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Abstract. In this paper, the relation between the Glushkov automaton
(Apos) and the partial derivative automaton (Apd) of a given regular
expression, in terms of transition complexity, is studied. The average
transition complexity of Apos was proved by Nicaud to be linear in the
size of the corresponding expression. This result was obtained using an
upper bound of the number of transitions of Apos. Here we present a
new quadratic construction of Apos that leads to a more elegant and
straightforward implementation, and that allows the exact counting of
the number of transitions. Based on that, a better estimation of the
average size is presented. Asymptotically, and as the alphabet size grows,
the number of transitions per state is on average 2.

Broda et al. computed an upper bound for the ratio of the number of
states of Apd to the number of states of Apos, which is about 1

2
for large

alphabet sizes. Here we show how to obtain an upper bound for the
number of transitions in Apd, which we then use to get an average case
approximation. Some experimental results are presented that illustrate
the quality of our estimate.

1 Introduction

The conversion methods of regular expressions into equivalent nondeterministic
finite automata (NFA) are normally divided in two classes depending on whether
ε-transitions are allowed or not in the resulting NFA. Paradigmatic methods of
each class are the Thompson’s and Glushkov’s constructions, respectively. Sev-
eral optimizations and worst-case descriptional and computational complexity
results were obtained for both methods (see Holzer and Kutrib [HK10], and the
works cited therein). Given a regular expression with n letters the size of a ε-
NFA can be, in the worst-case, Θ(n). While the size of a Glushkov automaton
can be Θ(n2), Ω(n log n2) was proved to be a lower bound for the size of a ε-
free NFA. In this context, and for practical purposes, it is useful to carry out
average-case analysis, both for descriptional and computational complexities, of
these methods.
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The framework of analytic combinatorics, by relating the enumeration of
combinatorial objects to the algebraic and complex analytic properties of gen-
erating functions, provides a powerful tool for asymptotic average-case analysis.
Using this framework, Nicaud [Nic09] proved that the average transition com-
plexity of the Glushkov automaton (Apos) of a regular expression α of size n is
Θ(n). This result was obtained using an upper bound of the number of transi-
tions of Apos. Here we present a new quadratic construction of the Apos that
leads to a more elegant and straightforward implementation, and that allows the
exact counting of the number of transitions. Based on that, a better estimation
of the average size is presented. Asymptotically, and as the alphabet size grows,
the number of transitions per state is on average 2.

The partial derivative automaton (Apd) is a quotient of the Apos, and thus
the states of the former can be seen as mergings of states of the latter. In a pre-
vious paper [BMMR11b], we presented a technique for estimating some of those
state mergings. This enabled us, in the framework of analytic combinatorics, to
compute an upper bound for the ratio of the number of states of Apd to the
number of states of Apos, which is about 1

2 for large alphabet sizes. This upper
bound was obtained by estimating the number of regular expressions that have ε
as a partial derivative. In this paper, we use an analogous approach to compute
an upper bound for the number of transitions in Apd, and study its asymptotic
behaviour. As the alphabet size grows, this upper bound tends to the number
of letters of the regular expression, thus it is half the number of transitions in
Apos. The comparison with some experimental results suggests that this upper
bound has an error of less than 15%.

2 Regular Expressions and Automata

In this section we briefly review some basic definitions about regular expressions
and finite automata. For more details, we refer the reader to Kozen [Koz97] or
Sakarovitch [Sak09].

Given an alphabet (set of letters) Σ = {σ1, . . . , σk} of size k, the set R of
regular expressions, α, over Σ is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α+ α) | (α · α) | α? (1)

where the operator · (concatenation) is often omitted. The language associated
to α is denoted by L(α) and defined as usual. The size |α| of α ∈ R is the
number of symbols in α (parentheses not counted); the alphabetic size |α|Σ is its
number of letters. For example, for τ = (a+ b)(a? + ba? + b?)? one has |τ | = 15
and |τ |Σ = 6. We define ε(α) by ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise.
Also, we denote by αε and αε, respectively, the regular expressions such that
ε(αε) = ε and ε(αε) = ∅.
A non-deterministic automaton (NFA) A is a quintuple (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q the transition
relation, q0 the initial state, and F ⊆ Q the set of final states. The size of a
NFA is |Q| + |δ|. For q ∈ Q and σ ∈ Σ, we denote the set {p | (q, σ, p) ∈ δ} by



δ(q, σ), and we can extend this notation to w ∈ Σ?, and to R ⊆ Q. The language
accepted by A is L(A) = {w ∈ Σ? | δ(q0, w) ∩ F 6= ∅}.

2.1 The Glushkov Automaton

The Glushkov, or position, automaton was independently introduced by Glush-
kov [Glu61] and McNaughton and Yamada [MY60]. The states in the Glushkov
automaton, representing a regular expression α, correspond to the positions of
letters in α plus an additional initial state. Let α denote the regular expression
obtained by marking each letter with its position in α. The marked version of
the previous example is τ = (a1 + b2)(a?3 + b4a

?
5 + b?6)?. The same notation is

used to remove the markings, i.e., α = α. Now, let Pos(α) = {1, 2, . . . , |α|Σ}
be the set of positions for α ∈ R, and let Pos0(α) = Pos(α) ∪ {0}. Then, the
construction of the Glushkov automaton is based on the position sets First(α),
Last(α), and Follow(α). These sets can be inductively defined as follows:

First(∅) = First(ε) = ∅
First(σi) = {i}
First(α?) = First(α)

First(α+ β) = First(α) ∪ First(β)

First(αβ) =

{
First(α) ∪ First(β) if ε(α) = ε
First(α) otherwise.

The definition of Last is almost identical and differs only for the case of concate-
nation, which is

Last(αβ) =

{
Last(α) ∪ Last(β) if ε(β) = ε
Last(β) otherwise.

The set Follow can be computed as by

Follow(∅) = Follow(ε) = Follow(σj) = ∅
Follow(α+ β) = Follow(α) ∪ Follow(β)

Follow(αβ) = Follow(α) ∪ Follow(β) ∪ Last(α)× First(β)

Follow(α?) = Follow(α) ∪ Last(α)× First(α).

The Glushkov automaton for α is Apos(α) = (Pos0(α), Σ, δpos, 0, F ), with
δpos = {(0, σj , j) | j ∈ First(α)} ∪ {(i, σj , j) | (i, j) ∈ Follow(α)} and F =
Last(α) ∪ {0} if ε(α) = ε, and F = Last(α), otherwise. Note that the number of
states ofApos(α) is exactly n+1, where n = |α|Σ . On the other hand, the number
of transitions in Apos(α) is in the worst case n2 + n. Consequently, the time-
complexity of any construction algorithm for Apos(α) must be at least O(n2).
Considering the simplicity of the recursive definitions of the position sets used
for the construction of Apos(α), an algorithm of this complexity should not be
hard to find. Nevertheless, a naive implementation leads to a O(n3) algorithm,
such as the one proposed by Berry and Sethi [BS86]. This is due to possibly non-
disjoint unions of sets in the rule for α? in the recursive definition of Follow(α).
To overcome this problem, several techniques for the construction of Apos(α)
were proposed over the years. The first one, of order O(m+n2), where m = |α|,



was proposed by Brüggemann-Klein in 1993 [BK93] and it is primarily based on
the prior transformation of α into star-normal form. Other quadratic, however
sophisticated, algorithms have been introduced in 1996 and 1997, respectively
in [PZC97] and [CP97].

Our goal in the next section, is to present an alternative recursive definition
of Follow(α), that only involves disjoint unions of sets, allowing for simple im-
plementations of that construction in time O(n2). This definition also allows us
to define a cost generating function of the exact number of transitions in the
Glushkov automaton in Section 4.

3 A New Algorithm for Computing Follow(α)

In this section we define a new function E, such that for every marked regular
expression α we have Follow(α) = E(α). This function has the advantage that
all unions in its definition are clearly disjoint. Our definition of E was inspired
by the construction of Apos(α) by Leiss [Lei80] and shows some similarities to
the transformation algorithm of α into star-normal-form by Brüggemann-Klein.
Let E be given by

E(∅) = E(ε) = E(σi) = ∅
E(α+ β) = E(α) ∪ E(β)

E(αβ) = E(α) ∪ E(β) ∪ Last(α)× First(β)

E(α?) = E?(α)

(2)

E?(∅) = E?(ε) = ∅
E?(σi) = {(i, i)}

E?(α+ β) = E?(α) ∪ E?(β) ∪ Cross(α, β)

E?(αβ) =


E?(α) ∪ E?(β) ∪ Cross(α, β) if ε(α) = ε(β) = ε

E?(α) ∪ E(β) ∪ Cross(α, β) if ε(β) = ε

E(α) ∪ E?(β) ∪ Cross(α, β) if ε(α) = ε

E(α) ∪ E(β) ∪ Cross(α, β) otherwise

E?(α?) = E?(α),

(3)

with Cross(α, β) = Last(α)× First(β) ∪ Last(β)× First(α).

Proposition 1. For every regular expression γ we have Follow(γ) = E(γ).

Proof.

The proof follows by induction on the structure of γ.The result is trivially
true for γ = ∅, ε, σi, α + β, αβ. For γ = δ?, it is sufficient to show that one has
Follow(δ) ∪ Last(δ)× First(δ) = E?(δ).



For δ = ∅, δ = ε and δ = σi this equation evaluates to ∅ = ∅, ∅ = ∅ and
{(i, i)} = {(i, i)}, respectively. For δ = α+ β we have

Follow(α+ β) ∪ Last(α+ β)× First(α+ β) =

= (Follow(α) ∪ Last(α)× First(α)) ∪ (Follow(β) ∪ Last(β)× First(β)) ∪
∪ Last(α)× First(β) ∪ Last(β)× First(α) =

= E?(α) ∪ E?(β) ∪ Last(α)× First(β) ∪ Last(β)× First(α) = E?(α+ β).

We illustrate the proof for δ = αβ with the case where ε(α) 6= ε and ε(β) = ε:

Follow(αβ) ∪ Last(αβ)× First(αβ) =

= Follow(α) ∪ Follow(β) ∪ Last(α)× First(β) ∪
∪ Last(α)× First(α) ∪ Last(β)× First(α)

= E?(α) ∪ E(β) ∪ Last(α)× First(β) ∪ Last(β)× First(α) = E?(αβ).

Finally, for δ = α? we have

Follow(α?) ∪ Last(α?)× First(α?) =

= Follow(α) ∪ Last(α)× First(α) ∪ Last(α)× First(α)

= Follow(α) ∪ Last(α)× First(α) = E?(α) = E?(α?). ut

4 Counting the Number of Transitions in the Glushkov
Automaton

Nicaud [Nic09] showed that the average number of transitions in the Glushkov
automaton Apos(α) is O(|α|). However, his computation of the number of tran-
sitions was not exact because the definition used for the Follow function did
not take into account the possible non-disjoint unions of its results. In this sec-
tion, based on the algorithm E we compute the exact number of transitions in
Apos(α), Ek(z), as well as its average cardinality, Tk(z). This is done by the
use of the standard methods of analytic combinatorics as expounded by Flajolet
and Sedgewick [FS08]. These apply to generating functions A(z) =

∑
n anz

n for
a combinatorial class A with an objects of size n, or cost generating functions
C(z) =

∑
α c(α)z|α|, where c(α) is some measure of the object α ∈ A.

In this section we compute and study the cost generating functions Ek(z) and
Tk(z), and their asymptotic behaviours. The other functions used herein, as well
as details on how to obtain them, can be found in the above cited article and in
Broda et al [BMMR11b]. A more detailed description of the below computations
can be found in a companion technical report of this paper [BMMR11a].

4.1 The Average Number of Transitions in Apos(α)

For counting purposes, we will consider regular expressions as defined in (1), but
without ∅. Note that this limitation only excludes the empty language.



The functions that count the cardinalities of First(α), Last(α), and E(α), are
respectively denoted by f(α), l(α), and e(α). Given the definitions of f(α) and
l(α), e(α) satisfies the following:

e(σ) = e(ε) = 0,

e(α+ β) = e(α) + e(β),

e(αβ) = e(α) + e(β) + l(α) · f(β),

e(α?) = e?(α),

(4)

where e?(α) is given by,

e?(ε) = 0, e?(σ) = 1,

e?(α+ β) = e?(α) + e?(β) + c(α, β),

e?(αεβε) = e?(αε) + e?(βε) + c(αε, βε),

e?(αεβε) = e?(αε) + e(βε) + c(αε, βε),

e?(αεβε) = e(αε) + e?(βε) + c(αε, βε),

e?(αεβε) = e(αε) + e(βε) + c(αε, βε),

e?(α?) = e?(α).

(5)

with c(α, β) = l(α) · f(β) + l(β) · f(α). Then, the function

t(α) = f(α) + e(α)

computes the number of transitions in the Glushkov automaton of α. The cost
generating function associated to t is given by

Tk(z) = Fk(z) + Ek(z),

where Fk(z) and Ek(z) are the cost generating functions associated to f and e,
respectively. By symmetry, the cost generating function Lk(z) associated to l is
the same as Fk(z), i.e.

Lk(z) = Fk(z) =
kz

1− z − 3zRk(z)− zRk,ε(z)
.

In this last expression Rk(z) and Rk,ε(z) denote respectively the generating
functions for regular expressions, and for regular expressions whose languages
contain ε and are given by

Rk(z) =
1− z −

√
∆k(z)

4z
and Rk,ε(z) =

z + zRk(z)

1− 2zRk(z)
, (6)

where ∆k(z) = 1−2z− (7 + 8k)z2. Hence, for the number of regular expressions
of size n, one has

[zn]Rk(z) ∼
√

2(1− ρk)

8ρk
√
π

ρ−nk n−3/2, where ρk =
1

1 +
√

8k + 8
. (7)



From the equations in (4) one can compute the associated cost generat-
ing functions Ek(z) and E?k(z). For instance, the equation for concatenation
contributes with the term 2zEk(z)Rk(z) + zFk(z)2 in the equation for Ek(z).
Collecting all terms the following equations must be satisfied

Ek(z) = 4zEk(z)Rk(z) + zFk(z)2 + zE?k(z)

E?k(z) = kz + 2zE?k(z)Rk(z) + 2zE?k(z)Rk,ε(z)+

4zFk(z)2 + 2zEk(z)Rk,ε(z) + zE?k(z).

After simplification one gets

Ek(z) =
kz2 + zFk(z)2Λk(z) + 4z2Fk(z)2

(1− 4zRk(z))Λk(z)− 2z2Rk,ε(z)
, (8)

where Λk(z) = 1− z − 2zRk,ε(z)− 2zRk(z). After substituting the functions in
(8) by their expressions in terms of z and k, one obtains

Tk(z) =
Pk(z)

Qk(z)
√
∆k(z)

, (9)

where Pk(z) is a polynomial in
√
∆k(z) over Q[z], with Qk(z) given by

Qk(z) =
(

1− 2 z − 7 z2 + 4 (1 + z)
√
∆k(z) + 3∆k(z)

)2
(

1− 5 z2 + 2 (1 + 2z)
√
∆k(z) +∆k(z)

)
.

This function Qk(z) is positive for all values of z in the real segment [0, ρk],
because 1 − 2z − 7z2 = 8kz2 + ∆k(z) and 1 − 5z2 = 2z + 2z2 + 8kz2 + ∆k(z),
and ∆k(z) is non-negative in that segment. By Pringsheim’s Theorem (Theorem
IV.6 of [FS08], p. 240) one can conclude that Tk(z) has radius of convergence
equal to ρk. Moreover, it can be shown that Tk(z) has no singularities on the
the boundary of its disc of convergence, ‖z‖ = ρk, besides the one at z = ρk.

Using exactly the same technique employed in the previously referred article,
one obtains

Tk(z) =
Pk(ρk)√

2− 2ρk Qk(ρk)

1√
1− z/ρk

+ o

(
1√

1− z/ρk

)
, (10)

from which it follows that

[zn]Tk(z) ∼ Pk(ρk)√
π
√

2− 2ρk Qk(ρk)
ρ−nk n−

1
2 . (11)

Using the actual expression of Pk, which we omit due to lack of space, one
can get

[zn]Tk(z) ∼ (1 + ρk)(2 + 16ρk + 10ρ2k − 12ρ3k)

8ρk
√
π(1− 5ρ2k)

√
2− 2ρk

ρ−nk n−
1
2 . (12)



Considering the cost generating function for the number of letters in an
element α ∈ R, computed by Nicaud to be equal to

Letk(z) =
kz√
∆k(z)

,

and for which

[zn]Letk(z) ∼ kρk√
π(2− 2ρk)

ρ−nk n−1/2,

one gets an asymptotic expression for the average number of transitions per
state:

[zn]Tk(z)

[zn]Letk(z)
∼ (1 + ρk)(2 + 16ρk + 10ρ2k − 12ρ3k)

(1− 2ρk − 7ρ2k)(1− 5ρ2k)
. (13)

And finally, one has for the average number of transitions per regular expres-
sion the following asymptotic estimation:

[zn]Tk(z)

[zn]Rk(z)
∼ (1 + ρk)(1 + 8ρk + 5ρ2k − 6ρ3k)

(1− ρk)(1− 5ρ2k)
n. (14)

Since ρk tends to 0 as k goes to ∞, it follows that for large k the average
number of transitions per state is approximately 2, while the average number
of transitions per automaton is approximately the size of the original regular
expression.

5 The Average Number of Transitions in Apd

The partial derivative automaton Apd(α) of a regular expression α was defined
independently by Mirkin’s [Mir66] and Antimirov [Ant96]. Champarnaud and
Ziadi stated the equivalence of the two formulations [CZ01], and proved that
Apd is a quotient of the Glushkov automaton Apos [CZ02]. This means that
Apd(α) can be obtained from Apos(α) by the merging of states belonging to
the same equivalence class. That, on the other hand, may lead to the merging
of transitions. In this section, we estimate the average number of transitions
of Apd(α) when compared with the ones of Apos(α). For this, it is essential to
have the exact counting of the number of transitions of Apos(α) obtained in
Section 4.1.

The Apd(α) can be defined using the notion of partial derivative, introduced
by Antimirov as a non-deterministic version of Brzozowski’s derivative [Brz64].

For a regular expression α and a letter σ ∈ Σ, the set ∂σ(α) of partial
derivatives of α w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

∂σ(α?) = ∂σ(α)α?

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αεβ) = ∂σ(αε)β ∪ ∂σ(β)

∂σ(αεβ) = ∂σ(αε)β



where for any S ⊆ R, S∅ = ∅S = ∅, and Sε = εS = S. This definition
can be extended to sets of regular expressions, to words, and to languages
in the obvious way. The set of partial derivatives of α, {∂w(α) | w ∈ Σ?},
is denoted by P(α). The partial derivative automaton Apd(α) is defined by
Apd(α) = (P(α), Σ, δpd, α, {q ∈ P(α) | ε(q) = ε}), where δpd(q, σ) = ∂σ(q),
for all q ∈ P(α) and σ ∈ Σ. Antimirov proved that L(Apd(α)) = L(α).

Using Mirkin’s formulation one has P(α) = π(α) ∪ {α}, where the set π(α)
is inductively defined as follows:

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α+ β) = π(α) ∪ π(β)

π(αβ) = π(α)β ∪ π(β)

π(α?) = π(α)α?.

(15)

5.1 Counting the Mergings of Transitions

Broda et al. [BMMR11b] gave a lower bound of the number of mergings of states
in π(α) with respect to Pos(α), which allowed to obtain an upper bound on the
average state complexity of Apd(α). There, it was observed that the merging of
states is primarily caused by sub-expressions γ of α such that ε ∈ π(γ). In fact,
in the presence of sub-expressions with this property, denoted by απε , during
the computation of π(α) some unions may not be disjoint.

In this section, and using the same technique, we determine a lower bound
of the number of mergings of transitions. Considering (2) and in particular,
the concatenation case, it is easy to see, that whenever there is a merging of
two states in the set Last(α), there are exactly f(β) = |First(β)| mergings of
transitions. Although there can be merging of states of First(β), they will not be
considered in the computation of that lower bound. We first compute a lower
bound for the number of mergings i`(α) of states i such that i ∈ Last(α).

In addition to αε and απε , we use the subclass of regular expressions αr,ε
such that αr,ε ∈ π(αr,ε) and ε(αr,ε) = ε.

The grammar for απε and its generating function Rk,πε(z) are the ones used
by Broda et al. For αr,ε one has

αr,ε := α?πε | αr,ε · αε, and Rk,r,ε(z) =
zRk,πε(z)

1− zRk,ε(z)
.

Finally, in order to get a better approximation for the counting of the state
mergings, we define i`(α) by the following:

i`(∅) = i`(ε) = i`(σ) = 0,

i`(απε + απε) = i`(απε) + i`(απε) + 1,

i`(απε + απε) = i`(απε) + i`(απε),

i`(απε + α) = i`(απε) + i`(α),

i`(α
?) = i`(α),

i`(απεαr,ε) = i`(απε) + i`(αr,ε) + 1,

i`(απεαr,ε) = i`(αr,ε),

i`(απεαr,ε) = i`(απε) + i`(αr,ε),

i`(απεαr,ε) = i`(αr,ε),

i`(απεαε) = i`(απε) + i`(αε),

i`(απεαε) = i`(αε),



where γx denotes the complement of γx.
To illustrate the previous rules, consider the case of i`(απεαr,ε). Here, one has

π(απεαr,ε) = π(απε)αr,ε ∪ π(αr,ε). By definition, ε ∈ π(απε) and αr,ε ∈ π(αr,ε).
Hence αr,ε belongs to both π(απε)αr,ε and π(αr,ε), which causes a merging of
two states in Last(α). This merging is accounted for by the 1 in the definition
of i`(απεαr,ε). On the other hand, since ε(αr,ε) = ε, one also has to count all
mergings of states in Last(απε) (counted by i`(απε)), besides those in Last(αr,ε).

The generating function, Ilk(z), of i` satisfies the following:

Ilk(z) =
zRk,πε(z)

2 + zRk,πε(z)Rk,r,ε(z)

1− z − 3zRk(z)− zRk,ε(z)
,

where Rk,πε(z) =
z2+3zRk(z)−1+

√
(z2+3zRk(z)−1)2+4kz2

2z .
Using (2) and (3), one can easily define a function that computes a lower

bound for the number of transition mergings in the Glushkov automaton:

it(ε) = it(σ) = 0

it(α+ β) = it(α) + it(β)

it(αβ) = it(α) + it(β) + i`(α). f(β)

it(α
?) = i?t (α)

i?t (ε) = 0

i?t (σ) = 1

i?t (α+ β) = i?t (α) + i?t (β) + ct(α, β)

i?t (αεβε) = i?t (αε) + i?t (βε) + ct(αε, βε)

i?t (αεβε) = i?t (αε) + it(βε) + ct(αε, βε)

i?t (αεβε) = it(αε) + i?t (βε) + ct(αε, βε)

i?t (αεβε) = it(αε) + it(βε) + ct(αε, βε)

i?t (α
?) = i?t (α)

where ct(α, β) = i`(α) · f(β)+ i`(β) · f(α). The corresponding generating function
satisfies the following:

Itk(z) =
zΛk(z)Ilk(z)Fk(z) + kz2 + 4z2Ilk(z)Fk(z)

(1− 4zRk(z))Λk(z)− 2z2Rk,ε(z)
,

where Λk(z) = 1 − z − 2zRk(z) − 2zRk,ε(z). Analogously to what was done
before, one has

[zn]Itk(z) ∼ (1 + ρk) (a(ρk)b(ρk) + c(ρk))

16
√
π ρk
√

2− 2ρk (1− 5ρ2k)d(ρk)
ρ−nk n−

1
2 (16)

where

a(z) = −2− 23z − 77z2 − 50z3 + 92z4 + 77z5 − 13z6 − 4z7

b(z) =
√

9− 10z − 55z2 − 24z3 + 16z4

c(z) = 10 + 89z + 54z2 − 603z3 − 1114z4 − 349z5+

+ 130z6 − 209z7 − 40z8 − 16z9

d(z) = (1− 2z − 7z2)(2 + z − 3z2).

Therefore, a lower bound for the average number of mergings per transition of
the Glushkov automaton is given by

[zn]
Itk(z)

Tk(z)
∼ a(ρk)b(ρk) + c(ρk)

4(1 + 8ρk + 5ρ2k − 6ρ3k)d(ρk)
. (17)



This means that, asymptotically with respect to k, the number of transitions in
Apd is at most half the number of transitions in Apos.

6 Comparison with Experimental Results

We compared the estimates obtained in the previous sections with some exper-
imental results. For each k ∈ {2, 3, 10, 30, 50}, the experiment consisted of the
comparison of the sizes of Apos and Apd, that were computed for each regular
expression in the samples of 1000 uniform random generated regular expressions
of size 1000. Table 1 presents the average values obtained, and columns eight
and ten give the asymptotic ratios obtained in (13) and in (17), respectively. The
quality of the approximation of the asymptotic average number of transitions
per state for Apos, and that the actual values are close to the limit even for rel-
atively small alphabets is evident from the table. The upper bound for the ratio
of the transition complexity of Apd to the one of Apos is within an error less
than 15%. The experimental values also suggest that the number of transitions
of Apd is on average, and as k grows, the alphabetic size of the original regular
expression.

k |α| |α|Σ |δpos| |P(α)| |δpd| |δpos|
|α|Σ+1

[zn]Tk(z)
[zn]Letk(z)+1

|δpd|
|δpos|

1− [zn]Itk(z)
[zn]Tk(z)

2 1000 276 3345 187 1806 12.1 12.2 0.54 0.68

3 1000 318 2997 206 1564 9.4 9.6 0.52 0.64

10 1000 405 2203 236 1079 5.4 5.3 0.49 0.58

30 1000 453 1676 247 796 3.7 3.6 0.47 0.54

50 1000 466 1516 250 718 3.3 3.2 0.47 0.53

100 — — — — — — 2.8 — 0.53

1000 — — — — — — 2.2 — 0.49

Table 1. Experimental results for uniform random generated regular expressions

7 Conclusions

In this paper we presented a new algorithm for computing Follow, which is
quadratic in the alphabetic size of the original regular expression, and that leads
to a straightforward and direct implementation. This algorithm allowed us to
exactly count the number of transitions of the Glushkov automaton. Using this,
we computed the average number of transitions of that automaton, concluding
that, for large alphabets, it is approximately the double of the original regular
expression alphabetic size.

Considering special sub-classes of regular expressions that are primarily re-
sponsible for state mergings, we computed an upper bound for the number of
transitions in the partial derivative automaton. We, then, used analytic combina-
torial methods to obtain average values and asymptotic limits for that number,



concluding that, on average and asymptotically, the partial derivative automa-
ton has at most half the number of transitions of the Glushkov’s. Experimental
figures corroborate these results.
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