
The Formal and Computational Theory

of Complex Constraint Solution

Luis Damas
Nelma Moreira

University of Porto

Giovanni B. Varile
Commission of the European Communities

The framework presented in this chapter assumes that any grammar is
a particular first order theory with equality. We will turn our attention to
those first order theories admitting complete models and extend them to
recursively defined relations.

Logic programming is an ideal paradigm for such a framework in that
it supports a direct mapping between grammars, seen as first order logic
theories, and the first order theory of their implementation and at the same
time provide a formally sound and efficient computational scheme.

It is also particularly well suited to simultaneously satisfy the main re-
quirements put on computational grammar formalisms, namely expressivity,
formal soundness and computational tractability.

As we will see, the framework presented in this chapter is not only com-
patible with the unification grammar tradition but it also constitutes a sim-
ple framework for extending the notion of unification to complex constraint
resolution. At the same time a high degree of declarativeness is achieved by
avoiding any reference to an operation like unification.

The motivations for the choice of the particular family of first order
theories will become apparent in the rest of this chapter.

The main reasons derives from the fact that restricting the formal analy-
sis to the static properties of formalisms does not do justice to the computa-
tional complexity of modern linguistic frameworks. A finer grained analysis
of the formal and computational properties of formalisms than decidability,
formal complexity and model theoretic properties, sheds a different light on

1

the problem motivating choices which would otherwise appear to be arbi-
trary.

It is not sufficient to design formalisms with a simple and sound denota-
tional semantics and appropriate formal complexity characteristics. Rather,
it is necessary to provide sound and adequate formal processing schemes for
such formalisms, lacking which the main challenges facing modern gram-
matical formalism design are not addressed.

Taking this point further, we claim that the theory of a grammar for-
malism and its formal processing model constitute a homogeneous and in-
tegrated whole and that the practice of relegating processing issues to low
level implementation decisions had, and has, nefast consequences, not least
preventing the right questions to be addressed.

The deductive process by which a fact is proven or an object computed
must be the subject of theoretical inquiry just as, and together with, the
fact or object and their descriptions.

The analogy with logic programming is paradigmatic: defining the syn-
tax and (static) semantics of a logic programming scheme is an essential
first step. But it also constitutes a relatively trivial task compared with
definition of a formal processing scheme with the necessary computational
characteristics.

Our goal is to show how and under what circumstances we can ensure
a simple and natural relation between grammars with complex constraint
expression seen as first order theories and the logic programming paradigm,
in particular a version of Constraint Logic Programming over the domain of
rational trees.

This chapter is organized as follows: in Section 1 we will present the
family of first order theories upon which Constraint Logic Grammars, or
CLGs, are based, namely those having the complete algebra RT of rational
trees as their canonical model.

After having justified this choice, we will elaborate on the basic charac-
teristics of these first order theories, extend them with recursive relations
and relate them to CLP (RT)1.

In Section 2 we will show that these theories relate in a natural way to
feature logics and in Section 3 how to extend term unification to constraint
resolution in a simple way.

In Section 4 we will present CLGs complex constraint solver and its
complete constraint rewriting system.

1Constraint Logic P rogramming over RT [JL88].

2

The description of the formal processing model of CLGs will be com-
pleted in Section 5 where we define the CLG model seen as an instantiation
of the constraint logic programming scheme for the symbolic domain of ra-
tional trees.

1 The First Order Theory of CLG

CLG grammars are first order theories, i.e. object of first order logic consist-
ing of alphabets of logical and non logical symbols including the equality,
the usual logical axioms and inference rules, and a number of non-logical
axioms 2.

The role of the non logical axioms is twofold: for one, a number of these
axioms will restrict the possible models for our theories in a convenient way
as explained below.

The second role of these axioms is to represent grammar rules, lexical
objects and linguistic principles. In other words they characterize the inter-
pretations which are well formed with respect to a given grammar.

All the theories considered here will be extensions of theories having as
canonical models the complete algebra RT of rational trees. The extension
are needed to account for recursive definitions within the theory, as explained
below. No generality is lost by making this choice as we will see in Section 2.

We will first proceed to define the denoting objects of a CLG theory, i.e.
the terms. We will then characterize the constraint language and impose
restrictions on the possible interpretations of the theory. Lastly we will
extend the first order theory obtained in this way in order to account for
recursive relations needed to express grammar rules and principles.

1.1 Terms

Given countable sets F and V of function symbols and variables respectively,
we define the terms T of our theory in the usual way as being the least set
such that:

1. elements of V are in T

2. for fn in F and t1, . . . , tn in T , fnt1, . . . , tn is in T

Function symbols come equipped with their arity n written as fn.
2See [Sho67] for an introduction to first order theories.

3

We will see below how we will restrict the interpretation of the elements
of T to decidable algebrae.

1.2 Constraint Language

We define the constraint language LC over T as being the usual first order
language with the equality as the only predicate symbol and the logical
connectives:

∧,∨,¬,→,∃,∀

The constraints C are the well formed formulae of this language. The
atomic constraints are expressions of the form t1 = t2 for terms t1 and t2,
true and false. The set C3 of constraints is defined as follows:

1. atomic constraints are constraints in C

2. for constraints c1, c2 in C, ¬c1, c1 ∧ c2, c1 ∨ c2, c1 → c2, ∃xc1 and ∀xc1

are also in C

In Section 4.1 we will slightly extend the notion of constraints.

1.3 Constrained Terms

Constrained terms take a special role in CLG as will become clear in the
reminder of this chapter. They consist of a term t and a constraint constraint
c of C constraining the values which the variables in t can take. Constrained
terms will be written as t : c.

1.4 Admissible Models of CLG

We will restrict the class of admissible models of the first order theory with
equality of CLG to the complete algebra of rational treesRT as axiomatized
by Maher [Mah88a, Mah88b]. As a consequence all the theories considered
here will be extensions of theories having as canonical model RT .

The first order theory of RT contains no predicate symbols other than
equality and is obtained by introducing as non-logical axioms the axiom
schemata required to make the algebra of rational trees the canonical model
for the theory [Mah88a]:

3Note that for the case of simple equational theories like the one underlying pure PATR-
II, the constraint language is a special case of LC with ∧ as the only logical connective.

4

1. for every term t,

t = t

2. for all terms t,s,

t = s→ s = t

3. for all terms t, s, u,

t = s ∧ s = u→ t = u

4. for every n, fn,

f(x1, ..., xn) = f(y1, ..., yn)↔ x1 = y1, ..., xn = yn

5. for every f 6≡ g,

f(x1, ..., xn)6=g(y1, ..., yn)

6. for every rational solved form x̄ = t(x̄, ȳ)4,

∀ȳ ∃!x̄. x̄ = t(x̄, ȳ)

where a set of equations is in rational solved form [Mah88a] if it is of the
form:

x1 = t1(x̄, ȳ), ..., xn = tn(x̄, ȳ)
4x̄, resp. ȳ stand for sets of variables x1, ..., xn resp. y1, ..., ym.

5

with disjoint set of variables x̄, ȳ and such that the set of equations contains
no circular subset [Mah88a], i.e. a subset of the form:

x1 = x2, ..., xn−1 = xn, xn = x1

There are several motivations for the choice of this model:

1. In absence of predicate symbols other than equality, RT is decidable
[Mah88a].

2. The domain of rational trees RT has been used as a model in many
computation domains and a wealth of formal and computational re-
sults are available on this domain.

3. Under certain assumptions, there is a relationship between Feature
Algebra [Smo88] and the domain RT of rational trees, as we will see
in Section 2

1.5 The First Order Theory of CLG and CLP (RT)

Although RT is adequate as a language to describe classes of objects, gram-
mar rules and principles, except for the simplest cases, require some form of
recursive definition.

One way to account for this would be to regard grammar rules as infer-
ence rules. This has the disadvantage that any general statement about the
logical theory would be difficult to make.

The other possibility is to introduce n-ary predicate symbols5 to express
classes of objects in the grammar and grammar rules as axioms defining
these predicates.

We will restrict the grammar axioms to take the form of constrained
clauses:

A1 ∧ ... ∧An ∧ C → A

where A and the Ai denote atomic formulae of the form p(t1, ..., tk) with p a
predicate symbol of arity k and t1, ..., tk terms, and C denotes a constraint,
i.e. a logic formula involving only the equality predicate.

Any logic theory of the type just defined has a clear and well understood
semantics. It can be seen as a constraint logic programming program in
CLP (RT) [JL87]. It can also be seen as a generalization of Prolog II [Col82].

5For instance by using the Höhfeld-Smolka construction [HS88].

6

One benefit of this choice is that we can benefit from the extensive
theoretical work and implementation techniques which were developed for
Constraint Logic P rogramming.

In Section 5 we will expand on this issue by giving the specific formal
processing model of CLG seen as a constraint logic programming language
over RT .

Note that with the extension just performed, our theory CLG is only
semi-decidable. Further constraints could be imposed on the form of the
defining axioms for the predicates which would ensure decidability. We
refrain from doing so, leaving to the user the responsibility to ensure that
grammars, as opposed to their supporting formal theory, are decidable.

2 Term Logics and Feature Logics

In recent years it has become common practice to reason about the proper-
ties of formalisms for linguistic description within the framework of formal
logic. A number of first order theories have been proposed to serve the
purpose, ranging from classical first order predicate calculus to numerous
variants of non-classical logics [RK86, KR86] elsewhere dubbed designer
logics [Joh90].

These latter approaches have been criticized for cutting the field off the
wealth of results in classical logic without real benefits since it has never been
shown that any of the non-classical devices proposed was indeed necessary
[Joh90].

The same applies when it comes to consider formal processing models:
the many results obtained in the logic programming and constraint logic pro-
gramming fields bear no direct relation to non-classical logical frameworks,
other than providing high-level implementation tools.

In our opinion there is a lot to be gained, from the theoretical and the
formal processing point of view, in keeping as close a relation as possible to
these fields.

It is not our intention to further feed this discussion, but since we are
restricting our attention to classical first order logics with the algebra of
rational trees as canonical model as explained in Section 1.4, it will be
useful to make explicit the relation between the logic of our choice and
feature logics, at least in their classical versions.

7

2.1 The Relation Between the Algebra of Rational Trees RT
and the Feature Algebra F

The purpose of this section is to establish a relation between the logic
adopted for the CLG representation theory, namely the algebra of RT ra-
tional trees as axiomatized by Maher [Mah88a, Mah88b], and the axioma-
tization of Feature Logics of Smolka [Smo88].

As already mentioned, a number of non-classical logics have been pro-
posed in order to formalize feature based grammar formalisms over the past
few years.

Smolka has given an axiomatization of the models of feature logics in
first order predicate logic [Smo89], and he proposes to model features by
representing them as binary predicates p(x, y) satisfying the following axiom
schemata:

` ¬a = b for all distinct atoms a and b
` ∀y.¬p(a, y) for all atom a
` ∀x∀y∀z.p(x, y) ∧ p(x, z)→ y = z

The first of the axioms above expresses that distinct atoms denote dif-
ferent entities, the second that atoms do not have any features and the third
the functional character of features.

In what follows we will assume that every feature logic contains an in-
finite number of atoms. If Π is a set of two-place predicate symbols, we
will use F (Π) to denote the first order equality theory over Π consisting of
the standard axioms for equality (axioms 1-3 of Section 1.4) and the above
axioms.

Although these axioms captures most of the essential properties of fea-
tures, they are too weak in the sense that they do not guarantee the exis-
tence of non-trivial objects. As a matter of fact they admits models in which
predicates are always false thus making the logic trivial in some sense.

More recently Smolka has proposed another axiom which asserts the
existence of solutions of a set of recursive feature equations in rational solved
form. He has also shown that, in the case of an infinite number of features,
the axiomatization is complete and admits a canonical model a domain
similar to rational trees.

Let’s assume a countable infinite number of atoms.
We start by recalling that the complete axiomatization of Feature Logic

[Smo88] assumes an infinite number of features. This assumption is essential

8

for the completeness of Smolka’s axiomatization since if there was a finite
number of features f1, f2,, fn then a formula like:

xf1z1 ∧ yf1z1 ∧ ... ∧ xfnzn ∧ yfnzn → x = y

would be valid in some models and false in others.
The formula above is asserting the fact that if two objects have exactly

the same features then they are the same object. It can be generalized,
in the case of feature logic with a finite number of features, to a formula
stating that if two objects are undefined for the same set of features and
take identical values for the remaining features, then the objects are equal.

If we take such a formula as axiom it is tantamount to accepting the
”completeness” of feature descriptions, i.e. that objects are completely de-
fined by their features.

When we have a finite number of features, the axiomatization obtained
by adding such an axiom to the axioms for the infinite case, is complete and
admits as canonical model the above-mentioned algebra of rational trees
over a finite number of features.

Our first result is that a formula A is valid in the infinite model F∞ iff
it is valid in a model F for a finite number of features. The details of the
proof are given in Section 2.2 below.

One advantage of this equivalence is that we can work, in any practical
situation, with a finite number of features. It is interesting to note that
we were able to reduce proofs in a logic without ”completeness” of feature
descriptions to proofs in a logic were that ”completeness” holds.

This is not surprising since we can introduce an extra feature fn+1 de-
scribing the extra information necessary to make the object unique. This
has been realized in practice in term-based implementations of unification
formalisms.

The second main result concerns the inter-operability of feature struc-
tures and feature terms. It is in fact formally irrelevant whether we use
the former or the latter since there exists an effective translation between
feature structures and terms as is shown in Section 2.3.

2.2 Finite and Infinite Models

In the following we show that a formula A is valid in the infinite model F∞
iff it is valid in a model F for a finite number of features.

9

More precisely assume A involves only the features f1, f2,, fn, then
A is valid in Smolka’s model iff it is valid in the model for the features
f1, f2,, fn, fn+1.

The proof of this result relies on the existence of injective mappings θ0

and θ1, from F to F∞ and vice-versa, such that for rational trees t and t′ and
for i = 1, ..., n, if tfit

′ then θk(t)fiθk(t′). For θ0 we can take the inclusion
map from F to F∞.

θ1 can be constructed by encoding all the extra features (i.e. fn+1, fn+2,
. . .) under fn+1. To do this we first select a distinct atom a1, a2, ... for each
one of fn+1, fn+2,

Now we note that each rational tree can be uniquely represented by a
feature structure of the form 

f1 : s1
...
fn : sn

fn+1 : sn+1

fn+2 : sn+2
...


the si denote either feature structures or indices (i.e. variables).

To such a structure we associate the following feature structure, involving
only the features f1, f2,, fn, fn+1

f1 : s̃1
...
fn : s̃n

fn+1 :


f1 : a1

f2 : s̃n+1

fn+1 :

 f1 : a2

f2 : s̃n+2

fn+1 :
[...

]






where s̃ denotes the transformed version of s. For atoms and indices this is
the identity transformation.

Now a simple proof by induction in A, using θ0 and θ1 to map between
valuations in the two models, shows that A is valid in F iff it is valid in F∞.

10

Finally, since the models are canonical models, a formula is a theorem
in one logic iff its a theorem in the other logic.

2.3 Feature Terms and Feature Structures

In this section we will show that using terms, or more precisely rational trees,
is justified in formal grounds by defining an explicit translation between
feature structures and terms.

Assume we have a finite number of features f1, f2,, fn with the com-
plete axiomatization above. We want to show this logic is equivalent to the
Maher’s complete axiomatization of rational trees.

To do this we first define a finite set of function symbols FI where I
denotes a non-empty subset of {1, ..., n}. Each FI is assumed to be of arity
equal to the cardinality of I.

Now, to each formula of feature logics we associate a formula in Maher’s
logic by replacing each sub-formula xfiy with⊕

I⊂{1,...,n},i∈I

∃z1...z#I .x = FI(z1, ...z#I) ∧ y = zi#I

where
⊕

denotes exclusive or (i.e. it is true iff one and only one of the
arguments is true), #I denotes the cardinality of I and i#I denotes the
index of i in I, i.e. the number of elements in I which are less or equal to i.

Now using the above mapping we can derive the feature logic axioms
form Maher’s, i.e. the mapped version of a feature logic axiom is a theorem
in Maher’s Logic.

There is also an inverse mapping which consists of replacing an equality
x = FI(y1, ..., yk) with the conjunction of

xfmiyi

for each mi in I = {m1, ...,mk} and

∀z.¬xfjz

for each j not in I. Note this is enough since any formula involving terms
can be reduced (using only the standard equality axioms) to an equivalent
one where terms only occur in the above form.

Again, from the feature logic axioms we can derive the Maher’s axioms .
Now from the completeness of Maher’s axiomatization if follows the com-

pleteness of the axiomatization for Feature Logic with a finite number of
features and a countable number of atoms.

11

3 From Terms and Unification to Constrained Terms
and Resolution

We assume again the countable set V of variables x, y, z, ..., the countable
set F of function symbols f, g, h, ... and the set of terms T (cf. Section 1).
Let T0 denote the corresponding set of ground terms.

Associated with a term t is its usual denotation

[[t]] = {σt ∈ T0 } (1)

where σ denotes a substitution of terms for variables. The unifier t of
two terms t′ and t” has the following important property:

[[t]] = [[t′]] ∩ [[t”]]

We will now extend terms t ∈ T to constrained terms t : c where c is
an arbitrary well formed formula of the first order theory of CLG involving
only variables occurring in t and take:

[[t : c]] = {σt ∈ T0 | ` σc } (2)

as its denotation.
Now, given constrained terms t : c, t′ : c′ and t” : c” we say that t : c is

a unifier of t′ : c′ and t” : c” iff:

[[t : c]] = [[t′ : c′]] ∩ [[t” : c”]]

It is easy to see that there is at least one algorithm which given two
constrained terms either fails, if they do not admit a unifier, or else returns
one unifier of the given terms. As a matter of fact it is enough to apply
the unification algorithm to t′ and t” to obtain a unifying substitution σ
and to return σ(t′ : c′&c”). In this case we would obtain exactly the same
terms as in the equational case but annotated with the conjunction of all
the constraints attached to the resulting unifier

Two interesting properties of unifiers can be used to derive more inter-
esting algorithms. Assume for instance that t : c is a unifier and c is logically
equivalent to c′, then t : c′ is also an unifier. This fact is at the heart of
every constraint rewriting system.

Similarly if, for some variable x and term v, we can derive x = v from
c, then [v/x](t : c), where [v/x] denotes substitution of v for x, is also an
unifier. It is obvious that by reducing c to normal form, it is possible to find

12

all the equalities of the form x = v which can be derived from c, and also
decide if c is satisfiable. This strategy, however, suffers from the inherent
NP hardness. In the next section we will analyze this problem and see how
it can be overcome.

4 The CLG Formal Processing Model

This section presents the CLG formal processing model for constraint res-
olution. As already said in Section 1 constraints in CLG consist simply of
any formula of RT the first order theory of rational trees as axiomatized by
Maher.

Although such formulae are well understood they are, due to the presence
of quantifiers, unsuitable for computational purposes. To overcome this
problem we introduce a quantifier free constraint language, similar to the
one described in [DMV91] and show that any formula of RT is equivalent
to a formula in the constraint language.

We will next turn our attention to the problem of computing all the
models of a particular constraint. However, we will diverge from the treat-
ment presented in [DMV91] by showing that it is enough, for this purpose,
to consider a restricted form of the constraint language which bears a close
resemblance to Feature Logics [Smo89].

We will then present a complete rewriting system for the restricted con-
straint language. However, since closing a formula under that system is an
NP-complete problem, we will consider an incomplete subset of that system,
for which the corresponding problem becomes polynomial, and study some
of its formal properties.

4.1 The Constraint Language

Let V ars be a countable set of variables x, y, z, . . . and F be a countable
set of n-ary function symbols f , g, h, . . ., n ≥ 0. A function symbol f with
arity n will be denoted by fn, whenever necessary. A functional symbol of
arity 0 will be called an atom and denoted by a, b,

We define three classes of objects, paths, values and constraints in the
following way:

13

p ::= ε
| p.fn

i 1 ≤ i ≤ n
v ::= x.p
| a

c ::= v.fn

| v=̇v
| false
| true
| ¬c
| c ∧ c
| c ∨ c

Rather than introducing an independent axiomatization or semantics for
the above language we prefer to regard each constraint c as an abbreviation
of a formula of RT , e.g.:

x.f2
1 .g1 −→ ∃z1z2.x = f(g(z1), z2)

x.f2
2 .g2

1=̇y −→ ∃z1z2.x = f(z1, g(y, z2))

x.f2
1 =̇y.g2

1.h
1
1 −→ ∃z1z2z3.x = f(z1, z2) ∧ y = g(h(z1), z3)

An important property of this constraint language is that for any formula
of RT we can find an equivalent constraint.

To see this we recall that Maher proves in [Mah88a] that any formula of
RT is equivalent to a boolean combination of rational basic formulae which
are formulae of the form:

∃u1, . . . , um.x1 = t1 ∧ . . . ∧ xn = tn ∧ u1 = r1 ∧ . . . ∧ up = rp

where p ≤ m and we can assume that the only variables which occur in the
terms ti and rj are the uk. Now it is easy to see that each of the equalities in
a basic formula can be replaced by a conjunction of path equalities such that
the right hand side of each of the equalities is either an atom or one of the
uk. Then, using these equalities and assuming the original set of equations
to be non-circular (cf. Section 1.4) it is possible to eliminate the uk from
all the other equalities in a way that in the end each uk appears in at most

14

one equality. It is easy to see that now the existential quantifiers can be
eliminated.

Note that the language defined above differs from the one in [DMV91]
by avoiding the presence of complex terms.

4.2 The Restricted Constraint Language

Although the language of the previous section could be directly used, as in
[DMV91], for studying the formal properties related to the satisfiablity of
constraints, it is convenient and sufficient to restrict ourselves to a subset of
it, with the following new definitions for values and constraints:

v ::= x
| a

c ::= v.fn

| v = v
| v.fn

i =̇v 1 ≤ i ≤ n
| false
| true
| ¬c
| c ∧ c
| c ∨ c

Again we can regard any c as a formula of RT by introducing the ab-
breviations:

v.fn −→ ∃z1 . . . zn.v = f(z1, . . . , zn)

v.fn
i =̇v′ −→ ∃z1 . . . zn.v = f(z1, . . . , zn) ∧ zi = v′

As a matter of fact for any constraint c of our original constraint lan-
guage we can build, by introducing extra variables, a constraint c′ of the
restricted language such that c is satisfiable iff c′ is satisfiable. To build
such a formula we first push negation inside so that it only occurs applied
to atomic constraints. Since, by introducing new (existentially quantified)
variables it is possible to reduce any non-negated atomic constraint to a
conjunction of constraints of the restricted language, the only problem re-
maining is posed by negated atomic constraints which have to be handled
as in the following example, where:

15

¬x.f2
1 .g1

1=̇y

is replaced by:

¬x.f2 ∨ (x.f2
1 = z ∧ ¬z.g1

1 = y)

and z is a new variable which does not occur elsewhere.
It is interesting to notice the similarity of this constraint language with

Smolka’s Feature Logics with fn
i playing the role of features and x.fn some-

thing akin to divergence constraints. It is thus not surprising that the fol-
lowing definitions bear a strong resemblance to those in [Smo89].

A set of constraints C is in solved form iff

1. every constraint in C is of one of the forms x.fn, x.fn
i =̇v, x = v or

x 6= v

2. if x = v is in C then x occurs exactly once in C

3. if x.fn
i =̇v and x.fn

i =v′ are in C then v and v′ are identical

4. if x.fn
i =̇v is in C the x.fn is also in C

5. if x.fn is in C then there is no constraint in C of the form x.gm

6. if x 6= v is in C then v is not identical to x.

7. if for some x, y and v, both x.fn
i =̇v and y.fn

i =̇v are in C then for some
j between 1 and n, there is no v′ such that x.fn

j =̇v′ and y.fn
j =̇v′ are

both in C.

The purpose of the last clause in the previous definition is to force solved
forms to contain x = y if for some fn there is a vi for each i between 1 and
n such that x.fn

i = vi and y.fn
i = vi hold.

Given a set C of constraints of the form in 1. above it can be proved
that C is satisfiable iff it can be reduced to solved form using the following
set of simplification rules:

1. {x = v} ∪ C → {x = v} ∪ [v/x]C if x is distinct from v and x occurs in
C

2. {a = x} ∪ C → {x = a} ∪ C

3. {x.fn
i =̇v, x.fn

i =̇v′} ∪ C → {x.fn
i =̇v, v = v′} ∪ C

16

4. {x.fn
i =̇v} ∪ C → {x.fn, x.fn

i =̇v} ∪ C if x.fn is not in C

5. if for all 1 ≤ i ≤ n exists v such that x.fn
i =̇v ∈ C and y.fn

i =̇v ∈ C
then C → {x = y} ∪ C

6. {v = v} ∪ C → C

7. {a 6= x} ∪ C → {x 6= a} ∪ C

8. {a 6= b} ∪ C → C if a and b are distinct atoms.

Given a set M of non-negated atomic constraints in solved form and a
set of constraints C we will say thatM is a partial model of C iff every model
of C is a model of M. We will say that M is a minimal partial model of C
iff it is a partial model of C and no proper subset of M in solved form is a
partial model of C. By using disjunctive forms it can be proved that any set
of constraints C admits at most a finite number of minimal models.

4.3 Rewriting Constraints

Constraint processing in CLG is based on the use of a rewriting system
to produce from a set of constraints C0 a partial model M and a smaller
set of constraints C such that any minimal model of C0 can be obtained by
conjoining (i.e. ”unifying”) a minimal model of C withM and moreover for
any minimal model of C the reunionM∪ C is satisfiable.

We start by defining a set of rewriting rules −→M for values and
constraints

x −→M v if x = v is inM and x occurs in C
x.fn

i −→M v if x.fn
i =̇v is inM and x.fn

i occurs in C
c −→⊥ false
¬true −→M false
¬false −→M true
¬¬c −→M c
¬(c1 ∧ c2) −→M ¬c1 ∨ ¬c2

¬(c1 ∨ c2) −→M ¬c1 ∧ ¬c2

true ∧ c −→M c
false ∧ c −→M false
c ∧ true −→M c
c ∧ false −→M false
true ∨ c −→M true

17

false ∨ c −→M c
c ∨ true −→M true
c ∨ false −→M c
(c1 ∧ c2) ∧ c3 −→M c1 ∧ (c2 ∧ c3)
¬c1 ∧ c2 −→M c2 ∧ ¬c1 if c1 is an atomic constraint and

c2 is not a conjunction of negated
atomic constraints

c1 ∧ c2 −→M c2 ∧ c1 if c2 is atomic and c1 is not
c1 ∧ (c2 ∧ c3) −→M c2 ∧ (c1 ∧ c3) if c2 is atomic and c1 is not
a = b −→M false if a and b are distinct atoms
a = x −→M x = a
v = v −→M true
x.fn −→M true if x.fn is inM
x.fn −→M false if x.gm is inM
x = a −→M false if x.gm is inM
a.fn −→M false
a.fn

i =̇v −→M false
x.fn

i =̇v −→M false if x.gm is inM
x = y −→M false ifM∪ {x = y} → ⊥
x = v ∧ c −→M x = v ∧ c′ if c −→?

M∪{x=v} c′

x.fn
i =̇v ∧ c −→M x.fn

i =̇v ∧ c′ if c −→?
M∪{x.fn

i =̇v} c′

x.fn ∧ c −→M x.fn ∧ c′ if c −→?
M∪{x.fn} c′

(c1 ∨ c2) ∧ c3 −→M (c1 ∧ c3) ∨ (c2 ∧ c3) if both c1 and c2

are notM-independent with c3.

Note that in the rules above M∪ C denotes the solved form of the union
of M and C if one exists or ⊥ if that union is not satisfiable. The last rule
must apply only when both c1 and c2 have variables in common with c3,
eventually through “bindings” in M. In order to formalize this notion we
need the following definitions. Given two variables x and y, x depends on y
under M , x �M y, iff

1. x �M x

2. if y.fn
i =̇x ∈M then x �M y

3. if x �M z and z �M y then x �M y

A slot s is a variable or an expression of the form x.fn or x.fn
i for any

variable x, function symbol fn and i, 1 ≤ i ≤ n. Given a constraint C,

18

a variable x occurs properly in C, x]C, if it occurs in an atomic constraint
x = v, y = x or s

.= x. This notion can be extend to slots. If a constraint
C is closed under −→M , any slot that occurs in C can only occur in M
in the right hand side of a equation (and so it must be a variable). On
the other hand if x.fn

i or x.fn occur in C, x can occur in M in the right
hand side of an equation or in an expression x.fn

j , j 6= i or x.fn, and in
any case the values of these slots are not bounded to each other. So we are
left with the “dependences” underM of variables that properly occur in C.
Let V arsM(C) = {y | y �M x, x]C}. Then, two constraints C and C′ are
M-independent iff

1. C and C′ are closed under −→M

2. any variable x which occurs in V arsM(C) does not occur in V ars(C′)∪
V arsM(C′) and vice-versa

3. for every variable x which only occurs in C and C′ in atomic constraints
of the form x.fn or x.fn

i =̇v for some fn, if x.fn
i occurs in C, x.fn

i does
not occur in C′, 1 ≤ i ≤ n, and vice-versa

We now define a rewriting system for pairs 〈M, C〉 by first closing C
under −→M and then using the following rules:

〈M, C ∪ {false}〉 → 〈⊥, ∅〉
〈M, C ∪ {true}〉 → 〈M, C〉
〈M, C ∪ {x = v}〉 → 〈M∪ {x = v}, C〉
〈M, C ∪ {x.fn}〉 → 〈M∪ {x.fn}, C〉
〈M, C ∪ {x.fn

i =̇v}〉 → 〈M∪ {x.fn
i =̇v}, C〉

with the convention that after each application of one of the rewrite rules
the new partial model is reduced to solved form and the resulting set of
constraints is closed under −→M .

We will now sketch the proof of the claims made above about the rewrit-
ing system.

We will first argue that if given an initial set of constraints C0 we apply
the rewriting system to 〈∅, C0〉 to obtain 〈M, C〉 then C0 (more precisely the
conjunct of all the constraints in C0) is equivalent to M∪ C. As a matter
of fact this follows from the fact that each rewrite rule is associated with a
similar meta-theorem of First Order Logic and/or the axioms of RT .

19

As for the other property of the rewriting system, namely that the min-
imal models of C0 are obtained by conjoining M with those of C, we will
only sketch the argument of the proof which follows from the fact that if
some minimal model C′ of C was inconsistent withM then, after reducing C
to disjunctive form , at least one of the disjunctions should subsume C′ and
thus should be inconsistent withM while admitting itself a model.

Now, since every atomic formula occurring in the disjunction already
occurred in C it is possible to derive a contradiction with the hypothesis
that C was closed under −→M . To see this we notice that each disjunct
in the disjunctive form of C can be regarded as a set of (possibly negated)
atomic constraints C′′ of the form above. Now if M∪ C′′ was unsatisfiable
then some sequence of simplification rules should lead to a clash. Now,
noticing that any atomic formula in C′′ must already be present in C, it is
easy to check that any sequence of simplification rules would involve only
formulae from C′′ and a clash with a formula inM would thus be impossible.

The other interesting property of the rewriting system above is that it
is complete in the sense that unless it produces ⊥ as the final model then
〈M, C〉 is satisfiable. This is achieved mainly by the last rule above for
−→M . However, even if this rule attempts to limit the number of cases
where it applies to an essential minimum, it causes NP-completeness of the
rewriting process since it can lead to an exponential growth of the con-
straints. If we omit this rule then the rewrite process becomes polynomial,
although incomplete. The CLG systems uses the incomplete rewriting sys-
tem most of the time and the rule causing the NP-completeness is only used
at critical points in the process. In the next subsection we will study a class
of constraints for which we can prove a weak completeness result for the
polynomial rewriting system.

An example of the application of this rewrite system to a concrete case
can be found in [DV92].

4.4 Weak Completeness

Since CLG systems rely heavily on incomplete rewrites it is convenient to
address the problem of characterizing classes of constraints they are able to
solve in a complete way. This characterization can then be used to transform
input constraints into equivalent constraints more adapted to the incomplete
rewrite system.

We present here a class of constraints that, when rewritten by the incom-
plete system, produce a constraint belonging to the same class and which

20

is satisfiable unless it reduces to false. This class is general, in the sense
that for any constraint c we can find an equivalent constraint belonging to
the class. Unfortunately, although the class is closed under disjunction, it is
not so under conjunction. Nevertheless it is still interesting from a practical
point of view since it provides for a higher degree of constraint resolution.

The class D can be described by

D ::= F
| D ∨ F

F ::= NF
| A ∧D

NF ::= true
| ¬A
| ¬A ∧NF

where A denotes any atomic formula. This class excludes formulae involving
conjunctions of disjunctions and allows negation to apply only to atomic
formulae, and in this case at the inner- most and right-most levels of an
expression.

5 A Processing Model for CLG as CLP (RT)

In this section we present the formal processing model for CLG seen as a
CLP (RT) program, which can be seen as a generalization of the constraint
rewriting system and also as an extension of the Andorra Model [War88,
SWY91].

Assume a CLP (RT) consists of clauses of the form

h← c ∧ b

where c is a constraint, h is the head of the clause and b is a body consisting
of a, possibly empty, conjunction of goals. In the sequel we will consider
atoms (in the logic connotation of the word) as a particular case of terms.

To define the semantics of a CLP (RT) program, we will use a non-
deterministic rewriting system on triples of the form

〈M,C,G〉

where M is a partial model, C is a set of constraints and G is a goal expres-
sion of the following form:

21

(c1
1 ∧ b1

1 ‖ c1
2 ∧ b1

2 ‖ . . .) ∧ (c2
1 ∧ b2

1 ‖ c2
2 ∧ b2

2 ‖ . . .) ∧ . . .

where, as before, the ci
j denote constraints and the bi

j bodies.
Note that ‖ is used to denote alternative ways of building a model and

is, from a logical point of view, just ∨. The idea behind this notation is
that each ‖ connected group originates from the clause bodies of a single
predicate.

The purpose of the rewrite system is to build specifications of models of
an initial goal g by reducing an initial triple 〈∅, ∅, g〉 to a triple 〈M,C, true〉.

The rewriting system for triples is defined by first closing every constraint
in the triple using →M , then using the analogous of the rules for pairs
〈M,C〉, and then one of the following rules:

〈M,C, (false ∧ b ‖ B) ∧G〉 → 〈M,C,B ∧G〉
〈M,C, (c ∧ g1 ∧ . . . ∧ gn) ∧G〉 →
〈M,C ∪ {c}, (g1 = h1

1 ∧ c1
1 ∧ b1

1 ‖ . . . ‖ g1 = h1
k1
∧ c1

k1
∧ b1

k1
)∧

. . .
(gn = hn

1 ∧ cn
1 ∧ bn

1 ‖ . . . ‖ gn = hn
kn
∧ cn

kn
∧ bn

kn
) ∧G〉

assuming
hi

j ← ci
j ∧ bi

j

are new instances of all the clauses for predicate gi.
Note that the rewriting system thus defined, while not necessarily ter-

minating, is convergent, and, as in the Andorra Model, essentially performs
all the deterministic goal expansions while collecting constraints.

However, to enable reduction of the third component to true we need,
in the general case, the following non-deterministic rewrite rule:

〈M,C, (c ∧ b ‖ As) ∧G〉 → 〈M,C, (c ∧ b) ∧G〉

This completes the description of the formal processing model of CLG.
Some implementation considerations can be found in [DV89, BDMV90,
DMV91]. In a forthcoming article we elaborate on the practical importance
of program transformation techniques for CLG systems.

22

References

[BDMV90] Balari, Sergio, Luis Damas, Nelma Moreira and Giovanni
B. Varile, 1990. CLG: Constraint Logic Grammars, Pro-
ceedings of the 13th International Conference on Compu-
tational Linguistics, H. Karlgren (ed.), Helsinki.

[Col82] Colmerauer, Alain, 1982. Prolog and infinite trees. In:
Logic Programming, S. A. Tarnlund (ed.), Academic Press,
New York, 231-251.

[DMV91] Damas, Luis, Nelma Moreira and Giovanni B. Varile, 1991.
The formal and processing models of CLG. In: Fifth Con-
ference of the European Chapter of the Association for
Computational Linguistics, Berlin, 173-178.

[DV89] Damas, Luis and Giovanni B. Varile, 1989. CLG: A gram-
mar formalism based on constraint resolution. In: EPIA
’89, E.M. Morgado and J.P. Martins (eds.), Lecture Notes
in Artificial Intelligence 390, Springer, Berlin, .

[DV92] Damas, Luis and Giovanni B. Varile, 1992. On the Satisfi-
ability of Complex Constraints. To appear in: Proceedings
of COLING92, Nantes, France.

[HS88] M. Höhfeld and G. Smolka,1988. Definite relations over
constraint languages, LILOG-Report 53, IBM Deutschland
GmbH, Stuttgart.

[JL87] Jaffar, J., J-L. Lassez, 1987. Constraint logic programming.
In: Symposium on Principles of Programming Languages,
Munich.

[JL88] Jaffar, J., J-L. Lassez, 1988. From unification to con-
straints, in Logic Programming 1987, G. Goos & J. Hart-
manis (eds.), Lecture Notes in Computer Science 315,
Springer, Berlin.

[Joh90] Johnson, Mark, 1990. Expressing Disjunctive and Negative
Feature Constraints with Classical First-Order Logic. In:
ACL Proceedings, 28th Annual Meeting, 173–179.

23

[KR86] Kasper, Robert and William Rounds. 1986. A logical se-
mantics for feature structure. In : ACL Proceedings, 24th
Annual Meeting, 257–266.

[Mah88a] Maher, Michael J., 1988. Complete axiomatization of the
algebras of finite, rational and infinite trees. Technical Re-
port, IBM Thomas Watson Research Center, Yorktown
Heights, New York.

[Mah88b] Maher, Michael J., 1988. Complete axiomatization of the
algebras of finite, rational and infinite trees. In: Proceed-
ings of the 3rd Annual Symposium on Logic in Computer
Science, 348-457.

[RK86] Rounds, William C. and Robert Kasper. 1986. A complete
logical calculus for record structures representing linguistic
information. In : Symposium on Logic in Computer Sci-
ence, IEEE Computer Society

[Sho67] Shoenfield, Joseph R., 1967. Mathematical Logic. Addison-
Wesley.

[Smo88] Smolka, Gert, 1988. A Feature Logic with Subsorts, LILOG
Report 33, IWBS, IBM Deutschland.

[Smo89] Smolka, G. 1989. Feature Constraint Logics for Unification
Grammars, LILOG Report 93, IWBS, IBM Deutschland.

[SWY91] Santos, Vitor Costa, David H.D. Warren and Rong Yang,
1991. The Andorra-I Preprocessor: Supporting Full Pro-
log on the Basic Andorra Model. Proceedings of the eight
International Conference on Logic Programming, M.I.T.,
Cambridge, Massachusetts, 443-456.

[War88] Warren, D.H.D., 1988. The Andorra Model. Gigalips Work-
shop, University of Manchester, Manchester, England.

24

