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The partial derivative automaton (Apd) is usually smaller than other nondeterministic
finite automata constructed from a regular expression, and it can be seen as a quotient
of the Glushkov automaton (Apos). By estimating the number of regular expressions
that have ε as a partial derivative, we compute a lower bound of the average number
of mergings of states in Apos and describe its asymptotic behaviour. This depends on
the alphabet size, k, and for growing k’s its limit approaches half the number of states
in Apos. The lower bound corresponds to consider the Apd automaton for the marked
version of the regular expression, i.e. where all its letters are made different. Experimental
results suggest that the average number of states of this automaton, and of the Apd

automaton for the unmarked regular expression, are very close to each other.

Keywords: Regular languages; regular expressions; partial derivatives; conversion be-
tween regular expressions and nondeterministic finite automata; analytic combinatorics;
average case analysis.

1. Introduction

There are several well-known constructions to obtain nondeterministic finite au-

tomata from regular expressions. The worst case analysis of both the complexity

of the conversion algorithms, and the size of the resulting automata, are well stud-

ied. However, for practical purposes, the average case analysis can provide much
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gram POSI, and by projects RESCUE (PTDC/EIA/65862/2006) and CANTE (PTDC/EIA-
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more useful information. Recently, Nicaud [13] presented an average case study of

the size of the Glushkov automata, proving that, on average, the number of transi-

tions is linear in the size of the expression. This analysis was carried out using the

framework of analytic combinatorics.

Following the same approach, in this paper we focus on the partial derivative

automaton (Apd), which was introduced by Antimirov [2], and is a nondeterministic

version of the Brzozowski automaton [3]. In order to have an inductive definition of

the set of states of Apd, we consider Mirkin’s formulation of prebases. The equiva-

lence of the two constructions, Mirkin’s prebases and sets of partial derivatives, was

pointed out by Champarnaud and Ziadi [4]. We briefly revisit Mirkin’s algorithm,

due to an inaccuracy in that presentation.

In 2002, Champarnaud and Ziadi [5] showed that the partial derivative automa-

ton is a quotient of the Glushkov automaton. As such, the Apd automaton can be

obtained from the Apos automaton by merging states. The number of states in Apd,

which never exceeds the number of states in Apos, appears to be significantly smaller

in practice. In this work we are particularly interested in measuring this difference.

By estimating the number of regular expressions that have ε as a partial derivative,

we compute a lower bound for the average number of mergings of states in Apos,

and study its asymptotic behaviour. This behaviour depends on the alphabet size,

k, and its limit, for growing k’s, approaches half the number of states in Apos. Our

experimental results suggest that this lower bound is very close to the actual value.

2. Regular Expressions and Automata

In this section we briefly review some basic definitions about regular expres-

sions and finite automata. For more details, we refer the reader to Kozen [9] or

Sakarovitch [14].

Let Σ = {σ1, . . . , σk} be an alphabet (set of letters) of size k. A word w over Σ

is any finite sequence of letters. The empty word is denoted by ε. Let Σ⋆ be the set

of all words over Σ. A language over Σ is a subset of Σ⋆.

The left quotient of a language L ⊆ Σ⋆ by a word w ∈ Σ⋆ is the language

w−1L = {x ∈ Σ⋆ | wx ∈ L}.
The set R of regular expressions over Σ is defined by:

α := ∅ | ε | σ1 | · · · | σk | (α+ α) | (α · α) | α⋆ (1)

where the operator · (concatenation) is often omitted. The language L(α) associated
to α is inductively defined as follows: L(∅) = ∅, L(ε) = {ε}, L(σ) = {σ} for σ ∈ Σ,

L((α+β)) = L(α)∪L(β), L((α ·β)) = L(α) ·L(β), and L(α⋆) = L(α)⋆. The size |α|
of α ∈ R is the number of symbols in α (parentheses not counted); the alphabetic size

|α|Σ is its number of letters. We define ε(α) by ε(α) = ε if ε ∈ L(α), and ε(α) = ∅
otherwise. If two regular expressions α and β are syntactically identical we write

α ≡ β. Two regular expressions α and β are equivalent if L(α) = L(β), and we write

α = β. With this interpretation, the algebraic structure (R,+, ·, ∅, ε) constitutes an
idempotent semiring, and with the unary operator ⋆, a Kleene algebra.
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A nondeterministic automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where

Q is a finite set of states, Σ is the alphabet, δ ⊆ Q×Σ×Q the transition relation,

q0 the initial state, and F ⊆ Q the set of final states. The size of a A is |Q|+ |δ|.
For q ∈ Q and σ ∈ Σ, we denote the set {p | (q, σ, p) ∈ δ} by δ(q, σ), and we can

extend this notation to w ∈ Σ⋆, and to R ⊆ Q. The language accepted by A is

L(A) = {w ∈ Σ⋆ | δ(q0, w) ∩ F 6= ∅}.

3. The Partial Derivative Automaton

Let S∪{β} be a set of regular expressions. Then S⊙β = {αβ |α ∈ S} if β 6∈ {∅, ε},
S ⊙ ∅ = ∅, and S ⊙ ε = S. Analogously, one defines β ⊙ S.

For a regular expression α and a letter σ ∈ Σ, the set ∂σ(α) of partial derivatives

of α w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ
′) =

{ {ε} if σ′ ≡ σ

∅ otherwise

∂σ(α
⋆) = ∂σ(α)⊙ α⋆

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) =

{

∂σ(α)⊙ β ∪ ∂σ(β) if ε(α) = ε

∂σ(α)⊙ β otherwise.

This definition can be extended to sets of regular expressions, to words, and to

languages by: given α ∈ R and σ ∈ Σ, ∂σ(S) = ∪β∈S∂σ(β) for S ⊆ R; ∂ε(α) = {α},
∂wσ(α) = ∂σ(∂w(α)) for w ∈ Σ⋆; and ∂L(α) = ∪w∈L∂w(α) for L ⊆ Σ⋆. Trivially

extending the notion of language represented by a regular expression to sets of

regular expressions, one has that L(∂w(α)) = w−1L(α), for any w ∈ Σ⋆. The set of

partial derivatives of α, {∂w(α) | w ∈ Σ⋆}, is denoted by PD(α).

The partial derivative automaton Apd(α), introduced by Antimirov, is defined

by

Apd(α) = (PD(α),Σ, δpd, α, {q ∈ PD(α) | ε(q) = ε}),

where δpd(q, σ) = ∂σ(q), for all q ∈ PD(α) and σ ∈ Σ.

Proposition 1 (Antimirov) L(Apd(α)) = L(α).

Example 2. Throughout the paper we will use the regular expression

τ = (a+ b)(a⋆ + ba⋆ + b⋆)⋆,

given by Ilie and Yu [8]. This example illustrates perfectly the purpose of our

constructions in Section 5.1. For τ one has, PD(τ) = {τ, τ1, τ2, τ3}, where τ1 =

(a⋆ + ba⋆ + b⋆)⋆, τ2 = a⋆τ1 and τ3 = b⋆τ1. The corresponding automaton Apd(τ) is

the following:
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τ τ1

τ2

τ3

a, b
a, b b

a, b

b

a, b

b

3.1. Mirkin’s formulation

Champarnaud and Ziadi [4] showed that partial derivatives and Mirkin’s pre-

bases [12] lead to identical constructions of nondeterministic automata. In order

to do this, they proposed a recursive algorithm for computing the Mirkin’s pre-

bases. However, that algorithm has an inaccuracy for the concatenation rule. Here,

we give the corrected version of the algorithm.

Let α0 be a regular expression. A set π(α0) = {α1, . . . , αn}, where α1, . . . , αn

are non-empty regular expressions, is called a support of α0 if, for i = 0, . . . , n,

there are αil ∈ R ( l = 1, . . . , k), linear combinations of the elements in π(α0), such

that αi = σ1 · αi1 + . . .+ σk · αik + ε(αi), where, as above, Σ = {σ1, . . . , σk} is the

considered alphabet. If π(α) is a support of α, then the set π(α) ∪ {α} is called a

prebase of α.

Proposition 3 (Mirkin/Champarnaud&Ziadi) Let α be a regular expression.

Then the set π(α), inductively defined by a

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α + β) = π(α) ∪ π(β)

π(αβ) = π(α)⊙ β ∪ π(β)

π(α⋆) = π(α)⊙ α⋆,

is a support of α.

In his original paper Mirkin showed that |π(α)| ≤ |α|Σ. Furthermore, Champar-

naud and Ziadi established that PD(α) = π(α) ∪ {α}. Thus |PD(α)| ≤ |α|Σ + 1.

3.2. The Glushkov automaton

To review the definition of the Glushkov automaton, let Pos(α) = {1, 2, . . . , |α|Σ}
be the set of positions for α ∈ R, and let Pos0(α) = Pos(α) ∪ {0}. We consider the

expression α obtained by marking each letter with its position in α, i.e. L(α) ∈ Σ
⋆

where Σ = {σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ}. The same notation is used to remove the

markings, i.e., α = α. For α ∈ R and i ∈ Pos(α), let

first(α) = {i | ∃w ∈ Σ
⋆
, σiw ∈ L(α)},

last(α) = {i | ∃w ∈ Σ
⋆
, wσi ∈ L(α)} and

follow(α, i) = {j | ∃u, v ∈ Σ
⋆
, uσiσjv ∈ L(α)}.

aThe rule for concatenation in [4] is π(αβ) = π(α) ⊙ β ∪ ε(α) ⊙ π(β), which, e.g., produces
π(ab) = {b}. But, PD(ab) = {ab, b, ε}, thus π(ab) ⊇ {b, ε}.
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The Glushkov automaton for α is Apos(α) = (Pos0(α),Σ, δpos, 0, F ), with

δpos = {(0, σj , j) | j ∈ first(α)} ∪ {(i, σj , j) | j ∈ follow(α, i)}
and F = last(α) ∪ {0} if ε(α) = ε, and F = last(α), otherwise. We note that the

number of states of Apos(α) is exactly |α|Σ+1. Champarnaud and Ziadi [5] showed

that the partial derivative automaton is a quotient of the Glushkov automaton. The

right-invariant equivalence relation used in showing that the Apd is a quotient of

Apos relates the sets first and last with (multi-)sets of partial derivatives w.r.t a

letter.

Example 4. The Glushkov automaton for τ , Apos(τ), is the following:

0

1

2

3

4 5

6

a

b

a
b

b

a
b
b

b
a

b

a

b

b

a

b

a

b

a

a

b

b

4. Generating Functions and Analytic Methods

A combinatorial class C is a set of objects on which a non-negative integer function

(size) | · | is defined, and such that for each n ≥ 0, the number of objects of size n,

cn, is finite. The generating function C(z) of C is the formal power series

C(z) =
∑

c∈C

z|c| =
∞
∑

n=0

cnz
n.

The symbolic method (Flajolet and Sedgewick [7]) is a framework that allows

the construction of a combinatorial class C in terms of simpler ones, B1,. . . ,Bn, by

means of specific operations, and such that the generating function C(z) of C is

a function of the generating functions Bi(z) of Bi, for 1 ≤ i ≤ n. For example,

given two disjoint combinatorial classes A and B, with generating functions A(z)

and B(z), respectively, the union A ∪ B is a combinatorial class whose generating

function is A(z)+B(z). Other usual admissible operations are the cartesian product

and the Kleene closure.

Usually multivariate generating functions are used in order to obtain estimates

about the asymptotic behaviour of various parameters associated to combinatorial

classes. Here, however, we consider cost generating functions, as Nicaud [13] did.

Given f : C → N, the cost generating function F (z) of C associated to f is

F (z) =
∑

c∈C

f(c)z|c| =
∑

n≥0

fnz
n, with fn =

∑

c∈C,|c|=n

f(c).
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With [zn]F (z) denoting the coefficient of zn, the average value of f for the uniform

distribution on the elements of size n of C is, obviously,

µn(C, f) =
[zn]F (z)

[zn]C(z)
.

For the regular expressions given in (1), but without ∅, an average case analysis

of different descriptional measures, including the number of letters or the size of its

Glushkov automaton, has been presented by Nicaud.

In particular, it was shown that, for the generating function for regular expres-

sions, Rk(z), which satisfies

Rk(z) =
1− z −

√

∆k(z)

4z
, where ∆k(z) = 1− 2z − (7 + 8k)z2, (2)

one has

[zn]Rk(z) ∼
√

2(1− ρk)

8ρk
√
π

ρ−n
k n−3/2, where ρk =

1

1 +
√
8k + 8

. (3)

Here [zn]Rk(z) is the number of regular expressions α with |α| = n.

Nicaud also showed that the cost generating function for the number of letters

in an element α ∈ R is

Lk(z) =
kz

√

∆k(z)
, (4)

and satisfies

[zn]Lk(z) ∼
kρk

√

π(2 − 2ρk)
ρ−n
k n−1/2. (5)

From this he deduced that

[zn]Lk(z)

[zn]Rk(z)
∼ 4kρ2k

1− ρk
n. (6)

For k = 2 this results in approximately 0.277n (and not 0.408n, as stated by

Nicaud), and it is easy to see that

lim
k→∞

4kρ2k
1− ρk

ր 1

2
. (7)

This means that the average number of letters in a regular expression grows to

about half its size, for large alphabets. In particular, for k = 10, 100, 1000 we have
4kρ2

k

1−ρk
= 0.467, 0.485, 0.494, respectively.
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4.1. Analytic asymptotics

Generating functions can be seen as complex analytic functions, and the study of

their behaviour around their dominant singularities gives us access to the asymptotic

form of their coefficients. We refer the reader to Flajolet and Sedgewick for an

extensive study on this topic. Here we only state the propositions and lemmas used

in this paper. Let R > 1 and 0 < φ < π/2 be two real numbers, the domain

∆(φ,R) at z = ξ is ∆(φ,R) = {z ∈ C | |z| < R, z 6= ξ, and |Arg(z − ξ)| > φ},
where Arg(z) denotes the argument of z ∈ C. A domain is a ∆-domain at ξ if it is a

∆(φ,R) at ξ for some R and φ. The generating functions we consider have always a

unique dominant singularity, and satisfy one of the two conditions of the following

proposition, given by Nicaud.

Proposition 5. Let f(z) be a function that is analytic in some ∆-domain at

ρ ∈ R+.

(1) If at the intersection of a neighborhood of ρ and its ∆-domain,

f(z) = a− b
√

1− z/ρ+ o
(

√

1− z/ρ
)

, with a, b ∈ R, b 6= 0,

then [zn]f(z) ∼ b
2
√
π
ρ−nn−3/2.

(2) If at the intersection of a neighborhood of ρ and its ∆-domain,

f(z) =
a

√

1− z/ρ
+ o

(

1
√

1− z/ρ

)

, with a ∈ R, and a 6= 0,

then [zn]f(z) ∼ a√
π
ρ−nn−1/2.

The following straightforward lemma was used throughout our analytic

computations.

Lemma 6. If f(z) is an entire function with lim
z→ρ

f(z) = a and r ∈ R, then

f(z)(1− z/ρ)r = a(1− z/ρ)r + o((1 − z/ρ)r).

5. The Average Number of State Mergings

5.1. Regular expressions with ε as a partial derivative

Since Apd(α) is a quotient of the Glushkov automaton, we know that it has at most

|α|Σ +1 states. But this upper bound is reached if and only if, at every step during

the computation of π(α), all unions are disjoint. There are however two cases in

which this clearly does not happen. Whenever ε ∈ π(β) ∩ π(γ),

|π(β + γ)| = |π(β) ∪ π(γ)| ≤ |π(β)| + |π(γ)| − 1, (8)
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and also

|π(βγ⋆)| = |π(β)⊙ γ⋆ ∪ π(γ⋆)| = |π(β)⊙ γ⋆ ∪ π(γ)⊙ γ⋆|
≤ |π(β)|+ |π(γ)| − 1. (9)

In this section we will estimate the number of non-disjoint unions formed dur-

ing the computation of π(α) that are due to either one of the above cases. This

corresponds to the merging of states in the Glushkov automaton. Notice that there

might be additional mergings resulting from other identical elements in the support

of the regular expressions. Therefore our estimation is only a lower bound of the

actual number of state mergings, that turns out to be surprisingly tight as shown

in Section 6.

Example 7. In order to illustrate the effect of ε being a partial derivative of a

subexpression, we consider the marked version of τ , τ = (a1 + b2)(a
⋆
3 + b4a

⋆
5 + b⋆6)

⋆.

In Apos(τ) each position corresponds to a state. Now, note that, for instance, one

has

π(a1 + b2) = π(a1) ∪ π(b2) = {ε} ∪ {ε} = {ε},
and

π(b4a
⋆
5) = π(b4)⊙ a⋆5 ∪ π(a5)⊙ a⋆5 = {ε} ⊙ a⋆5 ∪ {ε} ⊙ a⋆5.

These two cases originate the mergings of states 1 and 2, as well as 4 and 5 of

Apos(τ).

There is another state merging that is due to neither of the above cases. In fact,

π(a⋆3 + b4a
⋆
5) = π(a3)⊙ a⋆3 ∪ π(b4)⊙ a⋆5 = {ε} ⊙ a⋆3 ∪ {ε} ⊙ a⋆5.

Since the Apd(τ) is computed for the unmarked τ , there is also the merging of states

3 and 4. This is not the case for Apd(τ ), as can be seen in the following diagrams:

0 1, 2

3, 4, 5

6

a, b
ba, b

a, b

b

a, b

b
0 1, 2

3

6

4, 5
a, b

b
a

b

b
b a

a, b

b

a

b

a

b

Apd(τ) Apd(τ )

As this example suggests, the mergings of states that we consider in the compu-

tation of the lower bound correspond to mergings that arise when obtaining Apd(α)

from Apos(α).

From now on, α will denote regular expressions given in (1), but without ∅,
and its generating function, Rk(z) is given by (2). As mentioned, the number of
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mergings for an expression α depends on the number of subexpressions with ε in

its support. We will estimate this number first. The grammar

απε
:= σ ∈ Σ | απε

+ α | απε
+ απε

| α · απε
| απε

· ε

generates the set of regular expressions for which ε ∈ π(απε
), that is denoted by

Rπε
. The remaining regular expressions, that are not generated by this grammar,

are denoted by απε
.

The generating function for Rπε
, Rπε,k(z), satisfies

Rπε,k(z) = kz + zRπε,k(z)Rk(z) + z (Rk(z)−Rπε,k(z))Rπε,k(z)

+ zRk(z)Rπε,k(z) + z2Rπε,k(z),

which is equivalent to

zRπε,k(z)
2 −

(

z2 + 3zRk(z)− 1
)

Rπε,k(z)− kz = 0,

and from which one gets

Rπε,k(z) =

(

z2 + 3zRk(z)− 1
)

+

√

(z2 + 3zRk(z)− 1)
2
+ 4kz2

2z
. (10)

One has

8zRπε,k(z) = −b(z)− 3
√

∆k(z) +

√

ak(z) + 6b(z)
√

∆k(z) + 9∆k(z), (11)

with

ak(z) = 16z4 − 24z3 + (64k + 1)z2 + 6z + 1

b(z) = −4z2 + 3z + 1
(12)

and ∆k(z) as in (2). Using the binomial theorem, one easily sees that

√

ak(z) + 6b(z)
√

∆k(z) + 9∆k(z)=
√

ak(z)

(

1 + 6
b(z)

ak(z)

√

∆k(z) +
9

ak(z)
∆k(z)

)
1

2

=
√

ak(z) + 3
b(z)
√

ak(z)

√

∆k(z) + o
(

∆k(z)
1

2

)

,

and therefore

8zRπε,k(z) = −b(z) +
√

ak(z) + 3

(

b(z)
√

ak(z)
− 1

)

√

∆k(z) + o
(

∆k(z)
1

2

)

.

Using the fact that
√

∆k(z) =
√

(7 + 8k)ρk(z − ρ̄k)
√

1− z/ρk,

and that
√

(7 + 8k)ρk(ρk − ρ̄k) =
√

2− 2ρk,
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together with Proposition 1 in [13] and Lemma 6 above, one gets

[zn]Rπε,k(z) ∼
3

16
√
π

(

1− b(ρk)
√

ak(ρk)

)

√

2(1− ρk) ρ
−(n+1)
k n−3/2. (13)

Therefore

[zn]Rπε,k(z)

[zn]Rk(z)
∼ 3

2

(

1− b(ρk)
√

ak(ρk)

)

. (14)

Note that lim
k→∞

ρk = 0, lim
k→∞

ak(ρk) = 9 and lim
k→∞

b(ρk) = 1, and so the asymptotic

ratio of regular expressions with ε as a derivative approaches 1 as k → ∞.

5.2. The generating function of mergings

Let i(α) be the number of non-disjoint unions appearing, due to (8) or (9), during

the computation of π(α), α ∈ R. These correspond to state mergings in Glushkov

automata. Splitting the regular expressions into the disjoint classes απε
and απε

,

i(α) verifies

i(ε) = 0

i(σ) = 0

i(απε
+ απε

) = i(απε
) + i(απε

) + 1

i(απε
+ απε

) = i(απε
) + i(απε

)

i(απε
+ α) = i(απε

) + i(α)

i(απε
· α⋆

πε
) = i(απε

) + i(απε
) + 1

i(απε
· α⋆

πε
) = i(απε

) + i(α⋆
πε
)

i(απε
· α) = i(απε

) + i(α)

i(α⋆) = i(α),

where α⋆
πε

denotes regular expressions that are not of the form α⋆
πε
. Clearly, the

generating function for these expressions is Rε⋆,k(z) = Rk(z)− zRπε,k(z).

The cost generating function of the mergings, Ik(z), can now be obtained from

these equations by adding the contributions of each single one of them. These con-

tributions can be computed as here exemplified for the contribution of the regular

expressions of the form (απε
+ απε

):
∑

(απε
+απε

)

i(απε
+ απε

)z|(απε
+απε

)| = z
∑

απε

∑

απε

(i(απε
) + i(απε

) + 1)z|απε
|z|απε

|

= z
∑

απε

∑

απε

(i(απε
) + i(απε

))z|απε
|z|απε

|

+ z
∑

απε

∑

απε

z|απε
|z|απε

|

= 2zIπε,k(z)Rπε,k(z) + zRπε,k(z)
2,

where Iπε,k(z) is the generating function for the mergings coming from απε
.
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Applying this technique to the remaining cases, we have

Ik(z) = 2zRπε,k(z)Iε,k(z) + zRπε,k(z)
2

+zRπε,k(z)Iπε,k(z) + zRπε,k(z)Iπε,k(z)

+zRπε,k(z)Ik(z) + zRk(z)Iπε,k(z)

+z2(2Rπε,k(z)Iπε,k(z) +Rπε,k(z)
2)

+zRπε,k(z)Iπ⋆
ε
,k(z) + zRπ⋆

ε
,k(z)Iπε,k(z)

+zRπε,k(z)Ik(z) + zRk(z)Iπε,k(z)

+zIk(z).

Using Rπ⋆
ε
,k(z) = Rk(z) − zRπε,k(z), Rπε,k(z) = Rk(z) − Rπε,k(z) and the same

relation for Ik(z), we obtain

Ik(z)(1− z) = 4zRk(z)Ik(z) + zRπε,k(z)
2 + z2Rπε,k(z)

2.

From (2), we finally get

Ik(z) =
(z + z2)Rπε,k(z)

2

√

∆k(z)
. (15)

The asymptotic value of the coefficients of this generating function can now be

computed using (11), from which one gets (for any 0 < δ < 1
2 )

64z2Rπε,k(z)
2 = ak(z) + b(z)2 − 2b(z)

√

ak(z) + o
(

∆k(z)
δ
)

.

Since

1
√

∆k(z)
=

1√
2− 2ρk

√

1− z/ρk
+ o

(

1
√

1− z/ρk

)

,

Lemma 6 and Proposition 5, yield

[zn]Ik(z) ∼
1 + ρk
64

(

ak(ρk) + b(ρk)
2 − 2b(ρk)

√

ak(ρk)
)

√
π
√
2− 2ρk

ρ
−(n+1)
k n−1/2. (16)

Table 1 exhibits the ratio between the approximation given by this computation

and the actual coefficients of the power series of Ik(z), for several values of k and

n.

From (3) and (16) one easily gets the following asymptotic estimate for the

average number of mergings

[zn]Ik(z)

[zn]Rk(z)
∼ λk n, (17)

where

λk =
(1 + ρk)

16(1− ρk)

(

ak(ρk) + b(ρk)
2 − 2b(ρk)

√

ak(ρk)
)

.
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Table 1. Accuracy of the approximation.

n = 10 20 50 100 200 400

k = 2 1.34 1.14 1.05 1.03 1.01 1.01
k = 3 1.35 1.12 1.05 1.02 1.01 1.01
k = 5 1.38 1.12 1.04 1.02 1.01 1.01
k = 10 — 1.13 1.04 1.02 1.01 1.01
k = 20 — — 1.04 1.02 1.01 1.01
k = 50 — — — 1.02 1.01 1.01
k = 100 — — — — 1.01 1.04

Using again the fact that lim
k→∞

ρk = 0, lim
k→∞

ak(ρk) = 9 and lim
k→∞

b(ρk) = 1, one gets

that

lim
k→∞

λk =
1

4
.

This means that, for a regular expression of size n, the average number of state

mergings is, asymptotically, about n
4 .

In order to obtain a lower bound for the reduction in the number of states of

the Apd automaton, as compared to the ones of the Apos automaton, it is enough

to compare the number of mergings for an expression α with the number of letters

in α. From (5) and (17) one gets

[zn]Ik(z)

[zn]Lk(z)
∼ 1− ρk

4kρ2k
λk = ιk. (18)

It is easy to see that

lim
k→∞

ιk = lim
k→∞

1− ρk
4kρ2k

λk =
1

2
.

In other words, asymptotically, the average number of states of the Apd automaton

is about one half of the number of states of the Apos automaton, and about one

quarter of the size of the corresponding regular expression, by (7). As shown in the

last two columns of Table 2 the actual values are close to these limits already for

small alphabets.

6. Comparison with Experimental Results

In order to compare our estimates with the actual number of states in a Apd au-

tomaton we ran some experiments.

We used the FAdo library [1, 6], that includes algorithms for computing the

Glushkov automaton and the partial derivatives automaton corresponding to a given

regular expression. For the results to be statistically significant, regular expressions

must be uniformly random generated. The FAdo library implements the recursive

method described by Mairson [11] for the uniform random generation of context-

free languages. The random generator has as input a grammar and the size of the

words to be generated. To obtain regular expressions uniformly generated in the
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Table 2. Experimental results for uniform random generated regular expressions.

k |α| |α|Σ |δpos| |PD| |δpd| |PD| Γ |α|Σ
|α|

λk ιk

2 1000 276 3345 187 1806 190 0.323 0.276
0.084 0.304

2 2000 553 7405 374 3951 380 0.324 0.277

3 1000 318 2997 206 1564 208 0.352 0.318
0.107 0.337

3 2000 638 6561 410 3380 416 0.357 0.319

5 1000 364 2663 223 1339 226 0.387 0.364
0.135 0.372

5 2000 728 5535 446 2768 451 0.387 0.364

10 1000 405 2203 236 1079 238 0.417 0.405
0.168 0.409

10 2000 809 4616 471 2235 475 0.418 0.405

20 1000 440 1842 245 875 246 0.443 0.44
0.192 0.435

20 2000 880 3735 489 1768 492 0.444 0.44

30 1000 453 1676 247 796 248 0.455 0.453
0.203 0.447

30 2000 906 3380 496 1603 498 0.453 0.453

50 1000 466 1516 250 718 251 0.464 0.466
0.214 0.459

50 2000 933 3065 499 1441 500 0.465 0.467

100 — — — — — — — — 0.225 0.471

1000 — — — — — — — — 0.242 0.491

size of the syntactic tree (i.e. parentheses not counted), a prefix notation version

of the grammar (1) was used. For each size, n, samples of 1000 regular expressions

were generated. Table 2 presents the average values obtained for n ∈ {1000, 2000}
and k ∈ {2, 3, 5, 10, 20, 30, 50}, where Γ = |α|Σ−|PD|

|α|Σ , and the two last columns give

the asymptotic ratios obtained in (17) and (18) for the corresponding values of k.

As can be seen from the columns with bold entries, the asymptotic averages

obtained with the analytic methods are very close to the values obtained experi-

mentally. In general, even for small values of n, the ratio of the number of states of

Apd to the number of states of Apos coincide (within an error of less than 3%) with

our (asymptotic) estimates. These results indicate that occurrences of ε in the set

of partial derivatives are the main reason for a smaller number of states in the Apd

automaton, when compared with the one in the Apos automaton. This is supported

by comparing the column containing the number of states of Apd (|PD|) with the

one containing those of its marked version (|PD|).

7. Final Remarks

In this paper we studied, using analytic methods, the average number of states of

partial derivative automata. We proved this number to be, on average, half the

number of states when considering the Glushkov automata case. It is a subject for

future research to study if an approach similar to the one applied here can be used

to estimate the average number of transitions of Apd. According to Table 2, this

number also seems to be half the number of transitions of Apos. At first sight, one
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would expect that the use of alternative grammars for the generation of regular

expressions, with less redundancy, such as the ones presented by Lee and Shallit

[10], would lead to different results. However, experimental studies do not support

this expectation, since they do not show significant differences from the results here

presented.
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