgreSQL website, http://www.postgressql.org
(access date: 1.12.2008)

[FW09] Frishert, M., Watson, B.W.: Fire Station, http://www.fastar.org/| (ac-
cess date: 1.4.2009)

[Gra08] Graphviz — Graph Visualization Software. The dot language,
http://www.graphviz.org/| (access date: 1.12.2008)

[Gro08] GraphML Working Group. Graphml file format,
http://graphml.graphdrawing.org/| (access date: 01.12.2008)

[Gro09] Vaucanson Group. FSMXML format,
http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/XML| (ac-
cess date: 1.3.2009)

[JMO04] Junger, M., Mutzel, P. (eds.): Graph Drawing Software. Mathematics and
visualization. Springer, Heidelberg (2004)

[JPTW90] Jansen, V., Potthoff, A., Thomas, W., Wermuth, U.: A short guide to
the AMoRE system. Aachener informatik-berichte (90) 02, Lehrstuhl fur
Informatik II, Universitat Aachen (January 1990)

[LRGS04] Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing Vaucanson.
Theoret. Comput. Sci. 328, 77-96 (2004)

[LS08] Lombardy, S., Sakarovitch, J., Vaucanson, G.:
http://igm.univ-mlv.fr/~lombardy/| (access date: 1.12.2008)

[Mai94] Mairson, H.G.: Generating words in a context-free language uniformly at
random. Information Processing Letters 49, 95-99 (1994)

[MRO05] Moreira, N., Reis, R.: Interactive manipulation of regular objects with

FAdo. In: ITiCSE 2005, pp. 335-339. ACM, New York (2005)

http://morticia.cs.dal.ca/FloatCanvas/
http://www.cython.org/
http://www.w3.org/TR/xml
http://www.w3.org/TR/xslt
http://www.postgressql.org
http://www.fastar.org/
http://www.graphviz.org/
http://graphml.graphdrawing.org/
http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/XML
http://igm.univ-mlv.fr/~lombardy/

74 A. Almeida et al.

[pro08§]
[RF06]

[Ril09)]
[RW94]

[SRZD06]

[Yu09]

FAdo project. FAdo: tools for formal languages manipulation,
http://www.ncc.up.pt/FAdo| (access date: 1.12.2008)

Rodger, S., Finlea, T.: JFLAP - An Interactive Formal Languages and
Automata Package. Jones and Bartlett (2006)

Riley, M.: OpenFst, http://www.openfst.org| (access date: 1.4.2009)
Raymond, D., Wood, D.: Grail: A C++ Library for automata and expres-
sions. J. Symb. Comp. 17(4), 341-350 (1994)

Smart, J., Roebling, R., Zeitlin, V., Dunn, R.: wxWidgets 2.6.3: A portable
C++ and Python GUI toolkit (2006)

Yu, S.: Grail+, http://www.csd.uwo.ca/Research/grail/| (access date:
1.3.2009)

http://www.ncc.up.pt/FAdo
http://www.openfst.org
http://www.csd.uwo.ca/Research/grail/

	FAdo and GUItar: Tools for Automata Manipulation and Visualization
	Introduction
	FAdo: Tools for Regular Languages Manipulation
	Generators and Random Samples

	GUItar: Interactive Visualization
	Drawing a Graph
	Foreign Function Calls
	Export/Import

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

