
Aspects of Enumeration and Generation with a String

Automata Representation ∗

Marco Almeida
mfa@ncc.up.pt

Nelma Moreira
nam@ncc.up.pt
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Abstract

In general, the representation of combinatorial objects is decisive for the feasibility
of several enumerative tasks. In this work, we show how a (unique) string represen-
tation for (complete) initially-connected deterministic automata (ICDFA’s) with n
states over an alphabet of k symbols can be used for counting, exact enumeration,
sampling and optimal coding, not only the set of ICDFA’s but, to some extent, the
set of regular languages. An exact generation algorithm can be used to partition the
set of ICDFA’s in order to parallelize the counting of minimal automata (and thus of
regular languages). We present also a uniform random generator for ICDFA’s that
uses a table of pre-calculated values. Based on the same table it is also possible to
obtain an optimal coding for ICDFA’s.

Keyword: regular languages, initially-connected deterministic finite automata, enu-
meration, random generation

1 Introduction

In general, the representation of combinatorial objects is decisive for the feasibility of
several enumerative tasks. In this work, we show how a (unique) string representation for
(complete) initially-connected deterministic automata (ICDFA’s) with n states over an
alphabet of k symbols can be used for counting, exact enumeration, sampling and optimal
coding, not only the set of ICDFA’s but, to some extent, the set of regular languages.
The key fact is that string representations are characterized by a set of rules that allow
an exact and ordered generation of all its elements. An exact generation algorithm can
be used to partition the set of ICDFA’s in order to parallelize the counting of minimal
automata, and thus of regular languages. With the same set of rules it is possible to
design a uniform random generator for ICDFA’s that uses a table of pre-calculated values
(as usual in combinatorial decomposition approaches). Based on the same table it is also
possible to obtain an optimal coding for ICDFA’s (with or without final states).

∗Work partially funded by Fundação para a Ciência e Tecnologia (FCT) and Program POSI.
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In the next section, some definitions and notation are introduced. In Section 3 we
review the string representation of non-isomorphic ICDFA∅’s (i.e., ICDFA’s without final
states), and how it can be used to generate and enumerate all ICDFA’s. We also relate
those methods to the ones presented by Champarnaud and Paranthöen in [CP05], by
giving a new enumerative result. In Section 4, we briefly describe the implementation of
a generator algorithm for ICDFA∅’s. Section 5 presents the methods for parallelizing the
counting of languages by slicing the universe of ICDFA∅’s and some experimental results
are given. A uniform random generator for ICDFA∅’s is described in Section 6 along with
some experimental results and statistical tests. Using the recurrence formulae defined in
Section 6, we show in Section 7 how we can associate an integer with an ICDFA∅’s and
vice-versa. Section 8 concludes with final remarks.

2 Preliminaries

Given two integers m < n we represent the set {i ∈ N | m ≤ i ≤ n} by [m,n]. A
deterministic finite automaton (DFA) A is a quintuple (Q,Σ, δ, q0, F ) where Q is a finite
set of states, Σ the alphabet, i.e, a non-empty finite set of symbols, δ : Q × Σ → Q is
the transition function, q0 the initial state and F ⊆ Q the set of final states. The size
of the automaton is given by |Q|. We assume that the transition function is total, so we
consider only complete DFA’s. As we are not interested in the labels of the states, we can
represent them by an integer i ∈ [0, |Q| − 1]. The transition function δ extends naturally
to Σ⋆. A DFA is initially-connected1 (ICDFA) if for each state q ∈ Q there exists a
string x ∈ Σ⋆ such that δ(q0, x) = q. The structure of an automaton (Q,Σ, δ, q0) denotes a
DFA without its final state information and is referred to as a DFA∅. For each structure,
there will be 2n DFA’s, if |Q| = n. We denote by ICDFA∅ the structure of an ICDFA.
Two DFA’s A = (Q,Σ, δ, q0, F ) and A′ = (Q′,Σ, δ′, q′0, F

′) are called isomorphic (by
states) if there exists a bijection f : Q → Q′ such that f(q0) = q′0 and for all σ ∈ Σ
and q ∈ Q, f(δ(q, σ)) = δ′(f(q), σ). Furthermore, for all q ∈ Q, q ∈ F if and only if
f(q) ∈ F ′. The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ | δ(q0, x) ∈ F}.
Two DFA are equivalent if they accept the same language. Obviously, two isomorphic
automata are equivalent, but two non-isomorphic automata may also be equivalent. A
DFA A is minimal if there is no DFA A′ with fewer states equivalent to A. Trivially a
minimal DFA is an ICDFA. Minimal DFA’s are unique up to isomorphism. Domaratzki
et al. [DKS02] gave some asymptotic estimates and explicit computations of the number
of distinct languages accepted by finite automata with n states over an alphabet of k
symbols. Given n and k, they denoted by fk(n) the number of pairwise non-isomorphic
minimal DFA’s and by gk(n) the number of distinct languages accepted by DFA’s, where
gk(n) =

∑n
i=1 fk(i).

3 Strings for ICDFA’s

Reis et al. [RMA05] presented a unique string representation for non-isomorphic ICDFA∅’s.
In this section, we briefly review this representation and how it can be used to generate

1Also called accessible.
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and enumerate all ICDFAs. We also give a new enumerative result and relate this repre-
sentation to the one presented by Champarnaud and Paranthöen in [CP05].

Given a complete DFA∅ (Q,Σ, δ, q0) with |Q| = n and |Σ| = k , consider a total order
< over Σ. We can define a canonical order over the set of the states by exploring the
automaton in a breadth-first way choosing at each node the outgoing edges in the order
considered for Σ. If we restrict this representation to ICDFA∅’s, then this representation
is unique and defines an order over the set of its states. For instance, consider the following
ICDFA∅ and consider the alphabetic order in {a, b, c}.

A C

B D

c
a

b
c

b
a

b

c

a
c

b
a

The states ordering is A,C,B,D and [1, 2, 0, 2, 3, 0, 3, 0, 2, 1, 3, 2] is its string representation.
Formally, let Σ = {σi | i ∈ [0, k − 1]}, with σ0 < σ1 < · · · < σk−1. Given an ICDFA∅

(Q,Σ, δ, q0) with |Q| = n, the representing string is of the form (si)i∈[0,kn−1] with si ∈
[0, n − 1] and si = δ(⌊i/k⌋, σi mod k).

Let (si)i∈[0,kn−1] with si ∈ [0, n − 1] be a string satisfying the following conditions:

(∀m ∈ [2, n − 1])(∀i ∈ [0, kn − 1])(si = m ⇒ (∃j ∈ [0, i − 1]) sj = m − 1). (R1)

(∀m ∈ [1, n − 1])(∃j ∈ [0, km − 1]) sj = m. (R2)

In [RMA05] the following theorem was proved.

Theorem 1 There is a one-to-one mapping between (si)i∈[0,kn−1] with si ∈ [0, n − 1]
satisfying rules R1 and R2, and the non-isomorphic ICDFA∅’s with n states, over an
alphabet Σ of size k.

We note that this string representation can be extended to non-complete ICDFA∅’s,
by representing all missing transitions with the value −1. In this case, rules R1 and R2 re-
main valid, and we can assume that the transitions from this state are into itself. However
for enumeration and generation purposes we do not consider non-complete ICDFA∅’s.

In order to have an algorithm for the enumeration and generation of ICDFA∅’s, instead
of rules R1 and R2 an alternative set of rules were used. For n = 1 there is only one
(non-isomorphic) ICDFA∅ for each k ≥ 1, so we assume in the following that n > 1. In
a string representing an ICDFA∅, let (fj)j∈[1,n−1] be the sequence of indexes of the first
occurrence of each state label j. For explanation purposes, we call those indexes flags. It
is easy to see that (R1) and (R2) correspond respectively to (G1) and (G2):

(∀j ∈ [2, n − 1])(fj > fj−1); (G1)

(∀m ∈ [1, n − 1]) (fm < km). (G2)

This means that f1 ∈ [0, k−1], and fj−1 < fj < kj for j ∈ [2, n−1]. We begin by counting
the number of sequences of flags allowed.
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Theorem 2 Given k and n, the number of sequences (fj)j∈[1,n−1], Fk,n, is given by

Fk,n =

k−1
∑

f1=0

2k−1
∑

f2=f1+1

· · ·
k(n−1)−1

∑

fn−1=fn−2+1

1 =

(

kn

n

)

1

(k − 1)n + 1
= C(k)

n ;

where C
(k)
n are the (generalised) Fuss-Catalan numbers.

Proof 1 The first equality follows directly from the definition of the (fj)j∈[1,n−1]. For

the second, note that C
(k)
n enumerates k-ary trees with n internal nodes, T k

n (see for
instance [SF96]). In particular, for k = 2, C2

n are exactly the Catalan numbers that count
binary trees with n internal nodes. This sequence appears in Sloane [Slo03] as A00108

and for k = 3 and k = 4 as A001764 and A002293 sequences, respectively. So it suffices
to give a bijection between these trees and the sequences of flags. Recall that a k-ary tree is
an external node or an internal node attached to an ordered sequence of k, k-ary sub-trees.

[2,5,8] [1,2,4]

Figure 1: Two 3-ary trees with 4 internal nodes and the correspondent sequence of flags.

Let T k
n be a k-ary tree and let < be a total order over Σ. For each internal node i of T k

n

its outgoing edges can be ordered left-to-right and attached a unique symbol of Σ according
to <. Considering a breadth-first, left-to-right, traversal of the tree and ignoring the root
node (that is considered the 0-th internal node), we can represent T k

n , uniquely, by a bitmap
where a 0 represents an external node and a 1 represents an internal node. As the number
of external nodes are (k − 1)n + 1, the length of the bitmap is kn. Moreover the j + 1-th
block of k bits corresponds to the children of the j-th internal node visited, for j ∈ [0, n −
1]. For example, the bitmaps of the trees in Figure 1 are [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0] and
[0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0], respectively. The positions of the 1’s in the bitmaps correspond
to a sequence of flags, (fi)i∈[1,n−1], i.e., fi corresponds to the number of nodes visited before
the i-th internal node (excluding the root node). It is obvious that (fi)i∈[1,n−1] verify G1.
For G2, note that for the each internal node the outdegree of the previous internal nodes
is k. Conversely, given a sequence of flags (fj)j∈[1,n−1], we construct the bitmap such that
bfi

=1 for i ∈ [1, n − 1] and bj = 0 for the remaining values, for j ∈ [0, kn − 1]. As above,
for the representation of the j + 1-th internal node, ⌊fj/k⌋ gives the parent and fj mod k
gives its position between its siblings (in breadth-first, left-to-right traversal).

To generate all the ICDFA∅’s, for each allowed sequence of flags (fj)j∈[1,n−1], all the
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remaining symbols si can be generated according to the following rules:

i < f1 ⇒ si = 0; (G3)

(∀j ∈ [1, n − 2])(fj < i < fj+1 ⇒ si ∈ [0, j]); (G4)

i > fn−1 ⇒ si ∈ [0, n − 1]. (G5)

In [RMA05] a simple combinatorial argument was given to show that

Theorem 3 The number of strings (si)i∈[0,kn−1] representing ICDFA∅’s with n states
over an alphabet of k symbols is given by

Bk,n =
k−1
∑

f1=0

2k−1
∑

f2=f1+1

3k−1
∑

f3=f2+1

· · ·
k(n−1)−1

∑

fn−1=fn−2+1

n
∏

i=2

ifi−fi−1−1; (1)

where fn = kn.

In Section 6 we give other recursive definition that is more adequate for tabulation.

3.1 Analysis of the Champarnaud et al. Method

Champarnaud and Paranthoën in [CP05, Par04], generalizing work of Nicaud [Nic00]
presented a method to generate and enumerate ICDFA∅’s, although not giving an explicit
and compact representation for them, as the string representation used here. An order
< over Σ⋆ is a prefix order if (∀x ∈ Σ⋆)(∀σ ∈ Σ)x < xσ. Let A be an ICDFA∅ over Σ
with k symbols and n states. Given a prefix order in Σ⋆, each automaton state is ordered
according to the first word x ∈ Σ⋆ that reaches it in a simple path from the initial state.
The sets of this words {P} are in bijection with k-ary trees with n internal nodes, and
therefore to the set of sequences of flags, in our representation2. Then it is possible to
obtain a valid ICDFA∅ by adding other transitions in a way that preserves the previous
state labelling. For the generation of the sets P it is used another set of objects that are
in bijection with k-ary trees with n internal nodes and are called generalised tuples. The
number of ICDFA∅’s is computed using recursive formulae associated with generalized
tuples, akin the ones we present in Section 6.

4 Generating ICDFA∅’s

In this section, we present a method to generate all ICDFA∅’s, given k and n. We start
with an initial string, and then consecutively iterate over all allowed strings until the last
one is reached. The main procedure is the one that given a string returns the next legal
one. For each k and n, the first ICDFA∅ is represented by the string 0k−110k−1 . . . (n−1)0k

and the last is represented by 12 . . . (n−1)(n−1)(k−1)n+1. According to the rules G1- G5,
we first generate a sequence of flags, and then, for each one, the set of strings representing
the ICDFA∅’s in lexicographic order. The algorithm to generate the next sequence of
flags is the following, where the initial sequence of flags is (ki − 1)i∈[1,n−1]:

2Indeed our order on the states induces a prefix order in Σ⋆.
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def nextflags(i) :
i f i==1 then fi = fi − 1
else

i f (fi−1 == fi−1 ) then
fi = k ∗ i − 1
nextflags(i − 1)

else fi = fi − 1

To generate a new sequence, we must call nextflags(n-1). Given the rules G1 and G2 the
correctness of the algorithm is easily proved. When a new sequence of flags is generated,
the first ICDFA∅ is represented by a string with 0s in all other positions (i.e., the lower
bounds in rules G3–G5). The following strings, with the same sequence of flags, are
computed lexicographically using the procedure nexticdfa, called with a = n − 1 and
b = k − 1:

def nexticdfa(a, b) :
i = a ∗ k + b

i f a < n − 1 then
while i ∈ (fj)j∈[1,n−1] :

for k = i + 1 to kn − 1 :
i f k /∈ (fj)j∈[1,n−1] then sk = 0

b = b − 1
i = i − 1

fj = the nea r e s t f l a g not exceed ing i
i f si == sfj

then
si = 0
i f b == 0 then nexticdfa(a − 1, k − 1)
else nexticdfa(a, b − 1)

else si = si + 1

Note that the last string for each sequence of flags has the value sl = j for l ∈
[fj + 1, fj+1 − 1], with j ∈ [1, n − 1]. The time complexity of the generator is linear in
the number of automata. As an example, for k = 2 and n = 9 it took about 12 hours to
generate all the 705068085303 ICDFA∅’s, using a AMD Athlon at 2.5GHz. Finally, for the
generation of ICDFA’s we only need to add to the string representation of an ICDFA∅,
a string of n 0’s and 1’s, correspondent to one of the 2n possible choices of final states.

5 Counting Regular Languages (in Slices)

To obtain the number of languages accepted by DFA’s with n states over an alphabet of k
symbols, we can generate all ICDFA’s, determine which of them are minimal (fk(n)) and
calculate the value of gk(n). Obviously, this is in general an intractable procedure. But
for small values of n and k some experiments can take place. We must have an efficient
implementation of a minimization algorithm, not because of the size of each automaton
but because the number of automata we need to cope with. For that we implemented
Hopcroft’s minimization algorithm [Hop71], using efficient set representations. For very
small values of n and k (n + k < 16) we represented sets as bitmaps and for larger values,
AVL trees [Avl] were used.

The problem can be parallelized providing that the space search can be safely par-
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n ICDFA∅ ICDFA Minimal (fk(n)) Minimal % Time (s)
k = 2 2 12 48 24 50% 0

3 216 1728 1028 59% 0.018
4 5248 83968 56014 66% 0.99
5 160675 5141600 3705306 72% 79.12
6 5931540 379618560 286717796 75% 8700
7 256182290 32791333120 25493886852 77% 1237313

k = 3 2 56 224 112 50% 0.002
3 7965 63720 41928 65% 0.7
4 2128064 34049024 26617614 78% 494.72
5 914929500 29277744000 25184560134 86% 652703

k = 4 2 240 960 480 50% 0.01
3 243000 1944000 1352732 69% 23.5
4 642959360 10287349760 7756763336 75% 184808

k = 5 2 992 3968 1984 50% 0.041
3 6903873 55230984 36818904 66% 756.2

Table 1: Performance and number of minimal automata.

titioned. Using the method presented in Section 4, we can easily generate slices of
ICDFA∅’s and feed them to the minimization algorithm. A slice is a sequence of ICDFA∅’s
and is defined by a pair (start, last), where start is the first automaton in the sequence
and last is the last one. If we have a set of CPUs available, each one can receive a slice,
generate all ICDFA∅’s (in that slice), generate all the necessary ICDFA’s and feed them
to the minimization algorithm. For the generation of ICDFA’s, we used the observation
by Domaratzki et al. [DKS02], that is enough to test 2n−1 sets of final states, using the
fact that a DFA is minimal iff its complementary automaton is minimal too. In this way,
we can safely divide the search space and distribute each slice to a different CPU. Note
that this approach relies in the assumption that we have a much more efficient way to
partition the search space than to actually perform the search (in this case a minimization
algorithm). The task of creating the slices can be taken by a central process that succes-
sively generates the next slice and at the end assembles all the results. The server can
run interactively with its slaves, or it can generate all the slices at once to be used later.
The server generates a slice using the generator algorithm presented in Section 4. For this
experiment we used two approaches. We developed a simple slave management system –
called Hydra — based on Python threads, that was composed by a server and a variable
set of slaves. In this case, the slaves can be any computer3. For each slice a process was
executed via ssh, and the result was returned to the server. Another approach was to use
a computer grid, in particular 24 AMD Opteron 250 2.4GHz (dual core).

5.1 Experimental results

In Table 1, we summarise some experimental results. Most of the values for k = 2 and
k = 3, were already given by Domaratzki et al. in [DKS02] and the new results are in bold
in the table. For k = 2, n = 8 we have divided the universe of ICDFA∅’s in 254 slices and
the estimated CPU time for each one to be processed is 11 days.

Moreover, the slicing process can give new insights about the distribution of minimal
automata. Figure 2 presents two examples of the values obtained for the rate of minimal
DFA’s. For n = 7 and k = 2 we give the percentage of minimal automata for each of the

3We used all the normal desktop computers of our colleagues in the CS Department.
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257 slices we had used to divide the search space (32791333120 ICDFA∅’s). Each slice
had about 100000 ICDFA∅’s, and so 128000000 ICDFA’s, and it took about 78 minutes
to conclude the process. The whole set of automata was processed in 12 hours of real time
of a CPU grid, that corresponds to 344 hours of CPU time.
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Figure 2: Rate of minimal DFA’s with (k = 3,n = 5) for 915 slices and with (k = 2,n = 7)
for 257 slices.

6 A Uniform Random Generator

The ICDFA∅ representation presented (Section 3) permits an easy random generation for
ICDFAs, and thus for DFAs. To randomly generate a DFA for a given n and k, it is
only necessary to: (i) randomly generate a valid sequence of flags (fi)i∈[1,n−1] according to
G1 and G2; (ii) followed by the random generation of the rest of the nk elements of the
string following G3–G5 rules; (iii) and finally the random generation of the set of final
states. The uniformity issue for steps (ii) and (iii) is quite straightforward. For step (iii)
it is just necessary to use a uniform random integer generator for a value i ∈ [0, 2n]. It
is enough, for step (ii) the repeated use of the same number generator for values in the
range [0, i] for 0 ≤ i < n according to rules G3–G5. Step (i) is the only step that needs
special care. Consider the case n = 5 and k = 2. Because of rule R1 flag f1 can only be
on positions 0 or 1. But there are 140450 ICDFA∅’s with f1 in the first case and only
20225 in the second. Thus the random generation of flags, to be uniform, must take this
into account by making the first case more probable than the second. We can generate a
random ICDFA∅ generating its representing string from left to right. Supposing that flag
fm−1 is already placed at position i and all the symbols to its left are generated, i.e., the
prefix s0s1 · · · si is already defined, then the process can be described by:

r = random(1,
mk−1
∑

j=i+1

Nm,j)

for j = i + 1 to mk − 1 :

i f r ∈
[

j−1
∑

l=i

Nm,l,
j

∑

l=i

Nm,l

]

then return i
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where random(a,b) is an uniform random generated integer between a and b, and Nm,j

is the number of ICDFA∅s with prefix s0s1 · · · si with the first occurrence of symbol m
in position j, making Nm,i = 0 to simplify the expressions. The values for Nm,j could
be obtained from expressions similar to Equation (1), and used in a program. But the
program would have a exponential time complexity. By expressing Nm,j in a recursive
form, we have, given k and n

Nn−1,j = nnk−1−j with j ∈ [n − 2, (n − 1)k − 1];

Nm,j =
(m+1)k−j−2

∑

i=0
(m + 1)iNm+1,j+i+1 with m ∈ [1, n − 2],

j ∈ [m − 1,mk − 1].

(2)

This evidences the fact that we keep repeating the same computations with very small
variations, and thus, if we use some kind of tabulation of this values (Nm,j), with the
obvious price of memory space, we can create a version of a uniform random generator, that
apart of a constant overhead used for tabulation of the function refered, has a complexity
of O(n3k)O(random). The algorithm is described by the following:

for i = (n − 1)k − 1 downto n − 2 :

Nn−1,i = nnk−1−i

for m = n − 2 downto 1 :

Nm,mk+1 =
k−1
∑

i=0

(m + 1)iNm+1,mk+i

for i = mk − 2 downto m − 1 :
Nm,i = (m + 1)Nm,i+1 + Nm+1,i+1

g = −1
for i = 1 to n − 1 :

f = generateflag(i, g + 1)
for j = g + 1 to f − 1 :

print random(0, i − 1)
print i
g = f

def generateflag(m, l) :

r = random (0 ,
mk−1
∑

i=l

mi−lNm,i )

for i = l to mk − 1 :

i f r < mi−lNm,i

then return i

else r = r − mi−lNm,i

This means that with the same AMD Athlon 64 at 2.5GHz, using a C implementation
with libgmp [GMP] the times reported in Table 2 were observed. It is possible, without

k = 2 k = 3 k = 5 k = 10 k = 15
n = 10 0.10s 0.16s 0.29s 0.61s 1.30s
n = 20 0.31s 0.49s 1.26s 4.90s 12.24s
n = 30 0.54s 1.37s 3.19s 19.91s 62.12
n = 50 1.61s 3.86s 17.58s 2.22m 947.71s
n = 75 3.96s 12.98s 76.69s 700.20s 2459.34s
n = 100 7.92s 36.33s 215.32s 2219.04s 8091.30s

Table 2: Times for the random generation of 10000 automata.

unreasonable amounts of RAM to generate random automata for unusually large values of
n and k. For example, with n = 1000 and k = 2 the memory necessary is less than 450MB.
The amount of memory used is so large not only because of the amount of tabulated values,
but because the size of the values is enormous. To understand that, it is enough to note
that the total number of ICDFA∅’s for these values of n and k is greater than 103350, and
the values tabulated are only bounded by this number.
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6.1 Statistical test of the random generator

Although the method used to generate random automata is, by its own construction,
uniform, we used χ2 test to evaluate the random generation quality. The universe of
ICDFA∅’s with 6 states and 2 symbols has a total size of 5931540. This size is large
enough for a test with some significance and it is still reasonable, both in time and space,
to perform the test. We generated three different sets of 3000000 ICDFA∅’s and perform
the test in each one. Because of the size of the data, we could not find any tabulated
values for acceptance, and thus the following formula was used with v = 30000000−1 and
xp being the significance level (1% in this case):

v + 2
√

vxp +
3

4
x2

p −
2

3
.

The size of the data sets and the repetition of the test for three times, is the recommended
procedure by Knuth ([Knu81], pages 35–39). For the three experiments the values obtained
were, respectively, 5933268.92456, 5925676.75108 and 5935733.28172, that are all smaller
than the acceptance limit, that for this case was 5938980.75468.

7 Enumeration of ICDFA∅’s

In this section, we show how, given a string representation of an ICDFA∅’s of size n over
an alphabet of k symbols, we can compute its number in the generation order (described in
Section 4) and vice-versa, i.e., given a number less than Bk,n, we obtain the corresponding
ICDFA∅. This provides an optimal encoding for ICDFA∅’s, as defined by M. Lothaire in
[Lot05], Chapter 9. This bijection is accomplished using the tables defined in Section 6
that correspond to partial sums of Equation (1).

Theorem 4 Bk,n =
k−1
∑

l=0

N1,l.

Proof 2 The result follows easily by expanding Nm,j using Equations (2) and Equa-
tion (1).

7.1 From ICDFA∅’s to Integers

Let (si)i∈[0,kn−1] be an ICDFA∅’s string representation, and let (fj)j∈[1,n−1] be the corre-
sponding sequence of flags. From the sequence of flags we obtain the following number,
nf ,

nf =

n−1
∑

i=1

ik−1
∑

j=fi+1

(ij−fiNi,j(

i−1
∏

m=1

(mfm+1−fm−1)) (3)

which is the number of the first ICDFA∅ with flags (fj)j∈[1,n−1]. Now we must add the
information provided by the rest of the elements of the string (si)i∈[0,kn−1]:

nr =

n−1
∑

j=1





fj+1−1
∑

l=fj+1

sl(j + 1)fj+1−1−l





n−1
∏

m=j+1

(m + 1)fm+1−fm−1







 (4)

And the corresponding number is ns = nf + nr.
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7.2 From Integers to ICDFA∅’s

Given an integer 0 ≤ m < Bk,n a string representing uniquely an ICDFA∅ can be obtained
using a method inverse of the one in the last section. The flags (fj)j∈[1,n−1] are generated
from right-to-left, by successive subtractions. The rest of the string (si)i∈[0,kn−1] is generate
considering the remainders of integer divisions. The algorithms are the following:

s = 1
for i = 1 to n − 1 :

j = i ∗ k − 1

p = ij−fi−1−1

while j >= i − 1 and m ≥ p ∗ s ∗ Ni,j :
m = m − Ni,j ∗ p ∗ s
j = j − 1
p = p/i

s = s ∗ ij−fi−1−1

fi = j

i = k ∗ n − 1
j = n − 1
while m > 0 and j > 0 :

while m > 0 and i > fj :
si = m mod (j + 1)
m = m ÷ (j + 1)
i = i − 1

i = i − 1
j = j − 1

8 Final Remarks

The methods here presented were implemented and tested to obtain both exact and ap-
proximate values for the density of minimal automata. Champarnaud et al. in [CP05],
checked a conjecture of Nicaud that for k = 2 the number of minimal ICDFA’s is about
80% of the total, by sampling automata with 100 states (for all possible number of final
states). Our results also corroborate that conjecture, being the exact values for some
small values of n and samples for greater values. In particular, for k = 2 and n = 100
we obtained the same results as Champarnaud et al.. It seems that for k > 2 almost all
ICDFA’s are minimal. For k = 3, 5 and n = 100 that was also checked by Champarnaud
et al.. For a confidence interval of 99% and significance level of 1% the following table
presents the percentages of minimal ICDFA’s for several values of k and n, and each
possible number of final states.

k\n 5 6 7 8 9 10 20 40 80 160
3 85.8% 90.8% 93.3% 95.0% 96.1% 96.7% 98.7% 99.4% 99.7% 99.8%
5 93.0% 96.5% 98.2% 99.1% 99.5% 99.8% 100.0% 100.0% 100.0% 100.0%
7 93.7% 96.8% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% 100.0% –
9 93.7% 96.9% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% – –
11 93.8% 96.9% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% – –
13 93.7% 96.9% 98.4% 99.2% 99.6% 99.8% 100.0% 100.0% – –

A web interface to the random generator can be found in the FAdo project web
page [Fad]. Bassino and Nicaud in [BN] presented also a random generator of ICDFA’s
based on Boltzmann Samplers, recently introduced by Duchon et al. [DFLS04]. However
the sampler is uniform for partitions of a set with kn elements into n nonempty subsets
(not for the universe of automata). These partitions are related with string representations
that verify only rule R1. Based on the work here presented, it would be interesting to
study a better approximation, that would satisfy rule R2.
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