
FAdo: Interactive Tools for Learning Formal

Computational Models∗

Rogério Reis

Nelma Moreira

DCC-FC& LIACC, Universidade do Porto

R. do Campo Alegre 823, 4150 Porto, Portugal

{rvr,nam}@ncc.up.pt

Abstract

FAdo1 is an ongoing project which aims the development of an interactive en-
vironment for symbolic manipulation of formal languages. In this paper we focus
in the description of interactive tools for teaching and assisting research on regular
languages. In particular we focus in the description of an interactive environment
for editing and visualising finite automata and the conversion between automata and
regular expressions.

1 Introduction

Regular languages are fundamental computer science structures and efficient software
tools are available for their representation and manipulation. But for experimenting,
studying and teaching their formal and computational models it is useful to have tools for
manipulating them as first-class objects. Automata theory and formal languages courses
are math courses in essence, and traditionally are taught without computers. Well known
advantages of the use of computers in education are: interactive manipulation, concepts
visualisation and feedback to the students. We believe that an automata theory course
can benefit from this advantages, because:

• most of the mathematical concepts can be graphically visualised. Interactivity can
help in the consolidation of the concepts and an easier grasp of the formal notation.

• most of the theorem proofs are algorithmic and can be interactively constructed

• automatic correction of exercises provides immediate feedback to the students, giv-
ing counter-examples and pointing out the errors, thus allowing for a quicker un-
derstanding of the concepts.

∗Work partially funded by Fundação para a Ciência e Tecnologia (FCT) and Program POSI.
1The project page is http://www.ncc.up.pt/fado.



In this paper, we describe a collection of tools implemented in Python [2] that are a
first step towards an interactive environment to teach and experiment with regular and
other formal languages. The use of Python, a high-level object-oriented language with
high-level data types and dynamic typing, allows us to have a system which is modular,
extensible, clear, easy to implement, and portable. Python also provides several graphical
and Web based libraries. Compared with Java language, it also has the advantage of an
elegant syntax, and it is easy to learn, which makes it ideal for a first taught programming
language. In the next section, we describe the implementation of the core tools for regular
languages symbolic manipulation. Section 3 introduces a graphical environment and some
interactive visualisations. Ongoing work is summarised in Section 4.

2 Manipulating Regular languages

We assume basic knowledge of formal languages and automata theory [1]. An alphabet
Σ is a nonempty set of symbols. A string over Σ is a finite sequence of symbols of Σ.
The empty string is denoted by ǫ. The set Σ⋆ is the set of all strings over Σ. A language
L is a subset of Σ⋆. If L1, L2 ⊆ Σ⋆, L1L2 = {xy | x ∈ L1 and y ∈ L2} and Ln

1 is defined
by L0

1 = {ǫ}, Ln
1 = L1L

n−1
1 , for n ≥ 1. The Kleene closure of a language L is defined by

L⋆ =
⋃

n∈N
Ln. The set of regular languages over an alphabet Σ contains ∅, {ǫ}, {a} for all

a ∈ Σ, and is closed under union, concatenation and Kleene closure. Regular languages
can be represented by regular expressions (regexp) or finite automata (FA), among other
formalisms. Finite automata can be deterministic (DFA) or non-deterministic (NDFA). All
three notations can represent the same set of languages. In FAdo, we can manipulate
each of these representations and convert between them, as shown in Figure 1.

MinimalDFA

NDFA

regexp

DFA

Figure 1: Conversions between regular language representations

In the next subsections we briefly describe how these representations are implemented
as Python classes and which manipulations are currently available. A more detailed
description can be found in [3].

2.1 Finite Automata

Formally a deterministic finite automaton (DFA) is specified by a 5-tuple (S,Σ, δ, s0, F ),
where S is the set of states, Σ is the input alphabet,i.e. is a nonempty set of symbols,
δ is the transition function δ : S × Σ → S, s0 the initial state, and F ⊆ S is the set
of final states. If the transition function is total the DFA is said to be complete. In a
nondeterministic automata (NDFA) δ is a function from S × Σ to the set of subsets of S

(P(S)), δ : S × Σ → P(S). The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ |
δ(q0, x) ∈ F}. The language accepted by NDFA A is L(A) = {x ∈ Σ⋆ | δ(q0, x) ∩ F 6= ∅}.
Two FA’s are equivalent if they accept the same language.



The class FA implements the basic structure of finite automata shared by determin-
istic and non-deterministic ones. This class also provides methods for manipulating this
structures: add, set, delete, test, etc.

2.1.1 Nondeterministic Automata

The class NDFA inherits from the class FA, and provides methods to manipulate a NDFA. In
the literature, there is a distinction between NDFA with and without ǫ-transitions (NDFA
and ǫ-NDFA). In FAdo, we allowed all NDFA’s to be ǫ-NDFA. But we provide methods to
test for ǫ-transitions and to convert an ǫ-NDFA to a NDFA.

2.1.2 Deterministic Automata

The class DFA inherits from the class FA, and provides methods to manipulate a DFA.
Mathematically DFA’s are richer than NDFA’s. In the next paragraphs we analyse some of
those features.

A Canonical Form for DFA’s

It is possible to test if two DFA’s are equivalent, and given a DFA, to find an equivalent
DFA that has a minimum number of states. The method Minimal() implements DFA

minimisation using the table-filling algorithm [1]. For testing equivalence of two DFA’s,
we can minimise the two automata and verify if the two minimised DFA’s are isomorphic
(i.e are the same up to renaming of states). For verify isomorphism we developed a
canonical form for DFA’s. Given a DFA we can obtain a unique string that represents it.
Let Σ be ordered (p.e, lexicographically), the set of states is reordered in the following
manner:the initial state is the first state; following Σ order, visit the states reachable
from initial state in one transition, and if a state was not yet visited, give it the next
number; repeat the last step for the second state, third state, . . . until the number of the
current state is the total number of states in the new order. For each state, a list of the
states visited from it is made and a list of these lists is constructed. The list of final
states is appended to that list. The result is a canonical form [4]. If a DFA is minimal,
the alphabet and its canonical form uniquely represent a regular language. For test of
equivalence it is only needed to check whether the alphabets and the canonical forms are
the same, thus having linear costing time.

Other DFA Operations

Regular languages are also closed under other operations, such as intersection, com-
plement, difference of two languages and reverse. In the core implementation we choose
to define complementation, union and intersection.

Producing a Witness of the Difference of two DFA’s Sometimes it is useful to
generate a word recognisable by an automaton. This is the case in correcting exercises
where we have the solution and a wrong answer from a student. Instead of a simple
statement that an answer is wrong, we can exhibit a word that belongs to the language
of the solution, but not to the language of the answer (or vice-versa). A witness of a DFA,
can be obtained by finding a path from the initial state to some final state. If no witness
is found, the DFA accepts the empty language. Given A and B two DFA’s, if ¬A∩B or A∩¬B



have a witness then A and B are not equivalent. If both DFA’s accept the empty language,
A and B are equivalent. This test is implemented by the method witnessDiff().

2.1.3 Converting NDFA’s to DFA’s

The equivalence of nondeterministic and deterministic automata is one of the most impor-
tant facts about regular languages. Trivially a DFA can be seen as a NDFA. The conversion
of a NDFA to a DFA that describes the same language, can be achieved by subset construc-
tion [1]. This method is usually taught in automata theory courses, though its illustration
and animation are very useful. It is implemented by the module function NDFA2DFA().

2.2 Regular Expressions

A regular expression (r.e.) α over Σ represents a language L(α) ⊆ Σ⋆ and is in-
ductively defined by: ∅, ǫ and a ∈ Σ are a r.e., where L(∅) = ∅, L(ǫ) = {ǫ} and
L(a) = {a}; if α1 and α2 are r.e., (α1 + α2), (α1α2) and α⋆

1 are r.e., respectively with
L((α1 + α2)) = L(α1) ∪ L(α2), L((α1α2)) = L(α1)L(α2) and L(α1

⋆) = L(α1)
⋆. The

class regexp implements the three base cases and the complex cases are the subclasses
concat, disj and star, respectively. The constant Epsilon represents the empty string
and the constant Emptyset represents the empty set.

2.3 Converting Finite Automata to Regular Expressions

The standard conversion from DFA’s to regular expressions, we call it the recursive

method, and is based on successively constructing regular expressions r
(k)
ij , that rep-

resent the language recognised between state i and state j, without going through a
state number higher than k [1]. This algorithm is implemented by the method regexp()

of the class DFA. This algorithm is mathematically very instructive, but it is highly ineffi-
cient. So we also implemented a less redundant method of elimination of states [1]. This
algorithm is also easily animated, and, in the FAdo graphical interface it is possible to
choose, in each step, which state to eliminate.

2.4 Converting Regular Expressions to Finite Automata

The basic conversion is from regular expressions to ǫ-NDFA’s using the Thompson’s con-
struction [1]. The idea is to recursively build an ǫ-NDFA for each type of regexp. Each
regexp subclass has a method ndfa() that allows to construct an NDFA for its type.

3 Interactive Visualisation

Currently the FAdo graphical environment allows the editing and visualisation of di-
agrams representing finite automata and provides an user interface to some conversion
algorithms and string recognition. A diagram can be constructed from a finite automata
definition, or created (or transformed) using the edit toolbox (at the right side of the
interface).

The editing operations available are:

• add/move a state



Figure 2: Creating a NDFA with the graphical interface.

• add a transition between two states (or a loop in one state); a label is prompted to
the user.

• delete a state or a transition

A state can be made initial (yellow (light grey) background) and/or final (thicker border),
by Clicking Button3 in it.

Figure 2 shows a diagram of a NDFA that accepts the strings over {0, 1} that have a
1 in the second or third symbol from the right, for instance 11010101 or 00110011, but
not 101000.

Given a NDFA or a DFA, an input string can be entered and evaluated. In Figure 3
the NDFA is recognising the string 11010101 and after processing the prefix 1101. As the
automaton is non-deterministic there can be several current states, in this case, states 0,
2 and 3, that are coloured orange (lighter grey).

In the current version, the graphical user interface provides access to some of the
conversions presented in Section 2 and whose results are visualised. In particular we
have:

NDFA→ DFA Pressing the To DFA button, the current automaton is transformed in a DFA

(by the subset construction). In Figure 4 is presented a DFA obtained from the NDFA
in Figure 2.

DFA→ MinDFA Pressing the Minimal button, the current DFA is converted into the mini-
mal DFA. In Figure 5 is presented the minimal DFA equivalent to the NDFA in Figure 2.



Figure 3: An NDFA recognising the string 110101.

DFA→ regexp Pressing the Regexp button, a regular expression equivalent to the current
DFA is obtained. Currently we have implemented two algorithms for this transfor-
mation: the recursive (Rec) and by state elimination (SEA). Neither of them give
small regular expressions and some simplification can be obtained by pressing the
Simplify button.

regexp→ NDFA Pressing return-key after inputing a regular expression, the diagram of
an equivalent ǫ-NDFA is drawn.

DFA→ complete DFA Pressing the Complete button, the current DFA is transformed into
a complete DFA.

DFA→ ¬DFA Pressing the ~DFA button the current DFA is converted into a DFA for the
complementary language. For that, the DFA must be complete (then the transfor-
mation consists in exchanging the final states).

Intersection Using the Intersect button it is possible to obtain an automaton that is
the intersection of several DFA’s.

Union In the same way, pressing the Union button it is possible to obtain an automaton
that is the union of several DFA’s.

Comparison of two regexp To check if two regular expressions are equivalent we can
choose the option Compare... in the Tools menu. If there is a regular expression
in the interface that expression is given as default for the comparison. In Figure 6



Figure 4: Conversion to DFA

is shown the dialog box for the comparison of two regular expressions: one obtained
by converting the NDFA given in Figure 2 and the other a regular expression that can
be obtained directly by the definition of the language. If the two regular expressions
are not equivalent, a witness is returned, i.e., a string that is represented by the
first but not by the second regular expression (as refered in Section 2.1.2).

4 Future Work

Much more work must be done, improving the visualisation of the diagrams and the ani-
mation of the algorithms. Several automata should be visualised at the same time. Better
visualisation algorithms for automata diagrams must be designed and implemented. Al-
gorithm animation is easily achieved by a step by step execution. However, this is not
enough as a tool for helping understanding algorithms. We plan to obtain formal de-
scriptions of the main concepts that are essential for a proof or an algorithm and to
implement a specification language for a correct interactive manipulation. An integrated
Web environment for publishing exercises and automatic assessment will be also available.

References

[1] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 2nd edition, 2000.

[2] M. Lutz. Programming Python. O’Reilly, 1996.



Figure 5: The minimal DFA

Figure 6: Comparing two regular expressions.

[3] Nelma Moreira and Rogério Reis. Interactive manipulation of regular objects with
FAdo. In Proceedings of 2005 Innovation and Technology in Computer Science Ed-
ucation (ITiCSE 2005). ACM, 2005.

[4] Rogério Reis and Nelma Moreira and Marco Almeida. On the Representation of Fi-
nite Automata In Proceedings of the 7th Int. Workshop on Descriptional Complexity
of Formal Systems (DCFS05), Como, Italy, June 30 - July 2. 2005.

[5] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 1. Springer Verlag, 1997.


