Program verification

Nelma Moreira
Decidable first order theories and SMT Solvers
Lecture 21

Decision algorithm $D P_{T}$: quantifier-free theories

The aim is to solve combinations such as

$$
\begin{aligned}
& \left(x_{1}=x_{2} \vee x_{1}=x_{3}\right) \wedge\left(x_{1}=x_{2} \vee x_{2}=x-4\right) \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4} \\
& \left(x_{1}+2 x_{3}<5\right) \vee \neg\left(x_{3} \leq 1\right) \wedge\left(x_{2} \geq 3\right) \\
& (i=j \wedge a[j]=1) \wedge \neg(a[i]=1)
\end{aligned}
$$

We consider quantifier-free theories, T, for which there exists a decision algorithm $D P_{T}$ for the conjunction of atomic formulae.

Example:Equality Logic

- Corresponds to the equality theory \mathcal{T}_{E} only with variables (and constants that can be eliminated) and quantifers-free

$$
\begin{aligned}
\varphi & :=\varphi \wedge \varphi|(\varphi)| \neg \varphi \mid t=t \\
t & :=x \mid c
\end{aligned}
$$

- has the same expressivity and complexity of propositional logic.

Exerc. 21.1. Describe an algorithm no eliminate constants from a formula with equalities. ॰

Decition procedure for theory of equality (conjunctions), $D P_{T}$

- Seja φ a conunction of equalities and inequalities
- Build a graph $G=\left(N, E_{=}, E_{\neq}\right)$where
- N are variables of φ,
- $E_{=}$, edges $\left(x_{i}, x_{j}\right)$ correspond to equalities $x_{i}=x_{j} \in \varphi$ (dashes)
- E_{\neq}, edges $\left(x_{i}, x_{j}\right)$ correspond to inequalities $x_{i} \neq x_{j} \in \varphi$ (filled)
- φ is not satisfiable if and only if there exists an edge $\left(v_{1}, v_{2}\right) \in E_{\neq}$such that v_{2} is reachable from v_{1} by edges of $E_{=}$.

For $x_{2}=x_{3} \wedge x_{1}=x_{3} \wedge x_{1} \neq x_{2}$, we conclude that is not satisfiable

Using SAT solvers for SMT

There are two approaches for the Boolean combination of atomic formulas

- eager
- translate to an equisatisfiable propositional formula
- that is solved by a SAT solver
- lazy
- incrementally encode the formula in a proposicional formula
- use DPLL SAT solver
- use a solver for the theory $\left(D P_{T}\right)$ to refine the formula and guide the SAT solver
- the lazy approach seems to work better

Lazy approach

Mainly in the case that φ contains other connectives besides conjunction is better to integrate D_{T} in a SAT solver.

- Suppose φ in (NNF)
- $a t(\varphi)$ set of atomic formulae over Σ in $\varphi ; a t_{i}(\varphi) i$-th atomic formula
- To each atomic formula $a \in \operatorname{at}(\varphi)$ associate $e(a)$ a proposicional variable, called the encoder
- Extend the encoding e to φ, and let $e(\varphi)$ be the formula resulting from substituting each Σ-literal by its encoder.
- For example if $\varphi:=(x=y \vee x=z)$ then $e(\varphi):=e(x=y) \vee e(x=z)$

Example

Let

$$
\varphi:=x=y \wedge((y=z \wedge \neg(x=z)) \vee x=z)
$$

We have

$$
e(\varphi):=e(x=y) \wedge((e(y=z) \wedge \neg(e(x=z))) \vee e(x=z)):=\mathcal{B}
$$

Using a SAT solver we obtain an assignment for \mathcal{B} :

$$
\alpha:=\{e(x=y) \mapsto \text { true, } e(y=z) \mapsto \text { true }, e(x=z) \mapsto \text { false }\}
$$

The procedure $D P_{T}$ checks if the conjunction of literals correspondent to α is satisfiable, i. e.,

$$
\hat{T h}(\alpha)=(x=y) \wedge(y=z) \wedge x \neq z
$$

This formula is not satisfiable, thus $\neg \hat{T h}(\alpha)$ is a tautology. We can make the conjunction $e(\neg \hat{T h}(\alpha)) \wedge \mathcal{B}$ and call again the SAT solver but α will be blocked as it will not satisfy $e(\neg \hat{T h} h(\alpha))$ (blocking clause).

Let α^{\prime} be a new assignment

$$
\alpha^{\prime}:=\{e(x=y) \rightarrow \text { true }, e(y=z) \rightarrow \text { true }, e(x=z) \rightarrow \text { true }\}
$$

that corresponds to

$$
\hat{T h}\left(\alpha^{\prime}\right):=(x=y) \wedge(y=z) \wedge x=z
$$

which is satisfiable, proving that the original formula φ is satisfiable.
Formally, given a encoding $e(\varphi)$ and an assignment α, for each encoder $e\left(a t_{i}\right)$ we have

$$
T h\left(a t_{i}, \alpha\right)= \begin{cases}a t_{i} & \alpha\left(e\left(a t_{i}\right)\right)=\text { true } \\ \neg a t_{i} & \alpha\left(e\left(a t_{i}\right)\right)=\text { false }\end{cases}
$$

and let the set of literals be

$$
T h(\alpha)=\left\{T h\left(a t_{i}, \alpha\right) \mid a t_{i} \in \varphi\right\}
$$

then $\hat{T h}(\alpha)$ is the conjunction of literals in $T h(\alpha)$.
Let DEDUCTION be the procedure $D P_{T}$ with the possible generation of a blocking clause, $t=\neg \hat{T h}(\alpha)$.

```
Algorithm 3.3.1: LAZY-BASIC
Input: A formula \(\varphi\)
Output: "Satisfiable" if \(\varphi\) is satisfiable, and "Unsatisfiable" oth-
            erwise
    function LAZY-BASIC( \(\varphi\) )
        \(\mathcal{B}:=e(\varphi) ;\)
        while (TRUE) do
            \(\langle\alpha\), res \(\rangle:=\operatorname{SAT}-\operatorname{Solver}(\mathcal{B}) ;\)
            if res ="Unsatisfiable" then return "Unsatisfiable";
            else
                \(\langle t, r e s\rangle:=\operatorname{DEDUCTION}(\hat{T h}(\alpha)) ;\)
                if res \(=\) "Satisfiable" then return "Satisfiable";
                \(\mathcal{B}:=\mathcal{B} \wedge e(t)\);
```

Consider the following three requirements on the formula t that is returned by Deduction:

1. t is valid in \mathcal{T}.
2. The atoms in t are restricted to those appearing in φ
3. The encoding of t contradicts α, i.e., $e(t)$ is a blocking clause

The first requirement 1. ensures soundness. The second and third requirements 2. e 3 .
are sufficient to guaranteeing termination.
Two can be weakened:

- It is enough that t implies φ
- In t can occur other atomic formulas

Beside considering an incremental SAT (that keeps the \mathcal{B} from previous calls, it is more efficient to integrate the procedure DEDUCTION in the CDCL algorithm.

CDCL(T): integrar $D P_{T}$ em CDCL-SAT

```
Algorithm 3.3.2: LAZY-CDCL
Input: A formula \(\varphi\)
Output: "Satisfiable" if the formula is satisfiable, and "Unsatisfiable"
    otherwise
    function LAZY-CDCL
    \(\operatorname{AddClauses}(\operatorname{cnf}(e(\varphi)))\);
    while (TRUE) do
            while ( BCP()\(=\) "conflict") do
                backtrack-level \(:=\) Analyze-Conflict();
                if backtrack-level \(<0\) then return "Unsatisfiable";
                else BackTrack(backtrack-level);
            if \(\neg \operatorname{DECIDE}()\) then \(\quad \triangleright\) Full assignment
                \(\langle t, r e s\rangle:=\operatorname{Deduction}(\hat{T h}(\alpha)) ; \quad \triangleright \alpha\) is the assignment
                if res="Satisfiable" then return "Satisfiable";
                \(\operatorname{AddClauses}(e(t))\);
```

This algorithm uses a procedure AddClauses, which adds new clauses to the current set of clauses at run time.

Theory propagation

Suppose that φ has an integer variable x_{1} and the literals $x_{1}<0$ and $x_{1}>10$. If $e\left(x_{1}>10\right) \mapsto$ true and $e\left(x_{1}<0\right) \mapsto$ true ther will be a contradiction but that is only detected after being obtained a full assignment. However that can be improved, if the call to DEDUCTION is made earlier. That allows to

- Contradictory partial assignments are ruled early
- Implications of literals that are still unassigned can be communicated back to the Sat solver. We call this technique theory propagation.
- For example, if $e\left(x_{1}>10\right) \leftarrow$ true we can infer that $e\left(x_{1}<0\right) \leftarrow$ false and and thus avoid the conflict altogether.

DPLL(T)

Z3

- Z3 https://github.com/Z3Prover/z3
- Z3 https://z3prover.github.io/papers/programmingz3.html
- https://z3prover.github.io/papers/z3internals.html
- Python : pip install z3-solver
- Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples. htm

Z3 Architecture of a SMT Solver

pyZ3

```
x = Real('x')
y = Real('y')
z = Real('z')
s = Solver()
s.add(3*x + 2*y - z == 1)
s.add(2*x - 2*y + 4*z == -2)
s.add(-x + 0.5*y - z == 0)
print(s.check())
print(s.model())
```

pyZ3

- Logical variables are created indicating their Sort: Real, Bool, Int, or any new declarated type:

```
S = DeclareSort('S')
f = Function('f', S, S)
x = Const('x', S)
y = Const('y', S)
z = Const('z', S)
s = Solver()
s.add(Or(x!=y,Or(f(x)==f(y),f(x)!=f(z))))
print(s.check())
print(s.model())
```

```
solve(Or(x!=y, Or(f(x)==f(y),f(x)!=f(z)))
```

- solve() creates a Solver, adds a formula and checks if it is satisfiable returning a solution (model).
- Const and Function define zero or more variables, respectively

SMT-LIB

- a standard language for SMT is the SMT-LIB (similar to LISP), but we can use the Python interface

```
x, y = Ints('x y')
s = Solver()
s.add((x % 4) + 3 * (y / 2) > x - y)
print(s.sexpr())
```

- outputs

```
(declare-fun y () Int)
(declare-fun x () Int)
(assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))
```

- Quantifiers: ForAll, Exists

```
solve([y == x + 1, ForAll([y], Implies(y <= 0, x < y))])
```

The first occurence of y is free, the second is bounded.

Example SMT-LIB 2

```
(set-logic QF UFLIA)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (distinct x y z))
(assert (> (+ x y) (* 2 z)))
(assert (>= x 0))
(assert (>= y 0))
(assert (>= z 0))
(check-sat)
(get-model)
(get-value (x y z))
```

Usando \% z3 exemplo1.smt2

```
sat
(
    (define-fun x () Int
        3)
        (define-fun z () Int
            1)
        (define-fun y () Int
        0)
)
((x 3)
    (y 0)
    (z 1))
pyz3: s.from_file("exemplo1.smt2")
```


Z3 API

- help(class) or help(function)
- describe_tactics.

References

[BdM15] Nikolai Bjorner and Leonardo de Moura. Z3 Theorem Prover. Rise, Microsft, 2015.
[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Procedures with Applications to Verification. Springer Verlag, 2007.
[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures:An Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

