FAdo:, tools for finite automata and
regular expressions manipulation

Rogério Reis Nelma Moreira

Technical Report Series: DCC-2002-02

Departamento de Ciéncia de Computadores — Faculdade de Ciéncias
&

Laboratério de Inteligéncia Artificial e Ciéncia de Computadores

Universidade do Porto
Rua do Campo Alegre, 823 4150 Porto, Portugal
Tel: +351+246078830 — Fax: +351+2+6003654

http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

FAdo: tools for finite automata and regular
expressions manipulation

Rogério Reis and Nelma Moreira

DCC-FC& LIACC, Universidade do Porto
R. do Campo Alegre 823, 4150 Porto, Portugal
email: {rvr,nam}@ncc.up.pt

August 2002

Abstract

FAdo is an ongoing project which goal is the development of a Python environment
for manipulation of finite automata and regular expressions. Currently it provides
most standard automata operations including conversion from deterministic to non-
deterministic, minimisation, boolean operations, concatenation, conversion between au-
tomata and regular expressions, and word recognition. It includes, also, an innovative
method for testing non-equivalence of two automata (or regular expressions) using a DFA
canonical form and a witness generator of the difference of two automata.

Our main motivation is the development of interactive tools for teaching concepts
in automata theory and formal languages. Towards this goal we are also developing
graphical tools for creating and manipulating automata and a graphical user interface.

Key-words: Automata theory, Interactive visual tools, e-learning

1 Introduction

Regular languages are fundamental computer science structures and most efficient soft-
ware tools are available for their representation and manipulation. But for experimenting,
studying and teaching their formal and computational models it is useful to have tools for
manipulating them as first-class objects. Automata theory and formal languages courses
are mathematical in essence, and traditionally are taught without computers. Well
known advantages of the use of computers in education are: interactive manipulation,
concepts visualisation and feedback to the students. We believe that an automata theory
course can benefit from this advantages, because:

e most of the mathematical concepts can be visualised graphically. Interactivity can
help in the consolidation of the concepts and an easier grasp of the formal notation.

e most of the theorem proofs are algorithmic and can be interactively constructed

e automatic correction of exercises provides immediate feedback to the students
allowing for a quicker understanding of the concepts.

In this paper, we describe a collection of tools implemented in Python [Lut96] that are
a first step towards an interactive environment to teach and experiment with regular and
other formal languages. The use of Python, a high-level object-oriented language with
high-level data types and dynamic typing, allows us to have a system which is modular,
extensible, clearly and easily implemented, and portable. The Python interface to the
Tk graphical toolkit [Ous94], gives a good platform to build the graphical environment.

In the next section, we present the implementation details of the package and we
describe which functionalities are currently available. For the more technical aspects, we
assume some familiarity with the Python language. In Section 3 we show how FAdo
can be used to solve and correct some automata theory problems. Section 4 introduces
the graphical environment and its functionalities. Some related work is discussed in
Section 5. Planned future work is presented in Section 6.

2 Representing Regular Languages

We assume basic knowledge of formal languages and automata theory [HUT7T9, HMUOO,
Ko0z97]. The set of regular languages over an alphabet ¥ contains @, {e}, {a} for all
a € X, and is closed under union, concatenation and Kleene closure. Regular languages
can be represented by regular expressions (regexp) or finite automata (FA), among other
formalisms. Finite automata can be deterministic (DFA) or non-deterministic (NDFA). All
three notations can represent the same set of languages. In FAdo, we can manipulate
each of these representations and convert between them, as shown in Figure 1.

NDFA — = DFEA

regexp - - - -- MinDFA

Figure 1: Conversions between regular language representations

2.1 Finite Automata

A finite automaton has a finite set of states and each transition from a state to another
one is parametrised by an input symbol. It is deterministic if given an input symbol
there is only one state to which the automaton can transition from the any state. It is
non-deterministic, otherwise.

Formally a deterministic finite automaton (DFA) is specified by a 5-tuple (S, X, §, so, F'),
where S is the set of states, ¥ is the input alphabet, § is the transition function
0:5 xX =5, s the start symbol, and F' is a set of final states. In a nondeterministic
automata ¢ is a function from S x ¥ to the set of subsets of S (P(S)), d: S x X — P(S).

The class FA implements the basic structure of finite automata shared by deterministic
and non-deterministic ones. This class defines

Sigma the input alphabet

States the set of states

Initial the initial state

Final the set of final states.

This class also provides methods for manipulating this structures: add, set, delete, test,
etc. A list of its main attributes and methods can be found in Table 1, Appendix A. As

we suppose that a finite automata is either a DFA or NDFA, instances of this class are not
to be defined by themselves.

2.1.1 Nondeterministic Automata

The class NDFA inherits from the class FA, and provides methods to manipulate a NDFA. In
the literature, there is a distinction between NDFA with and without e-transitions (NDFA
and e-NDFA). An e-transition is a transition that does not consume an input symbol
(e represents the empty string). Normally, € is added to the alphabet and a special
treatment is given to that type of transitions. In FAdo, we allowed all NDFA’s to be
€-NDFA. But it is easy to construct methods to test for e-transitions and to convert
an €-NDFA to a NDFA. This class defines the method addTransition() for constructing
the transition function and the method evalWord() for evaluating whether a word is
recognised. See Table 2, Appendix A, for more details.

2.1.2 Deterministic Automata

The class DFA inherits from the class FA, and provides methods to manipulate a DFA.
Mathematically DFA’s are richer than NDFA’s'. In particular, evaluating whether a word
is recognised by a DFA, is the most efficient way to test membership in a regular language
(it is a DLOGSPACE-complete problem[JBR91]). But there are other more important
features which we analyse in the next paragraphs.

Minimisation, Equivalence and a canonical form for DFA’s

It is possible to test if two DFA’s are equivalent (i.e, if they define the same language),
and given a DFA to find an equivalent DFA that has a minimum number of states. The key
point is to find states that are equivalent or indistinguishable. Two states are equivalent if
for all inputs, from both of them either a final state is reachable or not. Equivalent states
can be merged in only one state. The method Minimal () implements DFA minimisation
using the table-filling algorithm [HMUOO] to find equivalent states.

For testing equivalence of two DFA’s, we can minimise the two automata and verify
if the two minimised DFA’s are isomorphic (i.e are the same up to renaming of states).
The best way to verify isomorphism is to have a canonical form for DFA’s. Considering a
(complete) DFA (Sigma,States,delta,Initial,Final) we can obtain a unique string
that represents it. Let Sigma be ordered (p.e, lexicographically), the set States is
reordered in the following manner:

1. Initial is the first state

2. Following Sigma order, visit the states reachable from Initial in one transition,
and if a state was not yet visited, give him the next number.

3. Repeat step 2 for the second state, third state,... until the number of the current
state is the number of states (in the new order).

For each state a list of the states visited from it is made and a list of these lists is
constructed. The list of final states is appended to that list. The result is a canonical
form. An example is given in Figure 2 and the algorithm is presented in Figure 3.

If a DFA is minimal, the alphabet and its canonical form uniquely represent a regular
language. For test equivalence we only need to check whether the alphabet and the
canonical form are the same.

It is interesting to note that this approach does not induce a canonical form for
NDFA’s. It is known that minimal automata for a NDFA are not unique (and very hard
to obtain, actually it is a PSPACE-complete problem [MST72]). But given a NDFA we can
obtain a equivalent minimal DFA in canonical form. The example in Figure 4 shows that
we can not induce the state’s order of that DFA to the states of the NDFA. As far as we
know, it is an open question if there can be a canonical form for NDFA’s...but if it exists
it must be very large...

'In fact NDFA, as other nondeterministic machines, more than computational devices, they are convenient
and succinct representations...

Figure 2: Let Sigma={1,0}, Initial=0 and Final={2}, the canonical form of this DFA is
o,11,[2,11,[0,1], [2]

def uniqueStr(self):

tf, tr = {}, {}
string = []
i,j=0,0

tf[self.Initiall, tr[0] = 0, self.Initial
while i <= j:
list = []
for ¢ in self.Sigma:
foo = self.deltaltr[il][c]
if foo not in tf.keys(Q):
j=3j+1
tf[fool] , tr[j]l = j, foo
list.append(tf[foo])
string.append(list)
i=1i+1
list = []
for s in self.Final:
list.append(tf[s])
list.sort()
string.append(list)
return string

Figure 3: Determining a unique representation for a DFA

Figure 4: A state order in the minimal DFA at the right, can not induce a unique state order
in the (equivalent) NDFA at the left.

Other DFA operations

Besides union, concatenation and Kleene closure, regular languages are closed under
other operations, as intersection, complement, difference of two languages and reverse.
Some of the above operations are trivial using regular expressions. In the current
implementation we choose to define, in the class DFA, those which are “closed” for
DFA’s, that is, are usually performed without the construction of a NDFA or other regular
language representation. From the above set we excluded, concatenation and Kleene
closure. See Table 3, Appendix A, for more details. Note that we used the special
overloading methods (preceded and followed by double underscores) for the standard
operations |, & , ~, =, etc.

Witnessing the difference of two automata
Although finite automata are recognition devices, not generation devices (as grammars
are), sometimes it is useful to generate a word recognisable by an automaton (witness).
This is the case, in correcting exercises where we have the solution and an answer from
a student. Instead of only reporting that an answer is wrong, we can exhibit a word
that belongs to the language of the solution, but not to the language of the answer (or
vice-versa).

A witness of a DFA, can be obtained by finding a path from the initial state to some
final state. If no witness is found, the DFA accepts the empty language.

Given A and B two DFA’s, if —AN B or AN —B have a witness then A and B are not
equivalent. If both DFA’s accept the empty language, A and B are equivalent. This test
is implemented by the method witnessDiff ().

2.1.3 Converting NDFA’s to DFA’s

The equivalence of nondeterministic and deterministic automata is one of the most
important facts about regular languages. Trivially a DFA can be seen as a NDFA. The
conversion of a NDFA to a DFA that describes the same language, can be achieved by subset
construction [HMUOQ]. This method is usually teached in automata theory courses, so it
is important to be able to illustrate and animate it. It is is implemented by the module
function NDFA2DFA (), that given a NDFA as argument, returns a DFA.

2.1.4 File Format for I/O

In the current version, we have a very simple format to read and write finite automata
definitions. Each file can contain several definitions and must obey the following speci-
fications:

e an # begins a comment

e ODFA or ONDFA begins a new automata (and determines its type). It must be
followed by the list of the final states separated by blanks

e cach following line represents a transition. It is a triple that consists of the source
state (name), an input symbol, and the target state (name). Each of the fields are
separated by a blank. The name of a state can be any string (except #).

e the source state of the first transition is the name of the initial state.

The automaton represented in Figure 2 can be specified by the following instructions:

@DFA 2

= = O O
O = O =
= N = O

210
201
The method readFromFile () reads finite automata definitions from a file and returns
a list of DFA’s and/or NDFA’s. The method saveToFile() saves a finite automaton
definition to a file.

2.2 Regular Expressions

A regular expression can be a symbol of the alphabet, the empty set (0), the empty string
(e) or the concatenation or the union (+) or the Kleene star (x) of a regular expression.
Examples of regular expressions are a+b, (a + ba)x and (e + a)(ba + ab + ().

The class regexp implements the three base cases and the complex cases are the
subclasses concat, disj and star, respectively. For base cases, the attribute val stores
the value of the regular expression. The constant Epsilon represents the empty string
and the constant Emptyset represents the empty set. For complex cases, the arguments
are stored in the attributes arg, for unary, and argl and arg?2, for binaries. See Table 6,
Appendix A, for more details.

2.2.1 Regular Expressions I/0

The input/output of a regexp instance is the usual one, with € represented by @ and {}
representing (). Qutput is implemented by the __str__ (overloading) standard method of
each class. For the input, we used a parser generator, pyParser, that was also developed
for this project. Specifically for regular expressions we had to provide a lexical analyser,
a grammar and the associated semantic rules. In the lexical analyser, we restricted
the alphabet to letters and digits. The grammar is a classical non-ambiguous context-
free grammar for regular expressions, where the operators precedence order is union,
concatenation and star. The semantic rules compositionally build a regexp instance
from their arguments. For example, the semantic function for the union ruler - r 4+ ¢
is:

def OrSemRule(args,context=None) :
return disj(args[2],args[0])

The class ParseReg implements the parser for regular expressions and the method
str2regexp() returns a regexp object, given a string as argument.

2.3 Converting Finite Automata to Regular Expressions

The conversion from DFA’s to regular expressions, is based on successively constructing
regular expressions rg-c), that represent the language recognised between state ¢ and state
Jj, without going through a state number higher than k£ [HMUO00]. It is implemented by
the method regexp () of the class DFA. This algorithm is mathematically very instructive,
but it is highly inefficient: it can build a regular expression with 4™ symbols from an
automata with n states.

We plan to implement other less redundant (but less general) methods, such as the
method by elimination of states.

2.4 Converting Regular Expressions to Finite Automata

The conversion is from regular expressions to epsilon-NDFA’s using the Thompson’s
construction [HMUOQO, Tho68]. The idea is to recursively build an e-NDFA for each type
of regexp. Each regexp subclass has a method ndfa() that allows to construct an NDFA
for its type.

3 Using FAdo

In this section we illustrate how FAdo can be used for solving (and correcting) some
typical exercises for a first course in automata theory. In Python interactive mode, we
must first import the package:

>>> from dfa import *
>>>
Example 1 Convert to a reqular expression the following NDFA:

ONDFA 2
011

N NN =
O O O~
O N = N

>>> n=readFromFile("examples/el.fa") [0]

>>> d=NFDA2DFA(n)

>>> print d.regexp() .simplify()

(A + @)+ @100x1 0+ (10)) 0x 1)* (1+ 1))

<

Example 2 Convert the regular expression (04+1)%(012) to o NDFA. Obtain an equivalent
minimal DFA (and the DFA canonical form).

>>> a=str2regexp (" (0+1)*(012)")

>>> d=NDFA2DFA(a.ndfa())

>>> d.Minimal()

>>> saveToFile("e2.fa",d)

>>> d.uniqueStr()

(c1, o, 21, 1, 3, 21, [2, 2, 21, [1, o, 41, [2, 2, 2], [4]1]

The minimal automata definition that was saved is the following;:

(<]
=)
= T
=
w

B P W WWDNNMNNRERE PR, OOO
NOFRLPNOFRFNOFLNOFKDNO
P PdPPdPDdPPOPRPOPERLNDPRLRO

<>

Example 3 Check whether the following two regular expressions are equivalent (014 0)x
and 0(10 + 0)x.

>>> a=str2regexp (" (01+0)*")
>>> b=str2regexp ("0(10+0)*")
>>> da=NDFA2DFA(a.ndfa())
>>> db=NDFA2DFA(b.ndfa())
>>> da.witnessDiff (db)

The two regular expressions are not equivalent: the first one describes a language
that contains the empty string but not the second one. o

In the last example we could have defined a method that given two (or more) regular
expressions would determine if they were equivalent. The possibility of constructing new
methods from those defined in the package is one of the advantages of FAdo.

4 Graphical Interface
Currently, the great advantage of the FAdo graphical environment is to allow the

visualisation and the edition of the diagrams representing finite automata. Figure 5
shows a diagram for the minimal DFA of Example 2.

1*(01)

Figure 5: FAdo graphical interface

A diagram can be constructed from a finite automata definition, or created/transformed

using the edit toolbox (at the right side of the interface). The editing operations available
are:

e add/move a state
e add a transition between two states; a label is prompted to the user.

e delete a state or a transition

Clicking Button3 in a state we can make it the initial (yellow background) and/or a final
state (blue border).

In the first implementation, we used a basic graph drawing library from the Gato
project whose aim is the visualisation and the animation of algorithms on graphs [gat02].
But, that library was not easily adaptable to our needs and we decided to implement an
independent library for graph visualisation.

In the current version, the graphical user interface provides access to some conversions
whose results are visualised:

NDFA— DFA pressing the To DFA button

DFA— regexp pressing the Regexp button

regexp— MinDFA pressing return-key after giving a regular expression
DFA— MinDFA pressing the Minimal button

DFA— complete DFA pressing the Complete button

DFA— —DFA pressing the “DFA button

Given a NDFA or a DFA, an input string can be entered and evaluated.

5 Related Work

There are several projects whose goal is the manipulation of automata theory objects.
In late 1999, when this project begun, not many packages provided graphical and
interactive manipulation. That was the case of the Grail+ project, a C++ library
for finite automata and regular expressions [RW95]. Grail+ operations are accessible
either as individual programs (used as shell filters) or through a C++ class library. In
the Grail’s homepage [fas02],it can be found a set of links to other automata theory
software which includes AUTOMATE [CH91], AMoRE [JPTW90], Fire Lite [Wat], etc.
In the last few years several Java applets for finite automata processing became
available on-line, but normally their functionalities are very limited. JFLAP is one
of the projects that shares most of our goals. Its main motivation is teaching and
the current emphasis is in animation and interactive visualisation of automata theory
concepts [BLPT97, GR99, HR00]. JFLAP supports drawing and execution of finite-
state machines, conversions between deterministic and non-deterministic, and animated
conversions from and to regular expressions. JFLAP also provides tools for manipulation
with grammars, pushdown automata and Turing machines. Gaminal is a project for the
development of learning software for compiler design [DKO00]. One of its components
is an environment for processing finite automata. In particular, an electronic book
that illustrates many of the regular languages manipulations, is available online [gan02].
Finally we refer FSA a set of tools for manipulating several types of finite-automata and
regular expressions implemented in Prolog [fsa02].

Although our project was suspended for a couple of years and in spite of some new
software being available, we think its goals are worthwhile. Obtaining a good interaction
with the students and fine grain animation tools are two areas where much more research
is needed.

10

6 Future Work

There are several different lines of future work.
The graphical environment should provide:

e interactive animation of the several conversion algorithms and word evaluations.

e simultaneous access to several automata and regular expressions, in order to com-
pare and compose their languages.

e more information about the objects and the languages they represent.

In order to develop interactive tools for an automata theory course, much more
must be done. Many more operations and algorithms can be implemented for the
manipulation of finite automata and regular expressions. In particular, constructions
of NDFA’s without e-transitions from regular expressions [Glu60, MY60, BK92, Wat93],
constructions of regular expressions from DFA’s by state elimination and simplification
techniques, DFA’s constructions based on Myhill-Nerode theorem and Brzozowski deriva-
tives [HUT79, Brz62, Wat93], several minimisation algorithms [Wat95], etc. We will also
extend the functionalities to other kinds of automata, specially to pushdown automata
and transducers. In the near future we plan to implement tools for manipulating
several concepts associated with regular and context-free grammars, namely, conversions
between automata models, construction of derivation trees, transformations to normal
forms, etc. An integrated module for the simulation of Turing machines (and unrestricted
grammars) should also be part of the package.

The integration of the package for correcting exercises in a Web system or in an
electronic book must be designed. In particular, the functionalities available must be
parameterisable and the communication between the several components (wordings of
exercises, edition of students answers, formatting of solutions, grading systems, etc) must
be specified.

Finally we are also planning to use standard formats for exchanging information. We
already have a proposal for extending GraphML, a new extensible XML language for
graphs [gra02, UBMO02], to describe automata. We also would like to export automata
diagrams to the xypic format (for LaTeX documents).

Acknowledgement

We thank Miguel Filgueiras for helpful comments.

References

[BK92] Anne Briigermann-Klein. Regular expressions into finite automata. In
Proceedings of Latin °92, 1992.

[BLP*97] Anna O. Bilska, Kenneth H. Leider, Magdalena Procopiuc, Octavian
Procopiuc, Susan H. Rodger, Jason R. Salemme, and Edwin Tsang. A

collection of tools for making automata theory and formal languages come
alive. SIGCSEB: SIGCSE Bulletin, 29, 1997.

[Brz62] J. A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. In Mathematical theory of Automata, pages 529-561.
Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y., 1962. Volume 12
of MRI Symposia Series.

[CH91] Jean M. Champarnaud and G. Hanset. AUTOMATE, a computing package
for automata and finite semigroups. Journal of Symbolic Computation,
12:197-220, 1991.

11

[DKO00]

[fas02]

[£s202]

[gan02]
[5at02]
[G1u60]
[GR99]
[gra02]

[HMU00]

[HRO0]
[HU79]
[JBRO1]

[TPTWO0]

[Koz97]

[Lut96]
[MS72]

[MY60]

[Ous94]
[RWO5]

[Tho68]

[UBM02]

Stephan Diehl and Thomas Kunze. Visualizing principles of abstract
machines by generating interactive animations. Future Generation Computer
Systems, 16(7):831-839, 2000.

Links to finite-state machines software.
http://www.csd.uwo.ca/research/grail/links.html, 08/2002.

Fsa6.2xx: Finite state automata utilities.
http://odur.let.rug.nl/"vannoord/Fsa/fsa.html, 08/2002.

Ganifa, generating finite automata.
http://rw4.cs.uni-sb.de/"ganimal/GANIFA/, 08/2002.

Gato project.
http://www.zpr.uni-koeln.de/"gato/, 08/2002.

V. M. Glushkov. On synthesis algorithm for abstract automata. Ukr.
Mathem. Zhurnal, 12(2):147-156, 1960. In Russian.

Eric Gramond and Susan H. Rodger. Using JFLAP to interact with theorems
in automata theory. SIGCSEB: SIGCSE Bulletin, 31, 1999.

GraphML file format.
http://graphml.graphdrawing.org/, 2002.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages and Computation. Addison Wesley, 2nd
edition, 2000.

Ted Hung and Susan H. Rodger. Increasing visualization and interaction in
the automata theory course. SIGCSEB: SIGCSE Bulletin, 32, 2000.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 1979.

T. Jiang and ar B. Raviku. A note on the space complexity of some decision
problems. Information Processing Letters, 40:25-31, 1991.

V. Jansen, A. Potthoff, W. Thomas, and U. Wermuth. A short guide to
the AMoRE system. Aachener informatik-berichte (90) 02, Lehrstuhl fur
Informatik IT, Universitat Aachen, January 1990.

Dexter C. Kozen. Automata and Computaebility. Undergraduate texts in
computer science. Springer, 1997.

M. Lutz. Programming Python. O’Reilly & Associates, 1996.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential time. In Proceedings of the
18th Annual Symp. on switching and Automata Theory, pages 125-129. IEEE
Computer Society, 1972.

R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Transactions on Electronic Computers, 9:39-47, 1960.

John Ousterhout. Tel and the Tk Toolkit. Addison Wesley, 1994.

Darrell Raymond and Derick Wood. Grail: A C++ library for automata and
expressions. J.Symbolic Computation, 11, 1995.

K. Thompson. Regular expression search algorithm. Communications of the
ACM, 11:419-422, 1968.

I. Herman M. Himsolt U. Brandes, M. Eiglsperger and M.S. Marshall.
GraphML progress report: Structural layer proposal. In Proc. 9th Intl. Symp.
Graph Drowing (GD ’01), number 2265 in LNCS, pages 501-512. Springer
Verlag, 2002.

12

[Wat) Bruce W. Watson. The FIRE Lite: FAs and REs in C++. In Proceedings of
the First Workshop on Implementing Automata, pages 167-188.

[Wat93] Bruce W. Watson. A taxonomy of finite automata construction algorithms.
Computing Science Note 93/43, Eindhoven University of Technology, The
Netherlands, 1993.

[Wat95] Bruce W. Watson. Tazonomies and Toolkits of Regular Language Algorithms.
PhD thesis, Eindhoven University of Technology, September 1995.

A Package Description

Class FA

Method/Attribute | Description

States a list of states, their index represents the state and the value
is an optional name (string)

Sigma a set of symbols

Initial the initial state

Final a set of final states

delta a nested dictionary that associates a state to a transition

addState() adds a final state

validateState() checks if a state pertains to a FA

setInitial) sets the initial state

setFinal () sets a list of final states

setSigma() defines the alphabet

addSigma() adds a new symbol to the alphabet

stateName () given a state name returns its index

renameStates () renames all states using a new list of names

noBlankNames () substitutes blank state names by their index

completeP() checks if it is a complete FA

complete () transforms a FA in a complete FA

compact () eliminates unused states

__len__QO returns the number of states

Table 1: Class for finite automata

Class NDFA, inherits from FA

Method/Attribute | Description

addTransition() adds a new transition

EpsilonList() e-closure of a state

evalWord () tests if the NDFA recognises a word

evalSymbol () determines the next set of possible states consuming a

symbol

Table 2: Class for nondeterministic finite automata

13

Class DFA, inherits from FA

Method/Attribute | Description

addTransition() adds a new transition

evalWord () tests if the DFA recognises a word

evalSymbol () determines the next possible state consuming a symbol

Minimal () minimises the DFA

compat () tests compatibility between two states

__cmp__Q verifies if the two automata are equivalent

uniqueStr() returns a unique string that gives us a DFA canonical form

__invert__() returns a DFA that recognises the complementary language

__or__Q) returns a DFA that recognises the union of two languages

__and__Q returns a DFA that recognises the intersection of two lan-
guages

reverse () returns a DFA that recognises the reversal language

witness() generates a word recognisable by the automata; if no word
is found, it accepts the empty language and an exception is
raised

witnessDiff returns a witness for the difference of two DFA’s

regexp() returns a regexp for the current DFA

Table 3: Class for deterministic finite automata

Class regexp

Class disj, inherits from regexp

Class star, inherits from regexp

Class concat, inherits from regexp

Method/Attribute | Description

ndfa() returns a NDFA that accepts the regexp
type) returns the regexp type or value

empty () tests if it is emptyset

epsilon() tests if it is €

simplify () applies some (naive) simplification rules

Table 4: Classes for regular expressions

Method/Attribute | Description

NDFA2DFA () returns a DFA equivalent to a NDFA, given as argument. The
method proceeds by subset construction.

isFAQ) tests if the argument is a FA

isDFA() tests if the argument is a DFA

isNDFAQ) tests if the argument is a NDFA

readFromFile() reads finite automata definitions from a file and returns a
list of DFA’s and/or NDFA’s

saveToFile() saves a finite automaton definition to a file

str2regexp () parses a string and returns a regexp

Table 5: Module methods

14

Constants Value Printable | Description

Epsilon @epsilon Q empty string and regular expression (e)
EmptySet | @empty_set {} empty set and regular expression (()

Table 6: Constants

15

