
On the performance of automata minimization algorithms

Marco Almeida Nelma Moreira Rogério Reis
{mfa,nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. Apart from the theoretical worst-case running time analysis not much is known
about the average-case analysis or practical performance of finite automata minimization
algorithms. On this paper we compare the running time of four minimization algorithms
based on experimental results. We applied these algorithms to both deterministic and non-
deterministic random automata.

Keywords deterministic finite automata, non-deterministic finite automata, minimal automata,
minimization algorithms, random generation

1 Introduction

The problem of writing efficient algorithms to find the minimal DFA equivalent to a given automa-
ton can be traced back to the 1950’s with the works of Huffman [Huf55] and Moore [Moo58]. Over
the years several alternative algorithms were proposed. Authors typically present the running time
worst-case analysis of their algorithms, but the practical experience is sometimes different. The
comparison of algorithms performance is always a difficult problem, and little is known about the
practical running time performance of automata mininimization algorithms. In particular, there
are no studies of average-case analysis of these algorithms, an exception being the work of Nicaud
[Nic00], where it is proved that the average-case complexity of Brzozowski’s algorithm is exponen-
tial for group automata. Lhoták [Lho00] presents a general data structure for DFA minimization
algorithms to run in O(kn log n). Bruce Watson [Wat95] presents some experimental results but
his data sets were small and biased. Tabakov and Vardi [VT05] compared Hopcroft’s and Br-
zozowski’s algorithms. Baclet et al. [BP06] analysed different implementations of the Hopcroft’s
algorithm. More recently, Bassino et al. [BDN07] compared Moore’s and Hopcroft’s algorithms.

Using the Python programming language, we implemented the algorithms due to Hopcroft
(H) [Hop71], Brzozowski (B) [Brz63a], Watson (W) [Wat01], and also using full memoization
(WD) [WD03]. The choice of the algorithms was due to the disparate worst-case complexities and
doubts about the practical behaviour of each algorithm.

The input data was obtained with random automata generators. For the (initially-connected)
deterministic finite automata we used a uniform random generator and thus our results are sta-
tistically accurate. Lacking an equivalent uniform random generator for NFAs, we implemented
a non-uniform one. Although not statistically significant, the results in this case are still fairly
interesting.

The text is organised as follows. In Section 2 we present some definitions and the notation
used throughout the paper. In Section 3 we describe each of the algorithms, briefly explain them,
and present the respective pseudo-code. In Section 4 we describe the generation methods of the
random automata. In Section 5 we present the experimental results and in Section 6 we expose
our final remarks and possible future work.

2 Preliminaries

A deterministic finite automaton (DFA) D is a tuple (Q, Σ, δ, q0, F) where Q is a finite set of
states, Σ is the input alphabet (any non-empty set of symbols), δ : Q × Σ → Q is the transition

function, q0 is the initial state and F ⊆ Q is the set of final states. When the transition function
is total, the automaton D is said to be complete. Any finite sequence of alphabet symbols a ∈ Σ is
a word. Let Σ⋆ denote the set of all words over the alphabet Σ and ǫ denote the empty word. We
define the extended transition function δ̂ : Q×Σ⋆ → Q in the following way: δ̂(q, ǫ) = q; δ̂(q, xa) =

δ(δ̂(q, x), a). A state q ∈ Q of a DFA D = (Q, Σ, δ, q0, F) is called accessible if δ̂(q0, w) = q for some
w ∈ Σ⋆. If all states in Q are accessible, a complete DFA D is called (complete) initially-connected

(ICDFA). The language accepted by D, L(D), is the set of all words w ∈ Σ⋆ such that δ̂(q0, w) ∈ F .
Two DFAs D and D′ are equivalent if and only if L(D) = L(D′). A DFA is called minimal if there is
no other equivalent DFA with fewer states. Given a DFA D = (Q, Σ, δ, q0, F), two states q1, q2 ∈ Q

are said to be equivalent, denoted q1 ≈ q2, if for every w ∈ Σ⋆, δ̂(q1, w) ∈ F ⇔ δ̂(q2, w) ∈ F . Two
states that are not equivalent are called distinguishable. The equivalent minimal automaton D/≈
is called the quotient automaton, and its states correspond to the equivalence classes of ≈. It is
proved to be unique up to isomorphism.

A non-deterministic finite automaton (NFA) is also a tuple (Q, Σ, ∆, I, F), where I is a set of

initial states and the transition function is defined as ∆ : Q × Σ → 2Q. Just like with DFAs, we
can define the extended transition function ∆̂ : 2Q × Σ⋆ → 2Q in the following way: ∆̂(S, ǫ) = S;
∆̂(S, xa) =

⋃

q∈∆̂(S,x) δ(q, a). The language accepted by N is the set of all words w ∈ Σ⋆ such that

∆̂(I, w)∩F 6= ∅. Every language accepted by some NFA can also be described by a DFA. The subset

construction method takes a NFA A as input and computes a DFA D such that L(A) = L(D).
This process is also referred to as determinization and has a worst-case running time complexity
of O

(
2|Q|

)
.

Following Leslie [Les95], we define the transition density of an automaton A = (Q, Σ, ∆, I, F)
as the ratio t

|Q|2|Σ| , where t is the number of transitions in A. This density function is normalised,

giving always a value between 0 and 1. We also define deterministic density as the ratio of the
number of transitions t to the number of transitions of a complete DFA with the same number of
states and symbols, i.e., t

|Q||Σ| .

The reversal of a word w = a0a1 · · · an, written wR, is an · · · a1a0. The reversal of a language
L ⊆ Σ⋆ is LR = {wR |w ∈ L}. Further details on regular languages can be found in the usual
references (Hopcroft [HMU00] or Kozen [Koz97], for example).

3 Minimization algorithms

Given an automaton, to obtain the associated minimal DFA we must compute the equivalence
relation ≈ as defined in Section 2. The computation of this relation is the key difference of the
several minimization algorithms. Moore’s algorithm and its variants, for example, aim to find pairs
of distinguishable states. H, on the other hand, computes the minimal automaton by refining a
partition of the states’ set.

Of the three minimization algorithms we compared, H has the best worst-case running time
analysis. B is simple and elegant, and, despite its exponential worst-case complexity, it is supposed
to frequently outperform other algorithms (including H). B also has the particularity of being able
to take both DFAs and NFAs as input. W can be halted at any time yielding a partially minimized
automaton. The improved version, WD, includes the use of full memoization. Because one of our
motivations was to check the minimality of a given automaton, not to obtain the equivalent
minimal one, this algorithm was of particular interest.

3.1 Hopcroft’s algorithm (H)

H [Hop71], published in 1971, achieves the best known running time worst-case complexity for
minimization algorithms. It runs on O(kn log n) time for a DFA with n states and an alphabet of
size k. Let D = (Q, Σ, δ, q0, F) be a DFA. H, proceeds by refining the coarsest partition until no
more refinements are possible. The initial partition is P = {F, Q − F} and, at each step of the
algorithm, a block B ∈ P and a symbol a ∈ Σ are selected to refine the partition. This refinement

process splits each block B′ of the partition according to whether the states of B′, when consuming
the symbol a, go to a state which is in B or not. Formally, we call this procedure split and define
it by

split(B′, B, a) = (B′ ∩ δ̌−1(B, a), B′ ∩ δ̌−1(B, a))

where δ̌(S, a) =
⋃

q∈S δ(q, a).
The algorithm terminates when there are no more blocks to refine. In the end, each block of

the partition is a set of equivalent states. Because, for any two blocks B, B′ ∈ P , every state q ∈ B
is distinguishable from any state q′ ∈ B′, the elements of P represent the states of a new minimal
DFA. The complete pseudo-code is presented in Algorithm 1.1.

def hopcro f t () :
L = {}
i f |F | < |Q−F | :

P = {Q−F, F} ; L = {F}
else :

P = {F, Q−F} ; L = {Q−F}
while L 6= ∅ :

S = ex t r a c t (L)
for a in Σ :

for B in P:
(B1 , B2) = s p l i t (B, S , a)
P = P − {B} ; P = P ∪ {B1 } ; P = P ∪ {B2}
i f |B1 | < |B2 | :

L = L ∪ {B1}
else :

L = L ∪ {B2}
return P

Algorithm 1.1. Hopcroft’s algorithm (H).

The set L contains blocks of P not yet treated. The extract procedure removes one element of
L to be used in the splitting process. The choice of the element does not influence the correctness
of the algorithm.

3.2 Brzozowski’s algorithm (B)

B [Brz63b] is based on two successive reverse and determinization operations and the full pseudo-
code is presented (in one single line!) on Algorithm 1.2.

def brzozowsk i (fa) :
return det (rev (det (rev (fa))))

Algorithm 1.2. Brzozowski’s algorithm (B).

Having to perform two determinizations, the worst-case running time complexity of B is expo-
nential. Watson’s thesis, however, presents some surprising results about B practical performance,
usually outperforming H. As for the peculiar way that this algorithm computes a minimal DFA,
Watson assumed it to be unique and, in his taxonomy, placed it apart all other algorithms. Later,
Champarnaud et al. [CKP02] analysed the way the sequential determinizations perform the min-
imization and showed that it does compute state equivalences.

3.3 An incremental algorithm (W)

In 2001 Watson presented an incremental DFA minimization algorithm (W) [Wat01]. This algo-
rithm can be halted at any time yielding a partially minimized DFA that recognises the same
language as the input DFA. Later, Watson and Daciuk presented an improved version of the same
algorithm (WD) [WD03] which makes use of full memoization. While the first algorithm has a

worst-case exponential running time, the memoized version yields a O(n2) algorithm (for all prac-

tical values of n, i.e., n ≤ 2216

). It was not clear, however, that this algorithm would outperform H
as the experimental results in [WD03] seemed to point to. Since the use of memoization introduces
some considerable overhead in the algorithm, we wanted to discover at what point this extra work
begins to payoff.

W uses an auxiliary function, equiv, to test the equivalence of two states. The third argument,
an integer k, is used to control the recursion depth only for matters of efficiency. Also for matters
of efficiency, a variable S that contains a set of presumably equivalent pairs of states is made
global. The pseudo-code for a non-memoized, specialized for ICDFAs, implementation of equiv is
presented in Algorithm 1.3. The memoized algorithm (WD) is quite extensive and can be found
in Watson and Daciuk’s paper [WD03].

def equ iv (p , q , k) :
i f k = 0 :

return (p in F and q in F) or (not p in F and not q in F)
e l i f (p , q) in S :

return True
else :

eq = (p in F and q in F) or (not p in F and not q in F)
S = S ∪ {(p , q)}
for a in Σ :

i f not eq :
return False

eq = eq and equ iv (δ(p, a) , δ(q, a) , k−1)
S = S − {(p , q)}

return eq

Algorithm 1.3. Pairwise state equivalence algorithm.

Having a method to verify pairwise state equivalence, it is possible to implement a test that
calls equiv for every pair of states and returns False if some pair is found to be equivalent.

4 Random automata generation

Even if we consider only (non-isomorphic) ICDFAs, the number of automata with n states over an
alphabet of k symbols grows so fast [RMA05a] that trying to minimize every one is not feasible,
even for small values of n and k. The same applies to NFAs. In order to compare the practical per-
formance of the minimization algorithms, we must have an arbitrary quantity of “good” randomly
generated automata available, i.e. the samples can not be unbiased.

A uniform random generator obviously produces unbiased samples. We used the DFA string
representation and random generation method proposed by Almeida et al. [AMR07]. This ap-
proach, unlike the one proposed by Bassino et al. [BN07], does not require a rejection step. The
generator produces a string of the form

[[a1 · · · ak] · · · [b1 · · · bk]
︸ ︷︷ ︸

n

],

where ai, bi ∈ [0, n − 1]. This string is a canonical representation of an ICDFA with n states and
k symbols without final states information, as described by Reis et al. [RMA05b,AMR07]. Given
an order over Σ, it is possible to define a canonical order over the set of states by traversing the
automaton in a breadth-first way choosing at each node the outgoing edges using the order of Σ.
In the string representation, each of the i blocks, for 1 ≤ i ≤ n, corresponds to the transitions
from the state i − 1. The following string, for example, represents the ICDFA from Fig. 1,

[[1, 2], [0, 1], [1, 0]].

The random generator produces the random strings from left to right, taking into account
the number of ICDFAs that, at a given point, would still be possible to produce with a given

prefix. The set of final states is computed by generating an equiprobable bitstream of size n and
considering final all the states that correspond to a non-zero position.

q0 q1

q2

a

b

a

b

a

b

Fig. 1. A ICDFA with 3 states and 2 symbols, but no final states.

Lacking a uniform random generator for NFAs, we implemented one which combines the van Zijl
bit-stream method, as presented by Champarnaud et al. [CHPZ04], with one of Leslie’s approaches
[Les95], which allows us both to generate initially connected NFAs (with one initial state) and to
control the transition density. Leslie presents a “generate-and-test” method which may never stop,
so we added some minor changes that correct this situation. A brief explanation of the random
NFA generator follows. Suppose we want to generate a random NFA with n states over an alphabet
of k symbols and a transition density d. Let the states (respectively the symbols) be named by
the integers 0, . . . , n− 1 (respectively 0, . . . , k− 1). A sequence of n2k bits describes the transition
function in the following way: the occurrence of a non-zero bit at the position ink + jk +a denotes
the existence of a transition from state i to state j labelled by the symbol a. Consider the following
bitstream, which represents the NFA of the Fig. 2.

q0

︷︸︸︷

0 0 |

q1

︷︸︸︷

1 1 |

q2

︷︸︸︷

1 0
︸ ︷︷ ︸

q0

‖

q0

︷︸︸︷

0 0 |

q1

︷︸︸︷

0 0 |

q2

︷︸︸︷

0 0
︸ ︷︷ ︸

q1

‖

q0

︷︸︸︷

0 1 |

q1

︷︸︸︷

1 0 |

q2

︷︸︸︷

0 1
︸ ︷︷ ︸

q2

q0 q1

q2

a, b

a

a

b

b

Fig. 2. The NFA built from the bitstream above.

Starting with a sequence of zero bits, the first step of the algorithm is to create a connected
structure and thus ensure that all the states of the final NFA will be accessible. In order to do so,
we define the first state as 0, mark it as visited, generate a transition from 0 to any not-visited
state i, and mark i as visited. Next, until all states are marked as visited, randomly choose an
already visited state q1, randomly choose a not-visited state q2, add a transition from q1 to q2

(with a random), and mark q2 as visited. At this point we have an initially connected NFA and
proceed by adding random transitions. Until the desired density is achieved, we simply select one
of the bitstream’s zero bits and set it to one. By maintaining a list of visited states on the first step
and keeping record of the zero bits on the second step, we avoid generating either a disconnected
NFA or a repeated transition and guarantee that the algorithm always halts. The set of final states
can be easily obtained by generating an equiprobable bitstream of size n and considering final all
the states that correspond to a non-zero position in the bitstream.

5 Experimental results

To compare algorithms is always a difficult problem. The choice of the programming language,
implementation details, and the hardware used may harm the rigour of any benchmark. In order to
produce realistic results, the input data should be random so that it represents a typical usage of
the algorithm and the test environment should be identical for all benchmarks. We implemented all
the algorithms in the Python 2.4 programming language, using similar data structures whenever
possible. All the tests were executed in the same computer, an Intel R© Xeon R© 5140 at 2.33GHz
with 2GB of RAM. We used samples of 10.000 automata, with 5 ≤ n ≤ 100 states and alphabets
with k ∈ {2, 5, 10, 20} symbols. For the data sets obtained with the uniform random generator,
the size of each sample is sufficient to ensure a 95% confidence level within a 1% error margin. It
is calculated with the formula n = (z

2ǫ
)2, where z is obtained from the normal distribution table

such that P (−z < Z < z)) = γ, ǫ is the error margin, and γ is the desired confidence level.

5.1 Random ICDFA minimization

On his thesis, Watson used a fairly biased sample. It consisted of 4833 DFAs of which only 7 had 23
states. As Watson himself states, being constructed from regular expressions, the automata “... are
usually not very large, they have relatively sparse transition graphs, and the alphabet frequently
consists of the entire ASCII character set.”. On their paper on the incremental minimization
algorithm [WD03], Watson and Daciuk also present some performance comparisons of automata
minimization algorithms. They used four different data sets, one from experiments on finite-state
approximation of context-free grammars and three that were automatically generated. These are
not, however, uniform random samples, and thus, do not represent a typical usage of the algorithms.

The following graphics show the running times for the three algorithms while minimizing a
sample of 10.000 random ICDFAs. The running time limit for all algorithms was set to 24 hours.

2 symbols

0

1

2

3

4

5

5 10 20 50 100

states

time - log(s)

5 symbols

0

1

2

3

4

5

5 10 20 50 100

states

time - log(s)

10 symbols

0

1

2

3

4

5

5 10 20 50 100

states

time - log(s)

20 symbols

0

1

2

3

4

5

5 10 20 50 100

states

time - log(s)

H W WD B

Fig. 3. Running time results for the minimization of 10.000 ICDFAs with k ∈ {2, 5, 10, 20}.

For small alphabets (k = 2), H is always the fastest. When the alphabet size grows (k ≥ 5),
however, H is clearly outperformed by the WD, which was over twice as fast as H when minimizing

ICDFAs with an alphabet of size k ≥ 10. W showed itself quite slow in all tests. It is important to
point out that for k ≥ 5 all the automata were already minimal and so the speed of the incremental
algorithm can not be justified by the possibility of halting whenever two equivalent states are found.
The fact that almost all ICDFAs are minimal was observed by several authors, namely Almeida
et al. [AMR06] and Bassino et al.[BDN07]. As Watson himself stated, the incremental algorithm
may show exponential performance for some DFAs. This was the case in one of our tests. For the
sample of 5 symbols and 15 states WD took an unusual amount of time. B is never the fastest
algorithm. In fact, even for small alphabets it was not possible to use it on ICDFAs with more
than 15 states.

5.2 Random NFAs minimization

The next set of graphics shows the execution times of the three algorithms when applied to a
set of 10.000 random NFAs. The running time limit for all algorithms was set to 15 hours. It is
important to note that the NFA generator we used is not a uniform one, and so we can not prove
that each sample is actually a good representative of the universe. Because we are dealing with
NFAs, the transition density is an important factor and so each sample was generated with three
different transition densities (d): 0.2, 0.5, and 0.8. For both the WD and H, which are only able
to minimize DFAs, we also accounted for the time spent in the subset construction method.

Transition density d = 0.2

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.2

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.5

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.5

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.8

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.8

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

H WD B

Fig. 4. Running time results for the minimization of 10.000 ICDFAs with k = 2 (left) and k = 5 (right).

For alphabets with two symbols there are no significant differences in any of the algorithms’
general performance, although B is usually the fastest. H outperforms B for less than 4% only
when d = 0.5 and n ∈ {50, 100}.

Transition density d = 0.2

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.2

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.5

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.5

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.8

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

Transition density d = 0.8

0

1

2

3

4

5 10 20 50 100

states

time - log(s)

H WD B

Fig. 5. Running time results for the minimization of 10.000 NFAs with k = 10 (left) and k = 20 (right).

For alphabets with k = 5, B is always the fastest and, except for occasional cases, H is slightly
faster than the incremental algorithm.

When the alphabet size increases, B’s performance becomes quite remarkable. For an alphabet
with size k ∈ {10, 20}, B is definitively the fastest, being the only algorithm to actually finish the
minimization process of almost all random samples within the 15 hour limit. As for H and WD,
except for two cases, there are no significant performance differences.

For d = 0.2 and n = 10 all the algorithms showed a particularly bad performance. For k = 5
only B finished the minimization process (taking an unusual high amount of time) and for k ∈
{10, 20} none of the algorithms completed the minimization process within the 15 hour time limit.
This result corroborates Leslie’s conjecture [Les95] about the number of states obtained with the
subset construction method for a given deterministic density dd. Leslie’s conjecture states that
randomly generated automata exhibit the maximum execution time and the maximum number
of states at an approximate deterministic density of 2.0. While generating the random NFAs, we
considered the transition density d = t

n2k
, which is related to the deterministic density dd = t

nk

by dd = nd. It is easy to see that in our case dd = nd = 10× 0.2 = 2.0, which will make the subset
construction computationally expensive. In order to achieve the same exponential behaviour in
the subset method for d ∈ {0.5, 0.8} the number of states would have to be n ∈ {4, 2.5}, but for
such a small number of states the exponential blowup is not meaningful. This explains why there
are no similar results for the test batches with d ∈ {0.5, 0.8}. Considering we used a variation of
one of Leslie’s random NFA generators, this result does not come with any surprise.

6 Analisys of the results

In this work, we experimentally compare four automata minimization algorithms (H, W, WD
and B). As data sets we use two different types of randomly generated automata (ICDFAs and
NFAs) with a range of different number of states and symbols. The ICDFAs’ data set was obtained
using a uniform random generator and is large enough to ensure a 95% confidence level within a
1% error margin. For ICDFAs with only to symbols, H is the fastest algorithm. As the alphabet
size grows, WD begins to perform better than H. With alphabets larger than 10, WD becomes
clearly faster. As for W and B algorithms, we can safely conclude that neither performs well,
regardless of the number of states and symbols. As for the NFAs, it is important to note that
the random generator used was not a uniform one, and thus does not have the same statistical
accuracy as the first one. B is definitively the fastest algorithm. Both H and WD consistently
show equally slower results.

All this algorithms make use of the subset construction pass, at least once, which turns the
reason for B’s good performance even less evident. It would be interesting to make an average-case
running time complexity analysis for the DFA reversal, and thus possibly explain B’s behaviour
with ICDFAs minimization.

7 Comparison with Related Work

In this final section we summarise and compare our experiments with some of the results of the
works cited before.

Bruce Watson implemented five minimization algorithms: two versions of Moore’s algorithm
as well as H, W and B. As we have mentioned before, the data set then used was fairly biased
and his results lead him to conclude that the two Moore based algorithms perform very poorly
and that B normally outperforms the other two.

Baclet et al. [BP06] implemented H with two different queue strategies: LIFO and FIFO. The
implementations were tested with several random (non-uniform) automata having thousands of
states but very small alphabets (k ≤ 4), concluding that the LIFO strategy is better, at least for
alphabets of one or two symbols.

Bassino et al. [BDN07] used an ICDFAs’ uniform random generator based on a Boltzmann
sampler to create a data set and compared the performance of the H (with the two strategies
refereed above) and Moore’s algorithms. The automata generated have up to some thousands of
states for alphabets of size 2. Their results are statistically accurate, and indicate that Moore’s
algorithm is, for the average case, more efficient than H. Moreover, no clear difference were found
between the two queue strategies for H. These results are interesting because they neither corrob-
orate the results of the works mentioned above nor the general idea that H outperforms Moore’s
algorithm in practice. It remains unstudied a comparison between Moore’s algorithm with WD
using a uniformly generated data set.

Finally, Tabakov and Vardi [VT05] studied H and B performance with a data set of random
NFAs. The random model they used is similar to the one we describe in Section 4 but considering
a deterministic density, dd. They choose 0 ≤ dd ≤ 2.5 and the samples were relatively small: 200
automata with n < 50 and k = 2. The conclusion was that H is faster for low-density automata
(dd < 1.5), while B is better for high-density automata. For the example studied of n = 30
the deterministic density dd < 1.5, corresponds to a normalised transition density that we used,
d < 0.05. This phase transition may be due to the fact that for such a low normalised transition
density the probability of a connected NFA being deterministic is very high.

References

[AMR06] M. Almeida, N. Moreira, and R. Reis. Aspects of enumeration and generation with a string
automata representation. In H. Leung and G.Pighizzini, editors, Proc. of DCFS’06, pages
58–69, Las Cruces, New Mexico, 2006. NMSU.

[AMR07] M. Almeida, N. Moreira, and R. Reis. Enumeration and generation with a string automata
representation. Theoretical Computer Science, 387(2):93–102, 2007.

[BDN07] Frédérique Bassino, Julien David, and Cyril Nicaud. A library to randomly and exhaustively
generate automata. In Implementation and Application of Automata, volume 4783 of LNCS,
pages 303–305. Springer-Verlag, 2007.

[BN07] F. Bassino and C. Nicaud. Enumeration and random generation of accessible automata. The-

oretical Computer Science, 381(1-3):86–104, 2007.
[BP06] M. Baclet and C. Pagetti. Around hopcroft’s algorithm. pages 114–125, Taipei, Taiwan, 2006.

Springer.
[Brz63a] J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. In

J. Fox, editor, Proceedings of the Symposium on Mathematical Theory of Automata, volume 12
of MRI Symposia Series, pages 529–561, New York, NY, April 24-26,1962 1963. Polytechnic
Press of the Polytechnic Institute of Brooklyn, Brooklyn, NY.

[Brz63b] J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events.
In J. Fox, editor, Proc. of the Sym. on Mathematical Theory of Automata, volume 12 of MRI

Symposia Series, pages 529–561, NY, 1963. Polytechnic Press of the Polytechnic Institute of
Brooklyn.

[CHPZ04] J.-M. Champarnaud, G. Hansel, T. Paranthoën, and D. Ziadi. Random generation models for
nfas. J. of Automata, Languages and Combinatorics, 9(2), 2004.

[CKP02] J.-M. Champarnaud, A. Khorsi, and T. Paranthoën. Split and join for minimizing: Brzozowski’s
algorithm. In M. Baĺık and M. Simánek, editors, Proc. of PSC’02, Report DC-2002-03, pages
96–104. Czech Technical University of Prague, 2002.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison Wesley, 2000.
[Hop71] J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Proc. Inter.

Symp. on the Theory of Machines and Computations, pages 189–196, Haifa, Israel, 1971. AP.
[Huf55] D. A. Huffman. The synthesis of sequential switching circuits. The Journal of Symbolic Logic,

20(1):69–70, 1955.
[Koz97] D. C. Kozen. Automata and Computability. Undergrad. Texts in Computer Science. Springer-

Verlag, 1997.
[Les95] T. Leslie. Efficient approaches to subset construction. Master’s thesis, University of Waterloo,

Ontario, Canada, 1995.
[Lho00] O. Lhoták. A general data structure for efficient minimization of deterministic finite automata.

Technical report, University of Waterloo, 2000.
[Moo58] E. F. Moore. Gedanken-experiments on sequential machines. The Journal of Symbolic Logic,

23(1):60, 1958.
[Nic00] C. Nicaud. Étude du comportement en moyenne des automates finis et des langages rationnels.

PhD thesis, Université de Paris 7, 2000.
[RMA05a] R. Reis, N. Moreira, and M. Almeida. On the representation of finite automata. In

C. Mereghetti C. Mereghetti, B. Palano, G. Pighizzini, and D.Wotschke, editors, Proc. of

DCFS’05, pages 269–276, Como, Italy, 2005.
[RMA05b] R. Reis, N. Moreira, and M. Almeida. On the representation of finite automata. In

C. Mereghetti, B. Palano, G. Pighizzini, and D.Wotschke, editors, 7th International Work-

shop on Descriptional Complexity of Formal Systems, number 06-05 in Rapporto Tecnico delo
Departimento de Informatica e Comunicazione dela Università degli Studi di Milano, pages
269–276, Como, Italy, June 2005. International Federation for Information Processing.

[VT05] M. Vardi and D. Tabakov. Evaluating classical automata-theoretic algorithms. In LPAR’05,
2005.

[Wat95] B. W. Watson. Taxonomies and toolkit of regular languages algortihms. PhD thesis, Eindhoven
Univ. of Tec., 1995.

[Wat01] B. W. Watson. An incremental DFA minimization algorithm. In International Workshop on

Finite-State Methods in Natural Language Processing, Helsinki, Finland, August 2001.
[WD03] B. W. Watson and J. Daciuk. An efficient DFA minimization algorithm. Natural Language

Engineering, pages 49–64, 2003.

