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Abstract. Kleene algebra with tests (KAT) is an equational system that
extends Kleene algebra, the algebra of regular expressions, and that is
specially suited to capture and verify properties of simple imperative
programs. In this paper we study two constructions of automata from
KAT expressions: the Glushkov automaton (Apos), and a new construc-
tion based on the notion of prebase (equation automata, Aeq). Contrary
to other automata constructions from KAT expressions, these two con-
structions enjoy the same descriptional complexity behaviour as their
counterparts for regular expressions, both in the worst-case as well as in
the average-case. In particular, our main result is to show that, asymp-
totically and on average the number of transitions of the Apos is linear
in the size of the KAT expression.

1 Introduction

Kleene algebra with tests (KAT) [11] is an equational system for propositional
program verification that combines Boolean algebra (BA) with Kleene algebra
(KA), the algebra of the regular expressions. The equational theory of KAT is
PSPACE-complete and can be reduced to the equational theory of KA, with an
exponential cost [7, 14]. Several automata constructions from KAT expressions
have been proposed in order to obtain feasible decision procedures for KAT ex-
pressions equivalence [12, 18, 13, 17, 1]. Regular sets of guarded strings [10] are
the standard models for KAT (as regular languages are for KA) [12]. A coal-
gebraic approach based on the notion of (partial) derivatives and automata on
guarded strings were developed by Kozen [13], and implemented, with slightly
modifications, by Almeida et al. [1]. Silva [17] presented yet another automata
construction, extending for KAT the Glushkov construction, well known for the
conversion of regular expressions to nondeterministic finite automata [9]. All
the constructions of automata on guarded strings, with the exception of Silva’s,
induce an exponential blow-up on the number of states/transitions of the au-
tomata. This is due to the use of all valuations of the boolean expressions that
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occur in a KAT expression, and also induces an extra exponential factor when
testing the equivalence of two KAT expressions. In this paper, we present a
new construction to obtain an automaton from a KAT expression, adapting the
Mirkin construction of an equation automaton [15]. For regular expressions, this
construction coincides with Antimirov’s partial derivative automaton [5], that it
is known to be a quotient of the Glushkov automaton [6]. The number of states
of the Glushkov automaton equals to the number of occurrences of alphabetic
symbols in the regular expression, and its number of transitions is, in the worst-
case, quadratic in that number. Herein, we also observe that, in the worst-case,
the number of transitions of the the Glushkov automaton is quadratic in the size
of the KAT expression. Nicaud [16] and Broda et al. [2, 4] studied the average
size of these two automata for regular languages, using the framework of analytic
combinatorics. Asymptotically, the average size of the Glushkov automaton is
linear in the size of the regular expression, and the size of the equation (par-
tial derivative) automaton is half that size. We show that similar results hold
for their analogue constructions for KAT expressions. The main outcome is the
asymptotical linearity of the average number of transitions of the Glushkov au-
tomaton, i.e. for KAT expressions of size n it is Θ(n). This also provides an upper
bound for the number of transitions of the equation automaton. These results
come as a surprise, due to the bad behaviour of other automata constructions
from KAT expressions, and can lead to more efficient decision procedures for KAT
expressions equivalence. Note that the equation automaton can be more suitable
to use in decision procedures based on coalgebraic methods, due to the fact that
states correspond to combinations of subexpressions of the initial expressions.

2 KAT expressions, Automata, and Guarded Strings

Let P = {p1, . . . , pk} be a non-empty set of program symbols and T = {t1, . . . , tl}
be a non-empty set of test symbols. The set of boolean expressions over T to-
gether with negation, disjunction and conjunction, is denoted by BExp, and the
set of KAT expressions with disjunction, concatenation, and Kleene star, by Exp.
The abstract syntax of KAT expressions, over an alphabet P∪T, is given by the
following grammar, where p ∈ P and t ∈ T,

BExp : b → 0 | 1 | t | ¬b | b+ b | b · b (1)

Exp : e → p | b | e+ e | e · e | e⋆. (2)

As usual, we omit the operator · whenever it does not give rise to any ambiguity.
The size of a KAT expression e, denoted by |e|, is the number of symbols in
the syntactic tree of e. The set At, of atoms over T, is the set of all boolean
assignments to all elements of T, At = {x1 · · ·xl | xi ∈ {ti, ti}, ti ∈ T}.

Now, the set of guarded strings over P and T is GS = (At·P)⋆ ·At. Regular sets
of guarded strings form the standard language-theoretic model for KAT [12]. For
x = α1p1 · · · pm−1αm, y = β1q1 · · · qn−1βn ∈ GS, where m,n ≥ 1, αi, βj ∈ At and
pi, qj ∈ P, we define the fusion product x ⋄ y = α1p1 · · · pm−1αmq1 · · · qn−1βn, if



αm = β1 and undefined, otherwise. For sets X,Y ⊆ GS, X ⋄ Y is the set of all
x ⋄ y such that x ∈ X and y ∈ Y . Let X0 = At and Xn+1 = X ⋄Xn, for n ≥ 0.

Given a KAT expression e we define GS(e) ⊆ GS inductively as follows:

GS(p) = {αpβ | α, β ∈ At }
GS(b) = {α | α ∈ At ∧ α ≤ b }

GS(e1 + e2) = GS(e1) ∪ GS(e2)

GS(e1 · e2) = GS(e1) ⋄ GS(e2)
GS(e⋆1) = ∪n≥0GS(e1)

n,

where α ≤ b if α → b is a propositional tautology.

Example 1. Consider e = t1 + (¬t1)(t2p)∗, where P = {p} and T = {t1, t2}.
Then, At = {t1t2, t1t2, t1t2, t1t2} and

GS(e) = GS(t1) ∪ GS(¬t1) ⋄ GS((t2p)∗)
= {t1t2, t1t2} ∪ {t1t2, t1t2} ∪ { t1(t2p)

nα | n ≥ 1, α ∈ At }
Given two KAT expressions e1 and e2, we say that they are equivalent, and write
e1 = e2, if GS(e1) = GS(e2).

A (non-deterministic) automaton over the alphabets P and T is a tuple A =
〈S, s0, o, δ〉, where S is a finite set of states, s0 ∈ S is the initial state, o : S →
BExp is the output function, and δ ⊆ 2S×(BExp×P)×S is the transition relation.
A guarded string α1p1 . . . pn−1αn, with n ≥ 1, is accepted by the automaton A
if and only if there is a sequence of states s0, s1, . . . , sn−1 ∈ S, where s0 = s,
and, for i = 1, . . . , n − 1, one has αi ≤ bi for some (si−1, (bi, pi), si) ∈ δ, and
αn ≤ o(sn−1). The set of all guarded strings accepted by A is denoted by GS(A).

Formally, we define L : S −→ GS −→ {0, 1}, by structural induction on
x ∈ GS as follows.

L(s)(α) =







1 if α ≤ o(s),

0 otherwise.
L(s)(αpx) =















1 if (s, (b, p), s′) ∈ δ for s′ ∈ S,

b s.t. α ≤ b, and L(s′)(x) = 1,

0 otherwise.

Given s ∈ S, let GS(s) = { x ∈ GS | L(s)(x) = 1 }. Then, GS(A) = GS(s0). We
say that a KAT expression e ∈ Exp is equivalent to an automaton A, and write
e = A, if GS(A) = GS(e).

In the next two sections we present two different constructions of automata
that are equivalent to a given KAT expression.

3 The Glushkov Automaton

The definition of the Glushkov automaton for KAT expressions follows closely the
one given by Silva [17]. Let ẽ denote the KAT expression obtained by considering
the number of elements of P occurring in e, marking each one with its appearance
number, that is called its position. The same notation is used to denote the
removal of the markings, i.e., ˜̃e = e. The set of positions in an expression e is
denoted by pos(e). Note that this marking does not apply to test symbols, which
always remain unchanged.



Example 2. Consider e = t1p(pq
⋆t2+t3q)

⋆, where P = {p, q} and T = {t1, t2, t3}.
Then, ẽ = t1p1(p2q

⋆
3t2 + t3q4)

⋆.

Definition 1. We recursively define the functions first, follow, last, and out ac-
cording to grammar (2)

first : Exp −→ 2BExp×P

first(p) = {(1, p)}

first(b) = ∅

first(e⋆) = first(e),

first(e1 + e2) = first(e1) ∪ first(e2)

first(e1 · e2) =







first(e1) if out(e1) = 0

first(e1) ∪ out(e1) ·1 first(e2) otherwise.

last : Exp −→ 2P×BExp

last(p) = {(p, 1)}

last(b) = ∅

last(e⋆) = last(e),

last(e1 + e2) = last(e1) ∪ last(e2)

last(e1 · e2) =







last(e2) if out(e2) = 0

last(e2) ∪ last(e1) ·2 out(e2) otherwise.

follow : Exp −→ 2P×BExp×P

follow(p) = ∅

follow(b) = ∅

follow(e1 + e2) = follow(e1) ∪ follow(e2)

follow(e1 · e2) = follow(e1) ∪ follow(e2)∪

last(e1)⊗ first(e2)

follow(e⋆) = follow(e) ∪ last(e)⊗ first(e).

out : Exp −→ BExp

out(p) = 0

out(b) = b

out(e1 + e2) = out(e1) + out(e2)

out(e1 · e2) = out(e1) · out(e2)

out(e⋆) = 1.

where, for X ⊆ BExp× Exp, Y ⊆ Exp× BExp and b ∈ BExp, we have b ·1 X =
{ (bb′, p) | (b′, p) ∈ X }, Y ·2 b = { (b′b, p) | (p, b′) ∈ Y } and Y ⊗ X =
{ (p, bb′, p′) | (p, b) ∈ Y, (b′, p′) ∈ X }, with the caveat that 0 · b = b · 0 = 0 and
1 + b = b+ 1 = 1.

Informally, given e ∈ Exp, the elements of first(e) are pairs (b, p) such that αpx ∈
GS(e) and α ≤ b; the elements of last(e) are pairs (p, b) such that xpα ∈ GS(e)
and α ≤ b; the elements of follow(e) are triplets (p, b, q) such that xpαqy ∈ GS(e)
and α ≤ b; and out(e) ∈ BExp corresponds to the values α ∈ At such that α ≤ e.

Example 3. Consider the expression ẽ of Example 2. One has,

first(ẽ) = {(t1, p1)}}
last(ẽ) = {(p1, 1), (p2, t2), (q3, t2), (q4, 1)}

follow(ẽ) = {(p1, 1, p2), (p1, t3, q4), (p2, 1, q3), (p2, t2, p2), (p2, t2t3, q4)
(q3, 1, q3), (q3, t2, p2), (q3, t2t3, q4), (q4, 1, p2), (q4, t3, q4)}

out(ẽ) = out(t1) · out(p1) · out((p2q⋆3t2 + t3q4)
⋆) = t1 · 0 · 1 = 0

Definition 2 (Glushkov Automaton). For e ∈ Exp, we define the Glushkov
automaton Apos(e) = 〈pos(e) ∪ {0}, 0, o, δpos〉, where o(0) = out(ẽ), o(i) = b if



i > 0 and (pi, b) ∈ last(ẽ), and o(i) = 0, otherwise; and

δpos = { (0, (b, p), j) | (b, pj) ∈ first(ẽ), p = p̃j }
⋃

{ (i, (b, p), j) | (pi, b, pj) ∈ follow(ẽ), p = p̃j } .
Analogously to what happens for regular expressions, given an expression e

the Glushkov automaton Apos(e) has exactly |e|P + 1 states, where |e|P denotes
the number of occurrences of program symbols (elements of P) in the expression
e. This means that the boolean parts of an expression do not affect the number
of states in its corresponding Glushkov automaton, contrary to what happens
in other constructions, cf. [12, 13]. Furthermore, the number of transitions of
Apos(e) is in the worst-case O(|e|2P). This results from the fact that, for every
marked expression ẽ and for every marked program symbols pj and pi, there
is at most one pair (b, pj) ∈ first(ẽ) and at most one pair (pj , b

′) ∈ last(ẽ), for
b, b′ ∈ BExp; and there is at most one tuple (pi, b, pj) ∈ follow(ẽ), for b ∈ BExp.

Example 4. Consider again the expression e of Example 2 and the functions
computed in Example 3. In this case, one has pos(e) = {1, 2, 3, 4} and theApos(e),
is the following:

0 1 2 3

4

1 t2 t2

1

(t2, p)

(1, q)

(t3, q)

(t1, p)

(t3, q)

(1, p) (1, q)

(t2, p)
(t2t3, q)(1, p)

(t2t3, q)

Proposition 1. [17, Th. 3.2.7] For every KAT expression, e ∈ Exp, one has
GS(Apos(e)) = GS(e).

4 The Equation Automaton

In this section, we give a definition of the equation automaton for a KAT expres-
sion, extending the notion of prebase of a regular expression due to Mirkin [15].
Here we do not consider the equivalence of this construction to the partial deriva-
tive automata [13, 1], since KAT derivatives are considered with respect to αp,
(α ∈ At) and we want to avoid the possible exponential blow-up associated to
the set of atoms.

Definition 3. Given e ∈ Exp, a set of non-null expressions E = {e1, . . . , en} ⊆
Exp is called a support of e, if the following system of equations holds:

e ≡ e0 = P01e1 + · · ·+ P0nen + out(e0)

e1 = P11e1 + · · ·+ P1nen + out(e1)
...

en = Pn1e1 + · · ·+ Pnnen + out(en),

(3)



where Pij =
∑k

r=1 bijrpr, for 0 ≤ i, j ≤ n. For the components bp of a sum Pij,
we write bp ≺ Pij. If E is a support of e, then the set E0 = E ∪ {e} is called a
prebase of e.

Note that, if E is a support of e, we may have e ∈ E. The system of equa-
tions (3) can be written in matrix form E0 = PE+O(E0), where P is the (n+1)×n

matrix with entries Pij , and E, E0 and O(E0) are, respectively, the column ma-
trices

E =











e1
...

en











, E0 =











e0
...

en











and O(E0) =











out(e0)
...

out(en)











.

In the following, we will arbitrarily interchange the matrix and the set nota-
tion for the above values. Considering the notion of KAT expression equivalence,
we have the following lemma.

Lemma 1. Given e ∈ Exp and E0 = {e = e0, e1, . . . , en} a prebase of e, then

a) α ∈ GS(ei) iff α ≤ out(ei);
b) αpx ∈ GS(ei) iff there are j ∈ {0, . . . , n} and b ∈ BExp, such that bp ≺ Pij,

α ≤ b, and x ∈ GS(ej).

Given a prebase E0 = {e = e0, e1, . . . , en}, an NFA can be defined by

AE0
(e) = 〈{e = e0, e1, . . . , en}, e, out, δ〉, (4)

where
δ = { (ei, (bijr, pr), ej) | 0 ≤ i, j ≤ n, 1 ≤ r ≤ k }. (5)

Using Lemma 1, it is easy to see that GS(AE0
(e)) = GS(e).

Definition 4 (Equation Automaton). For e ∈ Exp, we define the equation
automaton Aeq(e) = 〈{e} ∪ π(e), e, out, δeq〉 with δeq = { (ei, (b, p), ej) | bp ≺
Pij ∈ P(e) } and where π : Exp → 2Exp is defined by induction on the structure
of e as follows:

π(p) = {1}
π(b) = ∅

π(e+ f) = π(e) ∪ π(f)

π(e · f) = π(e)f ∪ π(f)

π(e⋆) = π(e)e⋆,

(6)

and P(e) is a (n + 1) × n matrix with entries Pij ∈ Exp, n = |π(e)|, and which
is inductively defined on the structure of e by

P(p) =





1p

0



 P(b) = 0 P(e+ f) =









P(e)
P(f)

∣

∣

0

0

0 P(f)
∣

∣

1..m









P(ef) =





P(e) O(π(e))⊙ P (f)
∣

∣

0

0 P(f)
∣

∣

1..m



 P(e⋆) = P (e) +





0

O(π(e))⊙ P (e)
∣

∣

0



 ,

(7)



where P(f) is an (m+ 1)×m matrix, for some m > 0; P (f)
∣

∣

0
denotes the first

row of matrix P(f); P (f)
∣

∣

1..m
denotes the matrix P(f) without the first row; and

the ⊙ operator is defined as follows









x1

...

xn









⊙









y1

...

ym









=









x1y1 . . . x1ym

...
...

xny1 . . . xnym









.

Note, that the above definition of π follows closely the one for regular expressions
by Mirkin. Analogously, it can be easily shown that for a KAT expression e, one
has |π(e)| ≤ |e|P. Consequently, the number of states in the equation automaton
of an expression e is |π(e)∪{e}| ≤ |e|P+1, thus smaller or equal than the number
of states of the Glushkov automaton.

Example 5. For the expression e = t1pe
⋆
1 of Example 2, where e1 = pq⋆t2 + t3q.

One has π(e) = {q⋆t2e⋆1, e⋆1} and the Aeq(e) is the following:

t1pe
⋆
1 e⋆1 q⋆t2e

⋆
1

1

t2

(t2, p), (1, q)

(t3, q)

(t1, p) (1, p)

(t2t3, q)

One has |e|P + 1 = 5, while the number of states of Aeq(e) is |π(e) ∪ {e}| = 3.

In order to show that the equation automaton Aeq(e) is equivalent to e it is
enough to show that the function π is a support of e.

Proposition 2. Given e ∈ Exp, one has GS(Aeq(e)) = GS(e).

Proof (Sketch). By Lemma 1, it is enough to show that Aeq(e) = AE0
(e), where

E0 is the prebase {e} ∪ π(e). The proof that π(e) is a support proceeds by
induction on the structure of e and follows the lines of Mirkin’s proof. The
definition of the matrix P ensures that the system of equations (3) is satisfied
by {e} ∪ π(e).

5 Average Size of Glushkov and Equation Automata

In this section, we estimate the asymptotic average size of the Glushkov and
equation automata. This is done by the use of the standard methods of analytic
combinatorics as expounded by Flajolet and Sedgewick [8]. These apply to gen-
erating functions A(z) =

∑

n anz
n for a combinatorial class A with an objects of

size n, denoted by [zn]A(z), and also bivariate functions C(u, z) =
∑

α uc(α)z|α|,
where c(α) is some measure of the object α ∈ A.

In order to apply this method, it is necessary to have an unambiguous descrip-
tion of the objects of the combinatorial class. One can see that the grammar (2)
for KAT expressions is ambiguous. But, we can use the following non-ambiguous



grammar for KAT expressions, where expressions AExp correspond to KAT ex-
pressions with at least one program symbol p ∈ P. For simplicity, we exclude
expressions that contain subexpressions of the form b⋆, as their semantics corre-
spond to At and thus are equivalent to 1.

BExp : b → 0 | 1 | t | ¬b | b+ b | b · b (8)

AExp : a → p | a+ a | a+ b | b+ a | a · a | a · b | b · a | a⋆ (9)

Exp : e → b | a. (10)

From the definitions above, one can compute the generating functions Bl(z),
Ak,l(z), and Ek,l(z), for the number of boolean expressions BExp, expressions
AExp, and KAT expressions Exp, respectively. However, it is easy to see that Bl(z)
and Ek,l(z) coincide with the generating function of standard regular expressions.
Considering the following grammar for regular expressions with an alphabet Σ
of size m,

r → 0 | 1 | σ ∈ Σ | r + r | r · r | r⋆, (11)

its generating function is given by

Rm(z) =
1− z −

√

∆m(z)

4z
, where ∆m(z) = 1− 2z − (15 + 8m)z2. (12)

We have Bl(z) = Rl(z) and Ek,l(z) = Rk+l(z). The first equality is due to
the similarity of the grammars (8) and (11), where one has the negation operator
and the other, the star operator. This fact and the exclusion of expressions of
the form b⋆ leads to the second equality. As a consequence, we can easily adapt
most of the results obtained for regular expressions [16, 2, 4] to KAT expressions.

Using the technique presented in Section 5 of Broda et al. [3] applied to (12),
the asymptotic estimates for the number of regular expressions of size n is

[zn]Rm(z) ∼
√
ρm

4
√
2m+ 4

4
√
π

ρ−(n+1)
m (n+ 1)−

3
2 . (13)

where ρm = −1+2
√
2m+4

15+8m is the radius of convergence of Rm(z). This estimate dif-
fers from the one presented by Nicaud, and exhibits a slightly faster convergence
in experimental tests.

Average State Complexity of the Glushkov Automaton. The generating function
for the number of alphabetic symbols in regular expressions is Lm(z) = mz√

∆m(z)

and [zn]Lm(z) ∼ m
2
√
ρmπ 4

√
2m+4

ρ
−(n−1)
m n− 1

2 . For regular expressions, this implies

that, as the alphabet size grows, the average number of alphabetic symbols in
a regular expression is 1

2 its size. In KAT expressions we can estimate both
the number of test symbols in boolean expressions, as well as, the number of
program symbols in KAT expressions. Let Tl(z) and Pk,l(z) be their respective
generating functions. We have, Tl(z) = Ll(z) and Pk,l =

k
k+lLk+l(z). Therefore,



the probability, for a uniform distribution, that a symbol in a boolean expression
of size n is a test symbol is

[zn]Tl(z)

n [zn]Bl(z)
∼

(

4 l + 8−
√
2 l + 4

)

l

(15 + 8 l) (l + 2)

(

1 +
1

n

)3/2

(14)

and the probability that a symbol in a KAT expression of size n is a program
symbol is

[zn]Pk,l(z)

n [zn]Ek,l(z)
∼

(

4(k + l) + 8−
√

2(k + l) + 4
)

k

(15 + 8 (k + l)) (k + l + 2)

(

1 +
1

n

)3/2

= ηk,l,n. (15)

The average number of test symbols in a boolean expression grows to about
half of their size, as l tends to ∞. The average number of program symbols for
a growing value of k + l tends to 1

2(1+c) , where c = l
k . For instance, if l = k,

l = 2k, and l = 1
2k, this limit is, respectively, 1

4 ,
1
6 , and

1
3 . Furthermore, for any

ratio c, the asymptotic average number of states in Glushkov automata is less
than half the size of the corresponding expressions.

Average State Complexity of the Equation Automaton. Considering Definition 4,
one notes that whenever 1 ∈ π(e)∩π(f), two states are merged into a single one
in π(e + f). Analogously, for π(ef), when 1 ∈ π(e) and f ∈ π(f). These facts
allowed to estimate an upper bound for the reduction of the number of states
in the equation automaton, when compared with the number of states in the
Glushkov automaton [2]. Actually, the presence of boolean expressions does not
affect the computations, so we have exactly the same results for KAT expressions.
Letting Ik,l(z) be the cumulative generating function of the mergings, and using
the results in [2], one has

[zn]Ik,l(z)

[zn]Ek,l(z)
∼ λk,l n, (16)

where λk,l = 1+ρk+l

16(1−ρk+l)

(

ak(ρk+l) + b(ρk+l)
2 − 2b(ρk+l)

√

ak(ρk+l)
)

, ak(z) =

16z4 − 24z3 + (64k + 1)z2 + 6z + 1, and b(z) = −4z2 + 3z + 1. Therefore

[zn]Ik,l(z)

[zn]Pk,l(z)
∼ λk,l

ηk,l,n
. (17)

One can see that, for a fixed value of l this ratio approaches 1
2 , as k grows.

5.1 Average Transition Complexity of the Glushkov Automaton

Now we compute an upper bound for the asymptotic average of the number of
transitions in a Glushkov automaton with respect to the size of the corresponding
KAT expression. As observed before, the number of transitions of Apos(e) is, in
the worst-case, quadratic in |e|P. Below, we show that it is on average linear in



|e|. As the number of transitions must be at least equal to the number of states
minus 1, on average, that number should be Ω(n) for KAT expressions of size n.

By Definition 2, the number of transitions is the sum of the sizes of the sets
first and follow. In order to obtain a sufficiently accurate upper bound, we have
to identify the KAT expressions e such that out(e) = 0. We begin to define the
grammars that generate, respectively, “guaranteed” tautologies b1, “guaranteed”
falsities b0, and, based on these, KAT expressions e0 such that out(e0) = 0. As
usual, e0 denotes an KAT expression that is not generated by this grammar, etc.

b1 → 1 | ¬b0 | b1 + b | b1 + b1 | b1 · b1
b0 → 0 | ¬b1 | b0 + b0 | b0 · b | b0 · b0
a0 → p | a0 + a0 | a0 + b0 | b0 + a0 | a0 · a | a0 · a0 | a0 · b | a0b0 | b0 · a | b0 · a0
e0 → b0 | a0

The corresponding generating functions B1,l(z), B0,l(z), A0,k,l(z), and E0,k,l(z)
satisfy the following equations,

B1,l(z) = z + zB0,l(z) + 2zBl(z)B1,l(z)

B0,l(z) = z + zB1,l(z) + 2zBl(z)B0,l(z)

A0,k,l(z) = kz + 2zAk,l(z)B0,l(z) + 2zA0,k,l(z)Bk,l(z) + 2zA0,k,l(z)Ak,l(z)

E0,k,l(z) = B0,l(z) +A0,k,l(z)

from which we obtain B1,l(z) = B0,l(z) =
Bl(z)
(l+2) , A0,k,l(z) =

kz+2zB0,l(z)Ak,l(z)
1−2zEk,l(z)

.

Finally the generating function for a lower bound of the number of expressions
e such that out(e) = 0 is

E0,k,l(z) =
k(l + 2)z + (1− 2zBl(z))Bl(z)

(l + 2)(1− 2zEk,l(z))
.

Now, we can compute the generating functions of first(e) and last(e), Fk,l(z)
and Sk,l(z), respectively, which coincide with the ones for regular expressions [16],
except that they depend on the function E0,k,l(z),

Fk,l(z) = Sk,l(z) =
kz

1− z − 4zEk,l(z) + zE0,k,l(z)
.

In Definition 1, follow(e) is defined using non-disjoint unions for the case
of e⋆, and that does not allow an exact counting. Broda et al. [4] presented
a new recursive definition without non-disjoint unions which yielded an exact
generating function for the number of transitions of the Glushkov automaton
(for regular expressions). Since E0,k,l(z) corresponds to lower bounds for the
number of expressions e s.t. out(e) = 0, here we use a slightly simplified version
and obtain an upper bound for the size of follow(e). Our approximation Fol(e)
of the follow(e) set is given by the recursive definition below, where there is no



need to distinguish between a and e expressions. We have,

Fol(p) = Fol(b) = ∅
Fol(e+ f) = Fol(e) ∪ Fol(f)

Fol(e · f) = Fol(e) ∪ Fol(f) ∪ last(e)⊗ first(f)

Fol(e⋆) = Fol⋆(e)

(18)

Fol⋆(b) = ∅
Fol⋆(p) = {(p, 1, p)}

Fol⋆(e+ f) = Fol⋆(e) ∪ Fol⋆(f) ∪ Cross(e, f)

Fol⋆(e · f) = Fol⋆(e) ∪ Fol⋆(f) ∪ Cross(e, f)

Fol⋆(e⋆) = Fol⋆(e),

(19)

with Cross(e, f) = last(e)⊗ first(f) ∪ last(f)⊗ first(e). The corresponding gener-
ating functions satisfy the following equations,

Folk,l(z) = 4zFolk,l(z)Ek,l(z) + zFk,l(z)
2 + zFol⋆k,l(z)

Fol⋆k,l(z) = kz + 4zFol⋆k,l(z)Ek,l(z) + 4zFk,l(z)
2 + zFol⋆k,l(z).

Solving these, one gets

Folk,l(z) =
z
(

kz + F 2
k,l(z) (1 + 3z − 4zEk,l(z))

)

1− z − 8zEk,l(z) + 4z2Ek,l(z) + (4zEk,l(z))
2 (20)

By the definition of first(e) it is straightforward to see that the size of this
set is at most |e|P. Consequently, we can ignore the contribution of Fk,l(z) in
the computation of the upper bound for the number of transitions. Concerning
Folk,l(z) it is possible to see, with the help of an algebraic symbolic manipulator,
that this function has the form

Folk,l(z) =
Uk,l(z)

Vk,l(z)∆k,l(z)
,

where Uk,l(z), Vk,l(z) are defined in a neighbourhood of 0 with radius larger
than ρk+l. This shows that z = ρk+l is the singularity of Folk,l(z) closest to the
origin, and there is no other in the circumference |z| = ρk+l. Using the same
technique as exposed in [2, 3], one gets

[zn]Folk,l(z) ∼
ck,l

√

π(2− 2ρk+l)
ρ−n
k+l n

−1/2, (21)

where ck,l is a constant that depends on k and l, through a rather complicated
expression. It turns out that lim

k,l→∞
ck,l√
k+l

= 17
8

√
2 ≃ 3.182.

Using now (13), one obtains



[zn]Folk,l(z)

[zn]Ek,l(z)
∼ 4ck,l√

2− 2ρk+l
4
√
2k + 2l + 4

(

1 +
1

n

)3/2

n. (22)

This means that the average number of transitions per automaton is approx-
imately the size of the original KAT expression.
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