Small NFAs from Regular Expressions: Some
Experimental Results*

Hugo Gouveia**, Nelma Moreira, Rogério Reis

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. Regular expressions (REs), because of their succinctness and
clear syntax, are the common choice to represent regular languages. How-
ever, efficient pattern matching or word recognition depend on the size of
the equivalent nondeterministic finite automata (NFA). We present the
implementation of several algorithms for constructing small e-free NFAs
from REs within the FAdo system, and a comparison of regular ex-
pression measures and NFA sizes based on experimental results obtained
from uniform random generated REs. For this analysis, nonredundant
REs and reduced REs in star normal form were considered.

1 Introduction

Regular expressions (REs), because of their succinctness and clear syntax, are the
common choice to represent regular languages. Equivalent deterministic finite au-
tomata (DFA) would be the preferred choice for pattern matching or word recog-
nition as these problems can be solved efficiently by DFAs. However, minimal
DFAs can be exponentially bigger than REs. Nondeterministic finite automata
(NFA) obtained from REs can have the number of states linear with respect to
(w.r.t) the size of the REs. Because NFA minimization is a PSPACE-complete
problem other methods must be used in order to obtain small NFAs usable for
practical purposes. Conversion methods from REs to equivalent NFAs can pro-
duce NFAs without or with transitions labelled with the empty word (e-NFA).
Here we consider several constructions of small e-free NFAs that were recently
developed or improved [Mir66,Ant96,CZ02,HSW01,1Y03a,COZ07], and that are
related with the one of Glushkov and McNaughton-Yamada [Glu61,MY60]. The
NFA size can be reduced by merging equivalent states [IY03b,ISOY05]. Another
solution is to simplify the REs before the conversion [EKSWO05]. Gruber and
Gulan [GG09] showed that REs in reduced star normal form (snf) achieve some
conversion lower bounds. Our experimental results corroborate that REs must be
converted to reduced snf. In this paper we present the implementation within
the FAdo system [FAd10] of several algorithms for constructing small e-free

* This work was partially funded by Fundagao para a Ciéncia e Tecnologia (FCT) and
Program POSI, and by the project ASA (PTDC/MAT/65481/2006).
** Hugo Gouveia passed away in December, 2009. Through 2009 he was funded by a
LIACC-FCT scholarship for young undergraduated researchers.

NFAs from REs, and a comparison of regular expression measures and NFA
sizes based on experimental results obtained from uniform random generated
REs. We consider nonredundant REs and REs in reduced snf in particular.

2 Regular Expressions and Finite Automata

Let X be an alphabet (set of letters). A word w over X' is any finite sequence of
letters. The empty word is denoted by e. Let X* be the set of all words over 3.
A language over X is a subset of X*. The set R of regular expressions (RE) over
X is defined by:

a=0leloeX]|(at+a)l|(a-a)|a*,

where the operator - (concatenation) is often omitted. The language £(«) associ-
ated to a € R is inductively defined as follows: L(0) = 0, L(e) = {e}, L(o) = {c
foro e X, L((a+p)) = L()UL(B), L((a-8)) = L()-L(B), and L(a*) = L({)*.
Two regular expressions o and (3 are equivalent if L(«) = L((), and we write
a = f3. The algebraic structure (R, +, -, (), €) constitutes an idempotent semiring,
and with the unary operator *, a Kleene algebra. There are several ways to mea-
sure the size of a regular expression. The size (or ordinary length) |a| of a € R
is the number of symbols in «, including parentheses (but not the operator -);
the alphabetic size |a|s (or alph(«)) is its number of letters (multiplicities in-
cluded); and the reverse polish notation size rpn(a) is the number of nodes in
its syntactic tree. The alphabetic size is considered in the literature [EKSWO05]
the most useful measure, and will be the one we consider here for several RE
measure comparisons. Moreover all these measures are identical up a constant
factor if the regular expression is reduced [EKSWO05, Th. 3]. Let e(a) be ¢ if
e € L(a), and) otherwise. A regular expression « is reduced if it is normalised
w.r.t the following equivalences (rules):

e =0 =« e+a=a+e=aq, wheree(a)=¢
oo =a-0 =90 a** =a*
l+a=a+0=a 0 = =e

A RE can be transformed into an equivalent reduced RE in linear time.

A nondeterministic automaton (NFA) A is a quintuple (Q, X, d, qo, F'), where
Q is a finite set of states, X is the alphabet, § C Q x X' x () the transition relation,
qo the initial state, and F' C @ the set of final states. The size of an NFA is
|Q| +9]. For ¢ € Q and 0 € X, we denote by §(¢,0) = {p | (¢,0,p) € 6}, and we
can extend this notation to w € X*, and to R C Q. The language accepted by A
is L(A) = {w € X* | 6(qo,w) N F # 0}. Two NFAs are equivalent, if they accept
the same language. If two NFAs A and B are isomorphic, and we write A ~ B.
An NFA is deterministic (DFA) if for each pair (¢,0) € @ x X' there exists at
most one ¢’ such that (¢,0,q’) € §. A DFA is minimal if there is no equivalent
DFA with fewer states. Minimal DFA are unique up to isomorphism. Given an
equivalence relation F on @, for ¢ € Q let [g]g be the class of ¢ w.r.t E, and for

T CQlet T/g ={ldlg | ¢ € T}. The equivalence relation E is right invariant
w.r.t an NFA Aif EC (Q\ F)?UF? and for any p,q € Q, 0 € X if p E ¢, then
5(]77 J)/E = 5((]7 U)/E The quotient automaton A/E' = (Q/Ev Ea 6E7 [qO}EW F/E)a
where dg = {([ple, o, [dlg) | (p,0,q) € 0}, satisfies L(A) = L(A/g). Given two
equivalence relations over a set QQ, G and H, we say that G is finer than H (and
H coarser than G) if and only if G C H.

3 Small NFAs from Regular Expressions

We consider three methods for constructing small NFAs A from a regular ex-
pression « such that £(A) = L(«), i.e., they are equivalent.

3.1 Position Automata

The position automaton construction was independently proposed by Glushkov,
and McNaughton and Yamada [Glu61,MY60]. Let Pos(a) = {1,2,...,|a|s} for
a € R, and let Posg(a) = Pos(a) U {0}. We consider the expression @ ob-
tained by marking each letter o with its position ¢ in «, ;. The same notation
is used to remove the markings, i.e., @ = . For @ € R and i € Pos(a), let
first(a) = {j | 3w € 2", 05w € L(@)}, last(a) = {j | Fw € T, wo; € L(@)},
and follow (e, i) = {j | u,v € ", uoio;0 € L(@)}. Let follow (e, 0) = first(c).
The position automaton for a € R is Apes(a) = (Posg(a), X, 6pos, 0, F), with
dpos = {(4,77,7) | j € follow(a,4)} and F = last(a) U {0} if (o) = €, and
F = last(«), otherwise. We note that the number of states of Apes() is ex-
actly |a|x + 1. Other interesting property is that A,qs is homogeneous, i.e., all
transitions arriving at a given state are labelled by the same letter. Briiggemann-
Klein [BK93] showed that the construction of Ap,es can be obtained in O(n?)
(n = |«|) if the regular expression « is in the so called star normal form (snf),
i.e., if for each subexpression * of a, Va € last(f3), follow(3, z) Nfirst(5) = () and
e(B) = 0. For every a € R there is an equivalent RE in star normal form a® that
can be computed in linear time and such that Apes(or) >~ Apos(a®).

3.2 Follow Automata

Ilie and Yu [IY03a] introduced the construction of the follow automaton from
a RE. Their initial algorithm begins by converting o € R into an equivalent e-
NFA from which the follow automaton Ay («) is obtained. For efficiency reasons
we implemented that method in the FAdo library. The follow automaton is a
quotient of the position automaton w.r.t the right-invariant equivalence given
by the follow relation =;C Posg that is defined by:

Vi,y € Posp(a),x =5 y if (i) both z,y or none belong to last(a) and
(ii) follow(cr, z) = follow(c, y)

Proposition 1 (Ilie and Yu, Thm. 23). As(a) ~ Apos(@)/=; -

3.3 Partial Derivative Automata

Let SU {3} be a set of regular expressions. Then S©® 8= {af|ac S}if 3#0
and S© 0 =0. For « € R and 0 € X, the set 9,(«) of partial derivatives of «
w.r.t. o is defined inductively as follows:

o _?{(8 b o S 0 a.(9) i <fe)
o (o) = « () © BU O (B) if e(a) =€
(0" = 3 ?a otherw1se 0-(aB) = () & 5 U

This definition can be extended to sets of regular expressions, words, and lan-
guages. Given @ € R and 0 € ¥, 0,(5) = Upes0s(a) for S C R, d.(a) = {a},
Owo (@) = 05 (0 () for w € X*, and I () = Uyer0y(a) for L C X*. The set
of partial derivatives of « is denoted by PD(a) = {0y () | w € X*}.

Given a regular expression «, the partial derivative automaton Apq(a), in-
troduced by Mirkin and Antimirov [Mir66,Ant96], is defined by

Apa(a) = (PD(a), X, 0pa, o, {q € PD(e) | £(q) = €}),
where 0p4(q,0) = 05(q), for all ¢ € PD(«) and o € X.
Proposition 2 (Mirkin and Antimirov). £L(Apq(a)) = L(a).

Champarnaud and Ziadi [CZ02] showed that the partial derivative automaton is
also a quotient of the position automaton. Champarnaud et al. [COZ07] proved
that for RE reduced and in star normal form the size of its partial derivative
automaton Apq is always smaller than the one of its follow automaton A;.

3.4 Complexity

The automata here presented Apqs, Af and Apq can in worst-case be constructed
in time and space O(n?), and have, in worst-case, size O(n?), where n is the size
of the RE. Recently, Nicaud [Nic09] showed that on the average-case the size of
the Apos automata is linear. The best worst case construction of e-free NFAs from
RE is the one presented by Hromkovic et al. [HSWO01] that can be constructed
and have size O(n(logn?)). However this construction is not considered here.

4 NFAs Reduction with Equivalences

It is possible to obtain in time O(nlogn) a (unique) minimal DFA equivalent
to a given one. However NFA state minimization is PSPACE-complete and, in
general, minimal NFAs are not unique. Considering the exponential succinctness
of NFAs w.r.t DFAs, it is important to have methods to obtain small NFAs. Any
right-invariant equivalence relation over @@ w.r.t A can be used to diminish the
size of A (by computing the quotient automaton). The coarsest right-invariant
equivalence =r can be computed by an algorithm similar to the one used to
minimize DFAs [IY03b]. This coincides with the notion of (auto)-bisimulation,

widely applied to transition systems and which can be computed efficiently (in
almost linear time) by the Paige and Tarjan algorithm [PT87]. A left-invariant
equivalence relation on @ w.r.t A is any right-invariant equivalence relation on
the reversed automaton of A, A" = (Q,X,6,, F,{q}), where ¢ € 6" (p,0) if
p € 6(q,0) (and we allow multiple initial states). The coarsest left-invariant
equivalence on Q w.r.t A, =r, is =g of A".

5 FAdo Implementations

specialSymbol

regexp

+val: symbol
+linearForm(): dict
+snf(): regexp j
+nfaPD(): NFA

+nfaPosition(): NFA

+nfaPSNF(): NFA
+nfaFollowEpsilon(): NFAr

emptyset
+nfaFollow(): NFA

connective
+argl: regexp
+arg2: regexp

[/\

position

+val: symbol

+position: integer star

+first(): list m m

+last(): list targ: regexp
+followMap(): dict

Lﬁ A A

starMarked concatMarked disjMarked
+arg: position| [+argl: position | |+argl: position
+arg2: position| |+arg2: position

Fig. 1. FAdo classes for REs

FAdo [FAd10,MR05,AAA*09] is an ongoing project that aims to provide a
set of tools for symbolic manipulation of formal languages. To allow high-level
programming with complex data structures, easy prototyping of algorithms, and
portability are its main features. It is mainly developed in the Python program-
ming language. In FAdo, regular expressions and finite automata are imple-
mented as Python classes.

Figure 1 presents the classes for REs and the main methods described in this
paper. The regexp class is the base class for all REs and the class position is
the base class for marked REs. The methods first(), last() and followMap()
(where follow (o, z) = {08 | (z,3) € followMap()}) are coded for each subclass.
The method nfaPosition() implements a construction of the Ao automaton
without reduction to snf. Briiggemann-Klein algorithm is implemented by the

nfaPSNF() method. The methods nfaFollowEpsilon() and nfaFollow() im-
plement the construction of the Ay via an e-NFA. The exact text of all these
algorithms is too long to present here. The method nfaPD() computes the Apq
and uses the method linearForm(). This method implements the function If()
defined by Antimirov [Ant96] to compute the partial derivatives of a RE w.r.t
all letters. Algorithm 1 presents the computation of the Apgq.

Algorithm 1 Computation of Apq
Q —{a}
d—0
F—190
stack — {a}
while pd «— POP(stack) do
for (head,tail) € If(pd) do
if - tail € @ then
Q — QU {tail}
PUSH(stack,pd)
end if
d(pd,head) « 0(pd,head) U {tail}
end for
if e(pd) then
F— FU{pd}
end if
end while

Figure 2 presents the classes for finite automata. FA is the abstract class
for finite automata. The class NFAr includes the inverse of the transition re-
lation, that is not included in the NFA class for efficiency reasons. In the NFA
class the method autobisimulation() implements a naive version for compute
=g, as presented in Algorithm 2. Given an equivalence relation the method
equivReduced () builds the quotient automaton. Given an NFA A, A.rEquiv()
corresponds to A/=,, A.1Equiv() to A/=, and A.1lrEquiv() to (A/=,)/=x.
We refer the reader to Gouveia [Gou09] and to FAdo webpage [FAd10] for more
implementation details.

Algorithm 2 Computation of the set R corresponding to =g.
R0
for (p,q) € Q@ x Q do
ifpe ¢ g€ F then
R —RU{(p.q)}
end if
end for
while 3(z,y) ZR:30€X:3z2€6(x,0): Yw € §(y,0): zRw do
R — RU{(z,y), (y,2)}
end while -
R—(Q@xQ)\R
Return R

FA

+States: list of state names

+Sigma: set of symbols

+Initial: state index

+Final: set of states indexes

tdelta: (state index, symbol) keyvs to set of state indexe,

+trim()

+trimStates()
NFA

+deleteStates(del_states:list of state indexes)
+closeEpsilon(state)

+epsilonPaths(start:state index,end:state index): set of states
+autobisimulation(): set of pairs of state indexes
+autobisimulation2(): list of pairs of state indexes

+equivReduced(): NFA

+rEquivNFA(): NFA
NFAr

+1EquivNFA(): NFA
+1rEquivNFA(): NFA

+mergelncomingEpsilon(state:state index): state index
+mergeOutgoingEpsilon(state:state index): state index
+mergeStates(f:state index,t:state index)
+mergeStatesSet (tomerge:set,target:state index)

Fig. 2. FAdo classes for NFAs

6 RE Random Generator

Uniform random generators are essential to obtain reliable experimental results
that can provide information about the average-case analysis of both compu-
tational and descriptional complexity. For general regular expressions, the task
is somehow simplified because they can be described by small unambiguous
context-free grammars from which it is possible to build uniform random gen-
erators [Mai94]. In the FAdo system we implemented the method described by
Mairson [Mai94] for the generation of context-free languages. The method ac-
cepts as input a context-free grammar and the size of the words to be uniformly
random generated.

The random samples need to be consistent and large enough to ensure sta-
tistically significant results. To have these samples readily available, the FAdo
system includes a dataset of random RE, that can be accessed online. The cur-
rent dataset was obtained using a grammar for REs given by Lee and Shallit
[LS05], and that is presented in Figure 3. This grammar generates REs normal-
ized by rules that define reduced REs, except for certain cases of the rule: € 4 «,
where ¢(a) = . The database makes available random samples of REs with
different sizes between 10 and 500 and with alphabet sizes between 2 and 50.

7 Experimental Results

In order to experiment with several properties of REs and NFAs we developed a
generic program to ease to add/remove the methods to be applied and to specify

S:=A|C|E|X|c|0
C:=CR|RR
R:=(A)|E|¥
E:=(A)|(C) |2
A=e+ X|Y+2Z
X =T|T + X
T:=Cl|%

Y =Z|Y + Z
Z:=C|E|X

Fig. 3. Grammar for almost reduced REs. The start symbol is S.

the data, from the database, to be used. Here we are interested in the comparison
of several REs descriptional measures with measures of the NFAs obtained using
the methods earlier described.

For REs we considered the following properties: the alphabetic size (alph);
the rpn size (rpn); test if it is in snf (snf); if not in snf, compute the snf and its
measures (alph,rpn); test if it is reduced; if not reduced, reduce it and compute
its measures (alph,rpn); the number of states (sc) and number of transitions (tc)
of the equivalent minimal DFA.

For each NFA (Apos, Ayf, and Apq) we considered the following properties:
the number of states (|@Q|); the number of transitions (|4]); if it is deterministic
(det); and if it is homogeneous (hom). All these properties were also considered
for the case where the REs are in snf, and for the NFAs obtained after applying
the invariant equivalences =g, =, and their composition.

All tests were performed on samples of 10,000 uniformly random generated
REs. Each sample contains REs of size 50, 100, 200 and 300, respectively.

Table 1 shows some results concerning REs. The ratio of alphabetic size to
rpn size is almost constant for all samples. Almost all REs are in snf, so we
do not presented the measures after transforming into snf. This fact is relevant
as the REs were generated only almost reduced. The column snfr contains the
percentage of REs for which their snf are reduced. It is interesting to note that
the average number of states of the minimal DFA (sc) is near alph (i.e., near
the number of states of Apos). The standard deviation is here very high. For
the sample of size 300, however, 99% of the REs have 160 < sc < 300. More
theoretical work is needed for a deeper understanding of these results.

Table 1. Statistical values for RE measures, where (avg) is the average and (std) the
standard deviation.

alph rpn rpn sc tc sc | tc
avg] stdflavg] std alph avg] std[javg] std alph | alph
50| 42| 6.39]| 85[10.80|(| 2.04|(97%| 99%|| 38| 9.42| 44| 6.39|| 0.92| 1.05
100||| 77|10.26||161|17.41|| 2.08|[93%| 98%|| 69| 20.00|| 89| 37.47|| 0.89| 1.15
2001(|165|25.75(|1340(43.83|| 2.06|[90%| 97%||160| 91.58|203|186.10|| 0.97| 1.24
3001/247(38.06||511(64.96|| 2.06(|87%| 95%]|258]300.01|(343|617.51|| 1.04| 1.4

size snf |snfr

Table 2 and Table 3 show some results concerning the NFAs obtained from
REs. In Table 2 the values not in percentage are average values. If Ay is
deterministic then the REs is unambiguous (and strong unambiguous, if in
snf) [BK93]. The results obtained suggest that perhaps 25% of the reduced REs
are strong unambiguous. Note that if Ay is not deterministic, almost certainly,
neither Apgq nor Ay are. For reasonable sized REs, although A,.s are homoge-
neous it is unlikely that either Apq or Ay will be so. It is not significant the
difference between |Q| and |Qpa|. On average |dpos| seems linear in the size of
the RE, and that fact was recently proved by Nicaud [Nic09].

Table 2. NFA measures.

Apos As Apa
|Qpos||[0pos|| det| hom|[|Qy[[[0¢]] det| hom|[[@pal[|dpa]| det| hom
50 43| 51|49.1%|100%|| 38| 44[49.3%|13.7% 38| 44]49.4%|13.6%
100 78| 104|16.0%|100%|| 67| 84/17.0%| 1.0% 66| 83|17.0%| 1.0%
200 166| 211|27.6%|100%|| 148|175|27.7%| 1.5%|| 146| 173]27.7%| 1.4%
300 248| 317(23.9%|100%|| 222]262|23.9%| 0.5%|| 220| 260|23.9%| 0.5%

size

Table 3. Ratios of NFA measures.

[0pos| [Q4] [5/1 [Qpal | [3pdl [[8pal [T@pal [[3pdl
alph+1| alph+1 [alph+1 [alph+1 | alph+1 [[9posl| Qs | 5]
50 1.18 0.90| 1.02] 0.89 1.02| 0.86| 0.99(0.99
100 1.33 0.85| 1.07| 0.84| 1.05] 0.79| 0.98]0.99
200 1.27 0.89 1.06] 0.88 1.05| 0.82| 0.99]0.99
300 1.28 0.89] 1.06] 0.88 1.05| 0.82| 0.99]0.99

size

Reductions by = and =, (or =g o =) decrease by less than 2% the size of
the considered NFAs (Apes, Ay, and Apq). In particular the quotient automata
of Apos are less than 1% smaller than A,q4. In general, we can hypothesize that
reductions by the coarsest invariant equivalences are not significant when REs
are reduced (and/or are in snf).

8 Conclusion

We presented a set of tools within the FAdo system to uniformly random gen-
erate REs, to convert REs into e-free NFAs and to simplify both REs and NFAs.
These tools can be used to obtain experimental results about the relative de-
scriptional complexity of regular language representations on the average case.
Our experimental data corroborate some previous experimental and theoretical
results, and suggest some new hypotheses to be theoretically proved. We high-
light the two following conjectures. Reduced REs have high probability of being
in snf. And the Apq obtained from REs in reduced snf seems to almost coincide
with quotient automata of Ay by =g 0 =y

We would like to thank the anonymous referees for their comments that
helped to improve this paper.

References

[AAAT09] A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and

[Ant96]
[BK93]
[COZ0T]

[CZ02]

GUlItar: tools for automata manipulation and visualization. In S. Maneth,
editor, 14th CIAA’09, volume 5642 of LNCS, pages 65-74. Springer, 2009.
V. M. Antimirov. Partial derivatives of regular expressions and finite au-
tomaton constructions. Theoret. Comput. Sci., 155(2):291-319, 1996.

A. Briiggemann-Klein. Regular expressions into finite automata. Theoret.
Comput. Sci., 48:197-213, 1993.

J.-M. Champarnaud, F. Ouardi, and D. Ziadi. Normalized expressions and
finite automata. Intern. Journ. of Alg. and Comp., 17(1):141-154, 2007.
J. M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives
and finite automaton constructions. Theoret. Comput. Sci., 289:137-163,
2002.

[EKSWO05] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New

[FAd10]
[GGOY]
[Glu61]
[Gou09]

[HSWO1]

[1SOY05)

[TY03a)
[TY03b)

[LS05]

[Mai94]
[Mir66]
[MRO5]
[MY60]

[Nic09]

[PT87]

results and open problems. J. Aut., Lang. and Combin., 10(4):407-437,
2005.

Project FAdo. FAdo: tools for formal languages manipulation.
http://www.ncc.up.pt/FAdo, Access date:1.1.2010.

H. Gruber and S. Gulan. Simplifying regular expressions: A quantitative
perspective. Technical report, IFIG Research Report, 2009.

V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys,
16:1-53, 1961.

H. Gouveia. Obtencao de autématos finitos ndo deterministicos pequenos.
Technical report, DCC-FCUP, 2009.

J. Hromkovic, S. Seibert, and T. Wilke. Translating regular expressions into
small epsilon-free nondeterministic finite automata. J. Comput. System Sci.,
62(4):565-588, 2001.

L. Ilie, R. Solis-Oba, and S. Yu. Reducing the size of NFAs by using equiv-
alences and preorders. In A. Apostolico, M. Crochemore, and K. Park,
editors, 16th CPM 2005, volume 3537 of LNCS, pages 310-321. Springer,
2005.

L. Ilie and S. Yu. Follow automata. Inf. Comput., 186(1):140-162, 2003.
L. Ilie and S. Yu. Reducing NFAs by invariant equivalences. Theoret.
Comput. Sci., 306(1-3):373-390, 2003.

J. Lee and J. Shallit. Enumerating regular expressions and their languages.
In M. Domaratzki, A. Okhotin, K. Salomaa, and S. Yu, editors, 9th CIAA
2004, volume 3314 of LNCS, pages 2—22. Springer, 2005.

H. G. Mairson. Generating words in a context-free language uniformly at
random. Information Processing Letters, 49:95-99, 1994.

B. G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:51—57, 1966.

N. Moreira and R. Reis. Interactive manipulation of regular objects with
FAdo. In ITiCSE 2005, pages 335-339. ACM, 2005.

R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Transactions on Electronic Computers, 9:39-47, 1960.

C. Nicaud. On the average size of Glushkov’s automata. In A. Dediu, A.-M.i
Ionescu, and C. M. Vide, editors, 8rd LATA 2009, volume 5457 of LNCS,
pages 626-637. Springer, 2009.

R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM
J. Comput., 16(6):973-989, 1987.

