
Exact Generation of Minimal Acyclic Deterministic Finite Automata

Marco Almeida

Nelma Moreira

Rogério Reis

LIACC, Faculdade de Ciências, Universidade do Porto
Departamento de Ciência de Computadores

Rua do Campo Alegre, 1021/1055
4169-007 Porto, Portugal

{mfa,nam,rvr}@ncc.up.pt

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

We give a canonical representation for minimal acyclic deterministic finite automata
(MADFA) with n states over an alphabet of k symbols. Using this normal form, we
present a method for the exact generation of MADFAs. This method avoids a rejec-
tion phase that would be needed if a generation algorithm for a larger class of objects

that contains the MADFAs were used. We give upper and lower bounds for MADFAs
enumeration and some exact formulas for small values of n.

Keywords: acyclic deterministic finite automata, minimal automata, finite languages,
generation, enumeration

1. Introduction

The problem of the enumeration of minimal (non-isomorphic) n-state acyclic de-

terministic finite automata (MADFAs) is an open problem that recently has been

considered by several authors. Domaratzki et al. [7] presented a characterization

of MADFAs, gave a lower bound and some exact calculations. Domaratzki [5, 6]

obtained improved lower and upper bounds for these values. The lower bound is

based upon the enumeration of certain families of MADFAs, and the upper bound

is obtained by enumerating n-state initially-connected acyclic deterministic finite

automata (ADFAs), where states havea topological order Π associated (i.e., when-

ever there is a transition from a state s to a state s′, Π(s) < Π(s′)). This approach

has the drawback of considering labelled automata, and thus possible isomorphic

ones. Câmpeanu and Ho [4] gave a tight upper bound for the number of states

of a MADFA accepting words of length less than or equal to a given integer.

Liskovets [9] gave a linear recursive relation for the number of unlabelled (non-

isomorphic) ADFAs, and has also enumerated initially-connected acyclic determin-

istic finite automata with a unique pre-dead state (i.e., a state such that all tran-

1

2 M. Almeida, N. Moreira, R. Reis

sitions from it go to a unique absorbing state, called dead). As all MADFAs have

this characteristic, a better upper bound is thus achieved. More recently, Callan [3]

presented a canonical form for ADFAs and showed that a certain determinant of

Stirling cycle numbers counts ADFAs. This canonical form is obtained observing

that if we mark the visited states, starting with the initial state s0, it is always

possible to find a state whose only incident states are already marked. This induces

a unique state’s labelling, but it is not clear how these representations can be used

in automata generation.

In this paper we give a canonical representation for MADFAs with n states

over an alphabet of k symbols. Using this normal form, we present a method for

the exact generation of MADFAs. This method has the advantage of avoiding a

rejection phase that would be needed if a generation algorithm for a larger class of

automata that contains the MADFAs were considered. Our first approach to the

enumeration of MADFAs was to generate initially-connected deterministic finite

automata (IDFAs) using the algorithm presented in Almeida et al. [11, 1, 2], and

then test for non-cyclicity as well as for non-minimality. In those experiments this

method was shown to be more than 20 times slower than the method described in

this paper. It is also relevant to note that although Callan and Liskovets obtained,

respectively, a canonical form and an exact formula for the enumeration for ADFAs,

no exact generator algorithm is known for that class.

In the next section, we present basic concepts used in this paper. In Section 3

we review some characterizations of (minimal) acyclic deterministic finite automata.

Based upon those characterizations, in Section 4, we present a canonical representa-

tion for MADFAs. In Section 5, we describe an algorithm for the exact generation

of all MADFAs, given n and k. In Section 6, we address the problem of MADFAs

enumeration (without its generation) and give exact formulae for small values of n.

In Section 7, we conclude with some future work.

2. Basic Concepts and Notation

We review some basic concepts of automata theory and finite languages. For more

details we refer the reader Hopcroft et al. [8], Yu [14] or Lothaire [10].

Let [n,m] denote the set {i ∈ Z | n ≤ i ≤ m}. In a similar way, we consider

the variants]n,m], [n,m[and]n,m[. Whenever we have a finite ordered set A, and

a function f on A, the expression (f(a))a∈A denote the values of f for increasing

values of A.

Alphabets and Languages. An alphabet Σ is a finite set of symbols. A word

over Σ is a finite sequence of symbols of Σ. The empty word is denoted by ε. The

length of a word x = σ1σ2 · · ·σn, denoted by |x|, is n. The set Σ⋆ is the set of all

words over Σ. A language L is a subset of Σ⋆. A language is finite if its cardinality

is finite.

3

Deterministic Finite Automata. A deterministic finite automaton (DFA) A is

a tuple (S,Σ, δ, s0, F) where S is a finite set of states, Σ is the alphabet, δ : S×Σ → S

is the transition function, s0 the initial state and F ⊆ S the set of final states. Let

the size of A be |S|. We assume that the transition function is total, so we consider

only complete DFAs. The transition function δ is inductively extended to Σ⋆, by

(∀s ∈ S) δ(s, ε) = s and δ(s, xσ) = δ(δ(s, x), σ).

A DFA is initially-connected (or accessible) (IDFA) if for each state s ∈ S there

exists a word x ∈ Σ⋆ such that δ(s0, x) = s. A DFA is trim if it is an IDFA and

every state is useful, i.e., (∀s ∈ S)(∃x ∈ Σ⋆) δ(s, x) ∈ F .

Isomorphism. Two DFAs (S,Σ, δ, s0, F) and (S′,Σ′, δ′, s′0, F
′) are called isomor-

phic if |Σ| = |Σ′| = k, there exist bijections Π1 : Σ → [0, k− 1], Π2 : Σ′ → [0, k − 1]

and a bijection ι : S → S′ such that ι(s0) = s′0, ι(F) = F ′, and for all σ ∈ Σ and

s ∈ S, ι(δ(s, σ)) = δ′(ι(s),Π−1
2 (Π1(σ))).

Minimality. The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ | δ(s0, x) ∈

F}. Two DFAs are equivalent if they accept the same language. Two isomorphic

automata are equivalent (considering the bijections between the alphabets), but two

non-isomorphic automata may also be equivalent. A DFA A is minimal if there is

no DFA A′, with fewer states, equivalent to A. For obtaining a minimal DFA the

notion of equivalent states is used. We say that two states s and s′ are equivalent

if and only if

(∀x ∈ Σ⋆) (δ(s, x) ∈ F ↔ δ(s′, x) ∈ F).

A minimal DFA has no equivalent states and is initially-connected. Minimal DFAs

are unique up to isomorphism.

3. Acyclic Finite Automata and Minimality

An acyclic deterministic finite automaton (ADFA) is a DFA A = (S ∪

{Ω},Σ, δ, s0, F) with F ⊆ S and s0 6= Ω such that (∀σ ∈ Σ) δ(Ω, σ) = Ω and

(∀x ∈ Σ⋆)(∀s ∈ S) δ(s, x) 6= s. The state Ω is called the dead state, and is the only

cyclic state of A. The size of A is |S|. We are going to consider only trim complete

ADFAs, where all states but Ω are useful. It is obvious that the language of an

ADFA is finite. Two states s and s′ are mergeable if they are both either final or

not final, and the transition function is identical. An ADFA can be minimized by

merging mergeable states, thus, a minimal ADFA (MADFA) can be characterized

by:

Lemma 1 ([10]) An ADFA A = (S ∪ {Ω},Σ, δ, s0, F) is minimal if and only if

(∀s, s′ ∈ S ∪ {Ω})((s ∈ F ∨̇ s′ ∈ F) ∨ (∃σ ∈ Σ) δ(s, σ) 6= δ(s′, σ)).

Every MADFA has a unique state π ∈ S such that (∀σ ∈ Σ) δ(π, σ) = Ω and

it is final. This state is called pre-dead and its existence is a direct consequence of

4 M. Almeida, N. Moreira, R. Reis

MADFAs definition and Lemma 1. Given a trim ADFA, A = (S∪{Ω},Σ, δ, s0, F),

the rank of a state s ∈ S, denoted rk(s), is the length of the longest word x ∈ Σ⋆

such that δ(s, x) ∈ F . The ranka of an ADFA A , rk(A), is max{rk(s) | s ∈ S}.

Trivially, we have that rk(s0) = rk(A) and rk(π) = 0. Given a trim ADFA the

rank of each state can be determined by the following algorithm:

for s in S
rk (s) ← ⊥

rank (s0)

def rank (s)
i f rk (s) 6= ⊥ then return rk (s)
r ← 0
for σ ∈ Σ

i f δ(s, σ) 6= Ω then r ← max(r ,1+rank (δ(s, σ)))
rk (s) ← r
return r

For every state s ∈ S, with rk(s) > 0 there exists a transition to a state with

rank immediately lower than s’s.

Lemma 2. Let A = (S ∪ {Ω},Σ, δ, s0, F) be an ADFA, then

(∀s ∈ S)(rk(s) 6= 0 ⇒ (∃σ ∈ Σ) rk(δ(s, σ)) = rk(s) − 1).

The above considerations lead to a optimized minimization algorithm for

ADFAs. Consider a total ordering in Σ and for each rank a total order ≺ in S.

We denote Rl = {s ∈ S | rk(s) = l} and nl = |Rl|, for l ∈ [0, rk(A)]. The mini-

mization algorithm for trim ADFAs described below is based on the one presented

in Lothaire [10] (page 33):

L ← ∅
for l ∈ [0,rk(A)]

for (s′, s′′) ∈ R2
l and s′ ≺ s′′

i f (Rnm(L , δ(s′, σ)) = Rnm(L , δ(s′′, σ)))σ∈Σ ∧ (s′ ∈ F ↔ s′′ ∈ F)
then

L ← L ∪ {(s′′, s′)}

de l e t e (s′′)

def Rnm(L , s)

i f (∃s′ ∈ S) (s, s′) ∈ L then return s′ else return s

aAlso called the diameter of A.

5

Note that if two states are mergeable, than they must be in the same rank. By

Lemma 1, they must be both final or non final, and have the same value of the

transition function. By proceeding in increasing rank order and knowing that all

transitions from a state have lower rank states as targets, the correctness of the

algorithm is ensured.

4. Normal Form for MADFAs

Based upon the minimization algorithm described in the last section, we are going

to characterize a canonical representation for MADFAs.

Let A = (S ∪ {Ω},Σ, δ, s0, F) be a MADFA with k = |Σ| and n = |S| ≥ 2.

Consider a total order over Σ and let Π : Σ −→ [0, k[be the bijection induced by

that order. For each state s ∈ S, let its representation be a (k + 1)-tuple ∆(s) =

(ϕ(δ(s,Π−1(0))), . . . , ϕ(δ(s,Π−1(k − 1))), f), where the first k values represent the

transitions from state s and the last value, f , is 1 if s ∈ F or 0, otherwise. If the last

value is omitted we denote the representation by ∆̂(s). The function ϕ will assign a

number to each state and is defined as follows. All MADFAs have a dead state Ω

and a pre-dead state π. Let ϕ(Ω) = 0 and ϕ(π) = 1. Thus, the representation of Ω

and π are (0k, 0), and (0k, 1), respectively. We can continue this process considering

the states by increasing rank order, and in each rank we number the states by

lexicographic order over their transition representations. It is important to note

that transitions from a given state can only refer to states of a lower rank, and thus

already numbered. Formally, the assignment of state numbers, ϕ, can be described

by the following simple algorithm:

ϕ(Ω)← 0
ϕ(π)← 1
i← 2
for l in]0, rk(A)]

for s ∈ Rl by l e x i c o g r ap h i c order over ∆(s)
ϕ(s)← i

i← i + 1

For example, considering the MADFA of Figure 1 (n = 7 and k = 3), its

canonical representation can be constructed as follows:

rank state ϕ(state) ∆(state)

Ω 0 0 0 0 0

0 π 1 0 0 0 1

1 s5 2 1 1 1 0

2 s4 3 2 1 1 0

3 s3 4 2 3 2 0

3 s2 5 3 3 0 0

4 s1 6 4 0 0 0

5 s0 7 5 6 6 0

6 M. Almeida, N. Moreira, R. Reis

s0 s1

s2

s3

s4

s5 π

Ω

a, b, c

b, c

a

a

b, c

c

a, b

b

a, c

a
b, c

a, b, c

a, b, c

Fig. 1. An example of a MADFA that can be described by the canonical representation
[[0, 0, 0, 0], [0, 0, 0, 1], [1, 1, 1, 0], [2, 1, 1, 0], [2, 3, 2, 0], [3, 3, 0, 0], [4, 0, 0, 0], [5, 6, 6, 0]].

The following three theorems guarantee that this representation is indeed a

canonical representation for MADFAs.

Theorem 3. Let A = (S ∪{Ω},Σ, δ, s0, F) be a MADFA with rk(A) = d, n = |S|

and k = |Σ|. Let (si)i∈[0,(k+1)(n+1)[, with si ∈ [0, n[, be the string representation of

A as above. Let (rl)l∈[0,d] be the sequence of the first states of each rank in (si)i,

and let (fi)i∈[1,n[be the sequence of the positions in (si)i of the first occurrence of

each i ∈ [1, n[. Then

s0 = · · · = sk = · · · = s2k = 0 ∧ s2k+1 = 1 (N0)

(∀i ∈ [0, n]) s(k+1)i+k ∈ {0, 1} (N1)

r0 = 1 ∧ r1 = 2 ∧ rd = n ∧ (∀l ∈ [0, d[) rl < rl+1 (N2)

((∀i ∈ [1, n[) sfi
= i ∧

(∀j ∈ [0, n])(∀m ∈ [0, k[) ((k + 1)j +m < fi ⇒ s(k+1)j+m 6= i))
(N3)

(∀l ∈ [0, d[)(∀i ∈ [rl, rl+1[) krl+1 + 1 ≤ fi (N4)

(∀l ∈ [0, d])(∀i ∈ [rl, rl+1[)(∃m ∈ [0, k[) s(k+1)i+m ∈ [rl−1, rl[(N5)

(∀l ∈ [0, d[)(∀i ∈ [rl, rl+1 − 1[) (s(k+1)i+m)m∈[0,k] < (s(k+1)(i+1)+m)m∈[0,k] (N6)

Proof. The condition N0 is obvious from the definition of MADFAs and the

uniqueness of the pre-dead state. The condition N1 states that the last symbol

of each state representation indicates if the state is final or not. The condition N2

ensures that states are numbered by increasing rank order. The condition N3 defines

the sequence (fi)i∈[1,n[, and ensures that A is initially connected. The condition N4

is a direct consequence of the rank definition, i.e., a state can only refer a state of

a lower rank. The condition N5 follows from Lemma 2. Finally, in condition N6, <

7

denotes the lexicographic order which is imposed by the state numbers and the way

the representation is constructed.

We note that the above conditions N0–N6 could be expressed using directly

the string representations ∆(i) and the sets of states in each rank, (Rl)l. For in-

stance, the condition N5 could be (∀l ∈ [0, d])(∀i ∈ Rl[)(∃m ∈ ∆̂(i)) m ∈ Rl−1. The

adopted notation enforces the possible treatment of the sets of canonical represen-

tations as formal languages.

Given a representation (si)i∈[0,(k+1)(n+1)[verifying conditions N0–N6 it is possi-

ble to determine the rank d and the sets of states in each rank, Rl for l ∈ [0, d]. Let

max ∆̂(i) be the largest value in the representation of a state i ∈ [0, n]. Assuming

R0 = {1} we have

Rl = {i | max ∆̂(i) ∈ Rl−1}, l ∈ [1, d],

where d is determined considering that (Rl)l is a (ordered) partition of [1, n]. Anal-

ogously, it is possible to determine the sequence (rl)l refered in Theorem 3. Thus,

in the following theorems we assume that this sequence was previously calculated

from (si)i.

Theorem 4. Let (si)i∈[0,(k+1)(n+1)[with si ∈ [0, n[be a string that satisfies con-

ditions N0–N6, then the corresponding automaton is a MADFA with n states and

an alphabet of k symbols.

Proof. From the string (si)i∈[0,(k+1)(n+1)[we can obtain a DFA with an alphabet

of k symbols and n states. By conditions N0, N2 and N4 it must be acyclic. By

conditions N3 and N5 it must be trim. That it is minimal is a direct consequence

of Lemma 1 and condition N6.

Theorem 5. Let (si)i∈[0,(k+1)(n+1)[and (s′i)i∈[0,(k+1)(n+1)[be two distinct strings

satisfying conditions N0–N6. Then they correspond to distinct MADFAs.

Proof. Let (si)i∈[0,(k+1)(n+1)[and (s′i)i∈[0,(k+1)(n+1)[be two distinct strings in the

conditions required. Let A = (S ∪{Ω},Σ, δ, s0, F) and A′ = (S′ ∪{Ω′},Σ, δ′, s′0, F
′)

be the correspondent MADFAs, with π and π′ their pre-dead states, respectively.

The first two tuples of the two strings are the same, by condition N0. Let j, for

j ∈ [2, n], be the first tuple where the two strings differ, and let (s(k+1)j+m)m∈[0,k] <

(s′(k+1)j+m
)m∈[0,k]. Suppose that there exists a bijection ψ : S → S′ that defines an

isomorphism between A and A′, then

(1) ψ(Ω) = Ω′, because Ω and Ω′ are the unique cyclic states.

(2) ψ(π) = π′, because they are the unique states in each automaton, such that the

dead state is the target of all its transitions.

(3) let ∆(i) and ∆′(i) denote the representation of state i ∈ [2, n] (transitions and

finality) of A and A′, respectively; then, (∀i < j)ψ(∆(i)) = ∆′(i)

8 M. Almeida, N. Moreira, R. Reis

The values of both strings (s(k+1)j+m)m∈[0,k] and (s′(k+1)j+m
)m∈[0,k] are lower

than j, by condition N4. Thus, ψ(∆(j)) 6= ∆′(j). Moreover there cannot exist

j′ > j such that ψ(∆(j)) = ∆′(j′), because such a tuple would be lexicographically

smaller than the tuple j (and that would contradict condition N6). Therefore, such

an isomorphism cannot exist, and thus the two automata are non-isomorphic.

We obtain an equivalent normal form if we omit the representation of the dead

and the pre-dead states. Their explicit inclusion only simplifies the presentation of

the algorithms in the next sections.

5. Exact Generation of MADFAs

In this section, we present a method to generate all MADFAs, given n and k. For

each MADFA, its state representations are generated lexicographically according

to the conditions N0-N6 of Theorem 3. The algorithm traverses the search tree,

backtracking in its way, and generates all possible representations.

Fig. 2. Constraints on the size of ranks, where each rank (except the last and the first) is represented
by a rectangle.

Let NextState(k, l, c, r, r′, D,m) be a function that returns the first (k + 1)-

tuple α = (α0, . . . , αk) that lexicographically succeeds tuple l, and that satisfies the

following constraints:

(1) (∀i ∈ [0, c[)αi ∈ [0, r[

(2) αc ∈ [r, r′]

(3) (∀i ∈ [c+ 1, k[)αi ∈ [0, r′]

(4) αk ∈ {0, 1}

(5) m = 1 ⇒ {αi | i ∈ [0, k[} ∩D 6= ∅

(6) m = 2 ⇒ {αi | i ∈ [0, k[} ⊆ D and |{αi | i ∈ [0, k[}| = k.

9

If the above conditions cannot be satisfied, the function returns ⊥. If l = ⊥,

it returns the first tuple that satisfies the conditions. The parameters r and r′

are the first and last states in the previous rank, respectively, and the parameter

c is the position of the first state to refer to a state of the previous rank (cf.,

constraints (1)-(3)). The parameter D is the set of dangling states not yet referred,

i.e. not initially-accessible, and, that depending on the mode m, should or should

not be connected in the new tuple α.

The algorithm is described as follows:

1 F ← ((0k, 0), (0k, 1))
2 NewRank(n, k, F, 1, 1, {1})
3

4 def EvalMode(n, k, F, D)
5 i f |F | = n then

6 i f |D| = 1 then output F

7 return −1
8 i f |D| ≤ (k − 1)(n− |F | − 1) then return 0
9 i f |D| < (k − 1)(n− |F |) + 1 then return 1

10 else return 2
11

12 def NewRank(n, k, F, r, r′, D)
13 i f (m = evalMode(n, k, F, D)) 6= −1 then

14 for c ∈ (k − 1, . . . , 0)
15 l← ⊥

16 while (l ← NextState(k, l, c, r, r′, D, m)) 6= ⊥

17 SameRank(n, k, F + l, c, r, r′, (D \ {li|i < k}) ∪ {|F |}, l)
18

19 def SameRank(n, k, F, c, r, r′, D, l)
20 i f (m = evalMode(n, k, F, D)) 6= −1 then

21 for c′ ∈ (c, . . . , 0)

22 while (l ← NextState(k, l, c′, r, r′, D, m)) 6= ⊥

23 SameRank(n, k, F + l, c′, r, r′, (D \ {li|i < k}) ∪ {|F |}, l)

24 NewRank(n, k, F, r′ + 1, |F | − 1, D)

The following claims ensure the correctness of the algorithm.

Claim 1. Every generated sequence F satisfies conditions N0-N6.

Claim 2. For each n and k all legal strings are generated.

Proof. Claims 1. and 2. (Sketch) Considering the algorithm above and the existence

of the function NextState, we have,

• The condition N0 is guaranteed by line 1.

• The condition N1 is a direct consequence of constraint (4).

10 M. Almeida, N. Moreira, R. Reis

• By the constraints (1)-(3), each new state generated by NextState belongs to the

rank immediately after the rank of state r. Moreover, the functions NewRank

and SameRank constraint the states to be generated by rank increasing order

(and unit steps). This guarantees condition N2.

• The function EvalMode and the constraints (5)-(6), ensure that conditions N3

(ADFAinitially connect) and N4 (rank order) are fulfilled. The conditions stated

in lines 8 − 10 correspond to a pruning of the state’s representations search

tree, and is illustrated in Figure 2. If the number of dangling states (|D|) is

equal to (k − 1)(n − |F |) + 1, i.e., equals all possible transitions left then all

transitions from the states to be created must refer dangling those states (m = 2).

If (k−1)(n−|F |−1) < |D| < (k−1)(n−|F |)+1 then at least one of those states

must be referred (m = 1). If |D| ≤ (k − 1)(n − |F | − 1) none of those dangling

states needs to be referred. The set of dangling states is updated in each recursive

call to the functions NewRank and SameRank (lines 17, 23− 24).

• The condition N5 is a direct consequence of constraint (2).

• The condition N6 is ensured because NextState generates the tuples in lexico-

graphic order, and the way the parameter c takes values (lines 14 and 21).

The algorithm was implemented in Python [13]. In Table 5 the number of

MADFAs for some small values of n and k is summarized. For k = 2 and n ≤ 6,

those values were already presented by Domaratzki et al. [7] and by Liskovets [9].

k = 2 k = 3

n MADFAs Time (s) MADFAs Time (s)

2 6 0.012 14 0.015

3 60 0.015 532 0.019

4 900 0.026 42644 0.579

5 18480 0.026 6011320 95.034

6 487560 7.240 1330452032 24481.959

7 15824880 243.873

8 612504240 9695.755

9 27619664640 457881.581

k = 4 k = 5

n MADFAs Time (s) MADFAs Time (s)

2 30 0.017 62 0.017

3 3900 0.061 26164 0.307

4 1460700 17.965 43023908 507.296

5 1220162880 16683.977

Table 1. Number of MADFAs for small values of n and k, and performance times for its generation
(AMD Athlon 64 at 2.5MHz).

11

6. Towards an Exact Enumeration of MADFAs

In this section we address some issues regarding the enumeration of MADFAs and

therefore of finite languages.

6.1. Counting MADFAs by Ranks

It is easy to count the number of MADFAs over an alphabet of k symbols and with

rank d. Each MADFA represents a distinct finite language where the largest word

has length d, and all languages in these conditions are represented by a MADFA

of rank d. The number of words of length i is ki, for i ∈ [0, d], and thus we have,

Rk(d) =

(

d−1
∏

i=0

2ki

)

(2kd

− 1).

6.2. Counting MADFAs for n and k

The number of finite languages represented by MADFAs with n states over an

alphabet of k symbols, Mk(n), would be obtained if we could count its canonical

representations. So far, however, we were only able to obtain Mk(n) for small values

of n and assuming that we know the possible distributions of states by ranks. Let

A = (S ∪ {Ω},Σ, δ, s0, F) be a MADFA and rk(A) = d.

Let (nl)l∈[1,d] be the sequence of the number of states in each rank. The number

of these sequences is at most 2n−3, for n > 2, as they correspond to the integer

compositions of size n−2. For each sequence(nl)l∈[0,d], let (mf)f∈[1,d] be the number

of dangling states that are target of transitions from a state of a previous rank, for

the first time.

We are going to analyse the possible configurations for n ∈ [2, 5], using the Prin-

ciple of Inclusion and Exclusion. It is important to note that some configurations

are not allowed for small values of k.

For n = 2, the state s0 can be final or not, and the number of possible transition

functions is 2k, excluding the one where all transitions have as target the dead state.

We have

Mk(2) = 2(2k − 1).

In the following diagrams the dead state is omitted. For n = 3, we only have to

consider one configuration:

(nl)l∈[0,2] = (1, 1, 1) (mf)f∈[1,2] = (1, 1).

Then,

Mk(3) = 22(3k − 2k)(2k − 1).

12 M. Almeida, N. Moreira, R. Reis

Note that now there are 3k different transitions from the state s0, but 2k have the

dead state as unique target.

For n = 4 (and k > 1), we have two configurations (nl)l∈[0,3] and (nl)l∈[0,3[, each

one with a possible sequence (mf)f :

d (nl)l∈[0,d] (mf)f∈[1,d]

3

(1, 1, 1, 1)

(1, 1, 1)

2

(1, 2, 1)

(1, 2)

Then,

Mk(4) = 23(4k − 3k)(3k − 2k)(2k − 1) + 2(4k − 3k2 + 2k)

(

2(2k − 1)

2

)

For n = 5, we have four possible configurations for (nl)l:

d (nl)l (mf)f d (nl)l (mf)f

5

(1, 1, 1, 1, 1)

(1, 1, 1, 1) 4

(1, 1, 2, 1)

(1, 1, 2)

4

(1, 2, 1, 1)

(1, 1, 2)

(1, 2, 1)
3

(1, 3, 1)

(3, 1)

13

The last configuration is only possible for k > 2. Then,

Mk(5) = 24(5k − 4k)(4k − 3k)(3k − 2k)(2k − 1)

+ 22(5k − 4k)(4k − 3k2 + 2k)

(

2(2k − 1)

2

)

+ 23(5k − 4k2 + 3k)(3k − 2k)

(

2(2k − 1)

2

)

+ 22(5k − 4k2 + 3k)

(

2(3k − 2k)

2

)

(2k − 1)

+ 2(5k − 4k3 + 3k3 − 2k)

(

2(2k − 1)

3

)

.

In a similar way, we can obtain the formulae for higher valuesb of n. But the

interaction between the sequences (nl)l and (mf)f is not so straightforward to count

and the above general approach leads to double counting. It provides, however, an

upper bound for Mk(n).

We now consider some lower bounds for Mk(n). Any family of MADFAs which

canonical representation can be expressed by a (unambiguous) regular expression

or context-free grammar can be easily enumerated using generating functions (see

Sedgewick and Flagolet [12]).

For each n and k, consider the set of MADFAs with one state per rank. The

normal forms of these automata, omiting the values for the pre-dead and dead states,

can be characterized by the following regular expression, where concatenation is

taken as a product and disjunction as a sum:

n−1
∏

i=1

k−1
∑

c=0

(0 + · · · + i)k−c−1i(0 + · · · + (i− 1))c(0 + 1)

Counting the number of strings represented by this regular expression, for each n

and k, we have:

n−1
∏

i=1

k−1
∑

c=0

2(i+ 1)k−c−1ic = 2(n−1)
∏

i∈[1,n[

((i+ 1)k − ik)

So we obtain the following lower bound:

Mk(n) ≥ 2(n−1)
∏

i∈[1,n[

((i+ 1)k − ik),

where equality holds for n = 2 and n = 3.

This family of automata coincides with the family Sn+1,k introduced by Do-

maratzki [6], which size provided a lower bound for Mk(n). We note that our normal

form allows much shorter proofs. For k = 2 and n ≥ 4, Domaratzki [6] improved the

previous lower bound by presenting another family of MADFAs, T (n). Although

bThe formula for n = 6 is a page long and cumbersome.

14 M. Almeida, N. Moreira, R. Reis

it is not hard to obtain a regular expression for the canonical representation of this

family, it is too long to present its construction here.

6.3. Estimates of the Number of States per Rank

The possible distributions of states per ranks are an important issue towards the

enumeration of MADFAs. As was pointed out by Liskovets [9], the number of states

in rank 1 must be at most 2(2k − 1). Let d ≥ 1 be the rank of a MADFA and let

nl for l ∈ [1, d] be the number of states in each rank, with n−1 = 1, n0 = 1, and

nd = 1. Because the MADFA must be initially-connected and in rank d − i the

maximum number of states is ki, for i ∈ [1, d[, we have the following recurrence:

nd−i ≤ knd−(i−1) +

i−1
∑

j=1

(kj − nd−j), i ∈ [1, d[.

In the other hand, for each state in each rank there exists a transition to a state in

the previous rank, thus we have

ni ≤ 2((
i−1
∑

j=−1

nj)
k − (

i−2
∑

j=−1

nj)
k), i ∈ [1, d[. (7)

The inequality (7) was also derived by Câmpeanu and Ho [4]. They presented a

closed formula for the recurrence obtained considering the equality in (7) and, with

that, obtained upper bounds for the number of states of MADFAs accepting words

of length at most d and with k symbols.

7. Conclusions

We presented a canonical representation for minimal acyclic deterministic finite

automata with n states and k symbols and a method for their exact generation. The

study of the combinatorial properties of this canonical representation can contribute

to obtain a formula for their enumeration, or at least more upper and lower bounds.

In particular, a characterization in terms of context-free languages, if it exists, would

be helpful. We also plan to study the possibility of use this canonical representation

for a uniform random generator for MADFAs. It is possible to extend this canonical

representation for ADFAs by inducing a canonical order over mergeable states in

the same rank. Further extension of this representation to cyclic minimal automata

seems impossible as for those automata there is no notion of rank.

8. Acknowledgements

We are most grateful to Valery Liskovets that kindly posed several interesting ques-

tions related to the number of MADFAs and its distributions by number of final

states. We thank also the anonymous referees for their valuable comments that

helped to improve the paper.

15

This work was partially funded by Fundação para a Ciência e Tecnologia

(FCT) and Program POSI, and by project ASA (PTDC/MAT/65481/2006). Marco

Almeida is funded by FCT grant SFRH/BD/27726/2006.

References

[1] M. Almeida, N. Moreira, and R. Reis. Aspects of enumeration and generation with
a string automata representation. In H. Leung and G.Pighizzini, editors, Proc. of

DCFS’06, pages 58–69, Las Cruces, New Mexico, 2006. NMSU.
[2] M. Almeida, N. Moreira, and R. Reis. Enumeration and generation with a string

automata representation. Theoretical Computer Science, 387(2):93–102, 2007.
[3] D. Callan. A determinant of Stirling cycle numbers counts unlabeled acyclic single-

source automata. Department of Statistics, University of Wisconsin-Madison, 2007.
[4] C. Câmpeanu and W. H. Ho. The maximum state complexity for finite languages. J.

of Automata, Languages and Combinatorics, 9(2-3):189–202, 2004.
[5] M. Domaratzki. Combinatorial interpretations of a generalization of the Genocchi

numbers. Journal of Integer Sequences, 7(04.3.6), 2004.
[6] M. Domaratzki. Improved bounds on the number of automata accepting finite lan-

guages. International Journal of Foundations of Computer Science, 15(1):143–161,
2004.

[7] M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages
accepted by finite automata with n states. J. of Automata, Languages and Combina-

torics, 7(4):469–486, 2002.
[8] J. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison Wesley, 2000.
[9] V. A. Liskovets. Exact enumeration of acyclic deterministic automata. Discrete Ap-

plied Mathematics, 154(3):537–551, March 2006.
[10] M. Lothaire. Algorithms on words. In Applied Combinatorics on Words, chapter 1.

Cambridge University Press, 2005.
[11] R. Reis, N. Moreira, and M. Almeida. On the representation of finite automata. In

C. Mereghetti, B. Palano, G. Pighizzini, and D.Wotschke, editors, Proc. of DCFS’05,
pages 269–276, Como, Italy, 2005.

[12] R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison Wesley, 1996.
[13] G. van Rossum. Python Library Reference, 2.4.2 edition, 2005.
[14] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume 1. Springer-Verlag, 1997.

