Program verification

Nelma Moreira

Decidable first order theories and SMT Solvers
Lecture 21

Decision algorithm D Pr: quantifier-free theories

The aim is to solve combinations such as

(rr=zaVay=a3)AN(r1 =22 Vao=x—4)Ax1 £ T3 AT # 24
(14 223 <5)V-(xs < 1) A (22 > 3)
(i =jAalj]=1)A~(ali] = 1)

We consider quantifier-free theories, T, for which there exists a decision al-
gorithm D Pr for the conjunction of atomic formulae.

Example:Equality Logic

e Corresponds to the equality theory 7 only with variables (and constants
that can be eliminated) and quantifers-free

p=pAhp|(p)|plt=t
t:=z|c

e has the same expressivity and complexity of propositional logic.

Exerc. 21.1. Describe an algorithm no eliminate constants from a formula
with equalities. ©

Decition procedure for theory of equality (conjunctions), DPr

e Seja p a conunction of equalities and inequalities
e Build a graph G = (N, E=, E) where
e N are variables of ¢,

e E_, edges (x;,x;) correspond to equalities z; = z; € ¢ (dashes)

o E, edges (x;,x;) correspond to inequalities x; # x; € ¢ (filled)

e ¢ is not satisfiable if and only if there exists an edge (v1,v2) € Ex such
that vy is reachable from v, by edges of E_.

For x9 = x3 A1 = x3 A 21 # x4, we conclude that is not satisfiable

Using SAT solvers for SMT

There are two approaches for the Boolean combination of atomic formulas

e cager

— translate to an equisatisfiable propositional formula

— that is solved by a SAT solver
e lazy

— incrementally encode the formula in a proposicional formula
— use DPLL SAT solver

— use a solver for the theory (DPr) to refine the formula and guide the
SAT solver

e the lazy approach seems to work better

Lazy approach

Mainly in the case that ¢ contains other connectives besides conjunction is
better to integrate Dp in a SAT solver.

e Suppose ¢ in (NNF)
e at(y) set of atomic formulae over ¥ in ¢; at;(¢) i-th atomic formula

e To each atomic formula a € at(p) associate e(a) a proposicional variable,
called the encoder

e Extend the encoding e to ¢, and let e(p) be the formula resulting from
substituting each X-literal by its encoder.

e For example if 1= (x =y Vo = z) then e(p) :=e(z =y) Ve(z = z)

Example

Let

We have
e(p) i=e(z=y) N((ely = 2) A(e(x = 2))) Vel = 2)) := B
Using a SAT solver we obtain an assignment for B:

a:={e(x =y) — true,e(y = z) — true, e(x = z) — false}

The procedure D Pr checks if the conjunction of literals correspondent to o is
satisfiable, i. e., R
Thio)=(x=y)AN(y=2) Nz #z

This formula is not satisfiable, thus —~T'h(c) is a tautology. We can make the
conjunction e(—Th(a)) A B and call again the SAT solver but a will be blocked
as it will not satisfy e(=Th(«)) (blocking clause).

o a Th(a) o
Propositional DPr — a decision procedure
SAT solver o) : for a conjunction of X-literals

Let o’ be a new assignment

o = {e(z =y) — true,e(y = z) — true, e(z = z) — true}
that corresponds to
Th(e!):=(x=y)A(y=2)Az =2

which is satisfiable, proving that the original formula ¢ is satisfiable.

Formally, given a encoding e(p) and an assignment «, for each encoder e(at;)
we have
at; afle(at;)) = true

Th(at;, o) = {

-at; a(e(at;)) = false

and let the set of literals be
Th(a) = {Th(at;,a) | at; € ¢}

then Th(c) is the conjunction of literals in Th(a).

Let DEDUCTION be the procedure DPr with the possible generation of a
blocking clause , t = “Th(a).

Algorithm 3.3.1: LAzy-Basic

Input: A formula ¢
Output: “Satisfiable” if ¢ is satisfiable, and “Unsatisfiable” oth-
erwise

. function Lazy-Basic(y)
B := e(p);
while (TRUE) do
(v, res) := SAT-SOLVER(B);
if res =“Unsatisfiable” then return “Unsatisfiable”;
else
(t,res) := DEDUCTION(Th(a));
if res =“Satisfiable” then return “Satisfiable”;
B:=BAe(t);

© PN o WD

Consider the following three requirements on the formula ¢ that is returned by
Deduction:

1. ¢t is valid in 7.
2. The atoms in ¢ are restricted to those appearing in ¢

3. The encoding of t contradicts «, i.e., e(¢) is a blocking clause

The first requirement 1. ensures soundness. The second and third requirements
2. e 3.

are sufficient to guaranteeing termination.

Two can be weakened:

e It is enough that ¢ implies ¢

e In ¢ can occur other atomic formulas
Beside considering an incremental SAT (that keeps the B from previous calls,

it is more efficient to integrate the procedure DEDUCTION in the CDCL al-
gorithm.

CDCL(T): integrar DPr em CDCL-SAT

Algorithm 3.3.2: LAzy-CDCL

Input: A formula ¢

Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”

otherwise

1. function Lazy-CDCL

2 ADDCLAUSES(cnf (e(¢)));

3 while (TRUE) do

4 while (BCP() = “conflict”) do

5 backtrack-level := ANALYZE-CONFLICT();

6. if backtrack-level < 0 then return “Unsatisfiable”;

7 else BackTrack(backtrack-level);

8 if =DECIDE() then > Full assignment
9. (t, res):=DEDUCTION(Th()); > « is the assignment
10. if res=“Satisfiable” then return “Satisfiable”;

11. ADDCLAUSES(e(t));

This algorithm uses a procedure ADDCLAUSES, which adds new clauses to the
current set of clauses at run time.

Theory propagation

Suppose that ¢ has an integer variable x; and the literals 1 < 0 and x; > 10.
If e(z1 > 10) + true and e(z1 < 0) — true ther will be a contradiction but that
is only detected after being obtained a full assignment. However that can be
improved, if the call to DEDUCTION is made earlier. That allows to

e Contradictory partial assignments are ruled early

e Implications of literals that are still unassigned can be communicated back
to the Sat solver. We call this technique theory propagation.

e For example, if e(x; > 10) « true we can infer that e(x; < 0) « false and
and thus avoid the conflict altogether.

DPLL(T)

[0}
-
@ all assigned SAT

3 ol

B

S BACKTRACK

<

g bl>0

g

s BCP conflict ANALYZE- UNSAT
§ CONFLICT bl <0
N .

= Th(a) a

=

DEDUCTION ADDCLAUSES

Theory
propagation
/ conflict

Z3

73 https://github.com/Z3Prover/z3

73 https://z3prover.github.io/papers/programmingz3.html

https://z3prover.github.io/papers/z3internals.html

Python : pip install z3-solver

Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples.
htm

[C++ Python .Net Java Ocaml
[
SMTLIB2 {

1
—
@ % SMT jowers[Fixedpoint ?
= |
A

Tactics \

Preprocessing J [Cube & Conquer

Tacticals: Then, Or, Probe, Parallel Or/Then

)

G

NLSat] [SAT
QSAT

Z3 Architecture of a SMT Solver

/ N

E-matching Theories
based
Quantifier . .
Instantiation Arithmetic
I)
EUF + SAT [Bit-vectors]
I — =D
Model
based
Quantifier Strings/Sequences
Instantiation
- J
PYZ3
x = Real(’x’)
y = Real(’y’)
z = Real(’z’)
s = Solver()
s.add(3*x + 2xy - z == 1)
s.add(2%x - 2%y + 4%z == -2)
s.add(-x + 0.5%xy - z == 0)

print(s.check())
print(s.model())

PYZ3

e Logical variables are created indicating their Sort: Real, Bool, Int, or
any new declarated type:

DeclareSort(’S’)

Function(’f’, S, S)

Const(’x’, 8)

Const(’y’, S)

= Const(’z’, S)

Solver ()

.add(Or (x!=y,0r (f (x)==f (y) ,£(x) '=£(2))))
print(s.check())

print(s.model())

n n N< X H WM
I

solve(Or (x!=y,0r (f (x)==f (y) ,f(x) '=f(2)))

e solve() creates a Solver, adds a formula and checks if it is satisfiable
returning a solution (model).

e Const and Function define zero or more variables, respectively

SMT-LIB

e a standard language for SMT is the SMT-LIB (similar to LISP), but we
can use the Python interface

x, vy = IntsCx y’)

s = Solver()

s.add((x % 4) +3 x (y / 2) >x -7y)
print(s.sexpr())

e outputs

(declare-fun y () Int)
(declare-fun x () Int)
(assert (> (+ (mod x 4) (x 3 (div y 2))) (- x y)))

e Quantifiers: ForAll, Exists
solve([y == x + 1, ForAll([yl, Implies(y <= 0, x < y))1)

The first occurence of y is free, the second is bounded.

Example SMT-LIB 2

(set-logic QF UFLIA)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (distinct x y 2z))
(assert (> (+ xy) (x 2 2)))
(assert (>= x 0))

(assert (>=y 0))

(assert (>= z 0))
(check-sat)

(get-model)

(get-value (x y z))

Usando % z3 exemplol.smt2

sat

(
(define-fun x () Int
3)
(define-fun z () Int
1)
(define-fun y () Int
0)
)
((x 3)
(y 0)
(z 1))

pyz3: s.from file("exemplol.smt2")

Z3 API

e help(class) or help(function)
o describe_tactics.

References

[BAM15] Nikolai Bjorner and Leonardo de Moura. Z8 Theorem Prover. Rise,
Microsft, 2015.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation:
Decision Procedures with Applications to Verification. Springer Verlag,
2007.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures:An Al-
gorithmic Point of View. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2016.

