
Antimirov and Mosses’s Rewrite System
Revisited�

Marco Almeida, Nelma Moreira, and Rogério Reis

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

{mfa,nam,rvr}@ncc.up.pt

Abstract. Antimirov and Mosses proposed a rewrite system for decid-
ing the equivalence of two (extended) regular expressions. In this paper
we present a functional approach to that method, prove its correctness,
and give some experimental comparative results. Besides an improved
version of Antimirov and Mosses’s algorithm, we present a version using
partial derivatives. Our preliminary results lead to the conclusion that,
indeed, these methods are feasible and, generally, faster than the classical
methods.

Keywords: regular languages, regular expressions, derivatives, partial
derivatives, regular expression equivalence, minimal automata, rewriting
systems.

1 Introduction

Although, because of their efficiency, finite automata are normally used for reg-
ular language manipulation, regular expressions (re) provide a particularly good
notation for their representation. The problem of deciding whether two re are
equivalent is PSPACE-complete [SM73]. This is normally solved by transforming
each re into an equivalent NFA, convert those automata to equivalent determin-
istic ones, and finally minimize both DFAs, and decide if the resulting automata
are isomorphic. The worst case complexity of the automata determinization pro-
cess is exponential in the number of states.

Antimirov and Mosses [AM94] presented a rewrite system for deciding the
equivalence of extended re based on a new complete axiomatization of the ex-
tended algebra of regular sets. This axiomatization, or any other classical com-
plete axiomatization of the algebra of regular sets, can be used to construct an
algorithm for deciding the equivalence of two re. Normally, however, these de-
duction systems are quite inefficient. This rewrite system is a refutation method
that normalizes regular expressions in such a way that testing their equivalence
corresponds to an iterated process of testing the equivalence of their derivatives.
Termination is ensured because the set of derivatives to be considered is finite,

� This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and
Program POSI, and by project ASA (PTDC/MAT/65481/2006).

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 46–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Antimirov and Mosses’s Rewrite System Revisited 47

and possible cycles are detected using memoization. Antimirov and Mosses sug-
gested that their method could lead to a better average-case algorithm than
those based on the comparison of the equivalent minimal DFAs. In this pa-
per we present a functional approach to that method, prove its correctness,
and give some experimental comparative results. Besides an improved version
of Antimirov and Mosses’s algorithm, we present a new version using partial
derivatives. Our preliminary results lead to the conclusion that indeed these
methods are feasible and, quite often, faster than the classical methods.

The paper is organized as follows. Section 2 contains several basic definitions
and facts concerning regular languages and re. In Section 3 we present our
variant of Antimirov and Mosses’s method for testing the equivalence of two re.
An improved version using partial derivatives is also presented. Section 4 gives
some experimental comparative results between classical methods and the one
presented in Section 3. Finally, in Section 5 we discuss some open problems, as
ongoing and future work.

2 Regular Expressions and Automata

Here we recall some definitions and facts concerning regular languages, regular
expressions and finite automata. For further details we refer the reader to the
works of Hopcroft et al. [HMU00], Kozen [Koz97] and Kuich and Salomaa [KS86].

Let Σ be an alphabet and Σ� be the set of all words over Σ. The empty
word is denoted by ε and the length of a word w is denoted by |w|. A language
is a subset of Σ�, and if L1 and L2 are two languages, then L1 · L2 = {xy |
x ∈ L1 and y ∈ L2}. A re α over Σ represents a (regular) language L(α) ⊆ Σ�

and is inductively defined by: ∅ is a re and L(∅) = ∅; ε is a re and L(ε) = {ε};
a ∈ Σ is a re and L(a) = {a}; if α and β are re, (α + β), (α · β) and (α)� are
re, respectively with L((α + β)) = L(α) ∪ L(β), L((α · β)) = (L(α) · L(β)) and
L((α)�) = L(α)�. The operator · is often omitted. We adopt the usual convention
that � has precedence over ·, and · has higher priority than +. Let RE be the
set of re over Σ. The size of α is denoted by |α| and represents the number
of symbols, operators, and parentheses in α. We denote by |α|Σ the number of
symbols in α. We define the constant part of α as ε(α) = ε if ε ∈ L(α), and
ε(α) = ∅ otherwise. Two re α and β are equivalent, and we write α ∼ β, if
L(α) = L(β). The algebraic structure (RE, +, ·, ∅, ε), constitutes an idempotent
semi-ring, and, with the unary operator �, a Kleene algebra. There are several
well-known complete axiomatizations of Kleene algebras [Sal66, Koz94], but we
will essentially consider Salomaa’s axiom system F1 which, besides the usual
axioms for an idempotent semi-ring, contains the following two axioms for the
� operator:

α� ∼ ε + αα�; α� ∼ (ε + α)�.

As for rules of inference, system F1 has the usual rule of substitution and the
following rule of solution of equations :

α ∼ βα + γ, ε(β) = ∅
α ∼ β�γ

(Rse)

48 M. Almeida, N. Moreira, and R. Reis

A nondeterministic finite automaton (NFA) A is a tuple (Q, Σ, δ, q0, F) where
Q is the finite set of states, Σ is the alphabet, δ ⊆ Q×Σ∪{ε}×Q the transition
relation, q0 the initial state and F ⊆ Q the set of final states. A NFA without
ε-transitions is deterministic (DFA) if, for each pair (q, a) ∈ Q × Σ there exists
at most one q′ such that (q, a, q′) ∈ δ. Two NFA are equivalent if they accept
the same language. A DFA is called minimal if there is no equivalent DFA with
fewer states. Minimal DFAs are unique up to isomorphism. DFAs, NFAs, and re
represent the same set of languages, i.e., regular languages.

2.1 Succinct Regular Expressions

Equivalent re do not need to have the same size. Irreducible re as defined by
Ellul et.al [ESW02] have no redundant occurrences of ∅, ε, �, and parentheses.
A re α is uncollapsible if none of the following conditions hold:

– α contains the proper sub-expression ∅, and |α| > 1;
– α contains a sub-expression of the form βγ or γβ where L(β) = {ε};
– α contains a sub-expression of the form β+γ where L(β) = {ε} and ε ∈ L(γ).

A re α is irreducible if it is uncollapsible and both two conditions are true:

– α does not contain superfluous parentheses (we adopt the usual operator
precedence conventions and omit outer parentheses);

– α does not contain a sub-expression of the form β��

.

The previous reductions rely on considering re modulo some algebraic properties
of re: identity elements of + and ., annihilator element for ·, and idempotence
of �. We also consider ∅� = ε and ε� = ε.

Let ACI be the set of axioms that includes the associativity, commutativity
and idempotence of disjunction and let ACIA be the set ACI plus the associa-
tivity of concatenation. In this work, besides where otherwise stated, we consider
irreducible regular expressions modulo ACIA (and denote them by RE). This
allows a more succinct representation of re, and is essential for ensuring the
termination of the algorithms described in the next section.

Our implementation of re follows the object-oriented model. We use a different
class for each operator which assures that the re are kept irreducible modulo
ACIA, while trying to make the overhead of these transformations negligible.
ACI properties are ensured by representing disjunctions as sets, that are coded
using hash tables. This allows for a very efficient way of ensuring idempotence (as
repeated elements result in a hash value clash), prohibiting ∅ as an argument,
and rending the use of parentheses needless. In a similar way, concatenations
are implemented with ordered lists, and the idempotence of the Kleene star is
assured by not allowing double stared re in the constructor.

2.2 Linear Regular Expressions

A re α is linear if it is of the form a1α1 + · · · + anαn for ai ∈ Σ and αi ∈ RE.
The set of all the linear re is denoted by RElin, and can be defined by the

Antimirov and Mosses’s Rewrite System Revisited 49

following (abstract syntax) context-free grammar, where A is the initial symbol,
L(B) = RE − {ε, ∅} and L(C) = Σ:

A → C | C · B | A + A. (G1)

We say that an expression aβ has head a ∈ Σ and tail β. We denote by head(α)
and tail(α), respectively, the multiset of all heads and the multiset of all tails
in a linear re α. A linear regular expression α is deterministic if no element of
head(α) occurs more than once. We denote the set of all deterministic linear
re by REdet. Every re α can be written as a disjunction of its constant part
and a (deterministic) linear re [Sal66]. A re is said to pre-linear if it belongs to
the language generated by the following context-free grammar (abstract syntax)
with initial symbol A′, and A and B are as in G1:

A′ → ∅ | D

D → A | D · B | (D + D).
(G2)

The set of all pre-linear re is denoted by REplin.

2.3 Derivatives

The derivative [Brz64] of a re α with respect to a symbol a ∈ Σ, denoted a−1(α),
is defined recursively on the structure of α as follows:

a−1(∅) = ∅; a−1(α + β) = a−1(α) + a−1(β);

a−1(ε) = ∅; a−1(αβ) = a−1(α)β + ε(α)a−1(β);

a−1(b) =

{
ε, if b = a;
∅, otherwise;

a−1(α�) = a−1(α)α�.

If α is a deterministic linear re, we have:

a−1(α) =

⎧⎪⎨
⎪⎩

β, if a · β is a sub-expression of α;
ε, if α = a;
∅, otherwise.

The derivative of a re α with respect to the word w ∈ Σ�, denoted w−1(α), is
defined recursively on the structure of w:

ε−1(α) = α; (ua)−1(α)a−1(u−1(α)), for any u ∈ Σ�.

Considering re modulo the ACI axioms, Brzozowski [Brz64] proved that, for
every re α, the set of its derivatives with respect to any word w is finite.

3 Regular Expression Equivalence

The classical approach to the problem of comparing two re α and β, i.e., deciding
if L(α) = L(β), typically consists of transforming each re into an equivalent NFA,

50 M. Almeida, N. Moreira, and R. Reis

convert those automata to equivalent deterministic ones, and minimize both
DFAs. Because, for a given regular language, the minimal DFA is unique up to
isomorphism, these can be compared using a canonical representation [RMA05],
and thus checked if L(α) = L(β). In this section, we present two methods to ver-
ify the equivalence of two re. The first method is a variant of the rewrite system
presented by Antimirov and Mosses [AM94], which provides an algebraic calcu-
lus for testing the equivalence of two re without the construction of the canonical
minimal automata. It is a functional approach on which we always consider the
re to be irreducible and not extended (with intersection). The use of irreducible
re allows us to avoid the simplification step of Antimirov and Mosses’s system
with little overhead. The second method improves this first one by using the
notion of partial derivative.

3.1 Regular Expression’s Linearization

Let a ∈ Σ, and α, β, γ be arbitrary re. We define the functions lin = lin2 ◦ lin1,
and det as follows:

lin1 : RE → REplin lin2 : REplin → RElin ∪ {∅}
lin1(∅) = ∅; lin2(α + β) = lin2(α) + lin2(β);

lin1(ε) = ∅; lin2((α + β)γ) = lin2(αγ) + lin2(βγ);

lin1(a) = a; lin2(α) = α. (Otherwise)

lin1(α + β) = lin1(α) + lin1(β);

lin1(α�) = lin1(α)α�; det : RElin ∪ {∅} → REdet ∪ {∅}
lin1(aα) = aα; det(aα + aβ + γ) = det(a(α + β) + γ);

lin1((α + β)γ) = lin1(αγ) + lin1(βγ); det(aα + aβ) = a(α + β);

lin1(α�β) = lin1(α)α�β + lin1(β). det(aα + a) = a(α + ε);

det(α) = α. (Otherwise)

The functions lin and lf linearize regular expressions. Function lin1 corresponds
to the function f of the original rewrite system which, contrary to what is claimed
by Antimirov and Mosses, returns a pre-linear re, and not a linear one. We use
the function lin for efficiency reasons because in a single pass returns a re in
a form such that the derivative w.r.t. any symbol of the alphabet is readily
available. To show that lin(α) returns either the linear part of α or ∅, it is
enough to observe the following facts, which have straightforward proofs that
can be found, along with all the missing proofs, in an extended version of the
present paper.

– The function lin1 is well defined.
– For α ∈ RE, lin1(α) ∈ L(G2).
– For α ∈ REplin, α ∼ lin2(α).
– For α ∈ RE, lin(α) ∈ L(G1) ∪ {∅}.
– For α ∈ RElin ∪ {∅}, det(α) ∈ REdet and α ∼ det(α).

– For α ∈ RE, L(lin(α)) =

{
L(α), if ε /∈ L(α);
L(α) − {ε}, if ε ∈ L(α).

Antimirov and Mosses’s Rewrite System Revisited 51

Thus we have:

Theorem 1. For any re α, α ∼ ε(α) + lin(α), and α ∼ ε(α) + det(lin(α)).

Considering the definition of derivative (Subsection 2.3), we also have:

Theorem 2. Let a ∈ Σ and α ∈ RE, then a−1(α) = a−1(det(lin(α))).

3.2 Regular Expression Equivalence

We now present the main functions of the comparison processes. The first one,
the function derivatives, computes the set of the derivatives of a pair of determin-
istic linear re (α, β), with respect to each symbol of the alphabet. It is enough
to consider only the symbols in head(α) ∪head(β), and we do that for efficiency
reasons. The function is, then, defined as follows:

derivatives : (REdet ∪ {∅}) × (REdet ∪ {∅}) → P(RE × RE)

derivatives(α, β) = { (a−1(α), a−1(β)) | a ∈ head(α) ∪ head(β) }.

The equiv function, applied to two re α and β, returns True if and only if α ∼ β.
It is defined in the following way:

equiv : P(RE2) × P(RE2) → {True,False}
equiv(∅, H) = True;

equiv({(α, β)} ∪ S, H) =

{
False, if ε(α) �= ε(β);
equiv(S ∪ S′, H ′), otherwise;

where

α′ = det(lin(α));
β′ = det(lin(β));

S′ = { p | p ∈ derivatives(α′, β′), p /∈ H ′ };
H ′ = { (α, β) } ∪ H.

In each step the function equiv proceeds by rewriting a pair of re into a set S
of pairs of derivatives. When either a disagreement pair is found, i.e., a pair of
derivatives such that their constant parts are different, or the set S is empty,
the function returns. If α ∼ β the call equiv({(α, β)}) returns the value True,
otherwise returns False. Comparing with the Antimirov and Mosses’s rewrite
system TR, we note that in each call to equiv(S, H), the set S contains only pairs
of re which are not in H , thus rendering the rule (IND) of TR unnecessary. On
the other hand, our data structures avoid the need of the rule (SIM) by assuring
that the re are always irreducible.

Theorem 3. The function equiv is terminating.

Lemma 1. Given α, β ∈ REdet ∪ {∅}, ∀(α′, β′) ∈ derivatives(α, β), α ∼ β ⇒
α′ ∼ β′.

Theorem 4. The call equiv({(α, β)}, ∅) returns True if and only if α ∼ β.

52 M. Almeida, N. Moreira, and R. Reis

3.3 Improved Equivalence Method Using Partial Derivatives

Antimirov [Ant96] introduced the notion of the partial derivatives set of a reg-
ular expression α and proved that its cardinality is bounded by the number of
alphabetic symbols that occurs in α. He showed that this set can be obtained
directly from a new linearization process of α. This new process can be easily
implemented in our approach, as a variant of lin function, as we already consider
disjunctions as sets. We now briefly review this notions and show how they can
be used to improve the equiv algorithm.

Linear Forms. Let Σ × RE be the set of monomials over an alphabet Σ.
Let Pfin(A) be the set of all finite parts of A. A linear re a1 · α1 + · · · + an ·
αn can be represented by a finite set of monomials l ∈ Pfin(Σ × RE), named
linear form, and such that l = {(a1, α1), . . . , (an, αn)}. We define a function∑

: Pfin(Σ × RE) → RElin by
∑

(l) = a1 · α1 + · · · + an · αn. Concatenation
of a linear form l with a re β is defined by l · β = {(a1, α1 · β), . . . , (an, αn · β)}.
We can now define the linearization of a re α into a linear form as follows:

lf : RE → Pfin(Σ × RE)

lf(∅) = ∅; lf(α�) = lf(α) · α�;

lf(ε) = ∅; lf(a · α) = {(a, α)};
lf(a) = {(a, ε)}; lf((α + β) · γ) = lf(α · γ) ∪ lf(β · γ);

lf(α + β) = lf(α) ∪ lf(β); lf(α� · β) = lf(α) · α� · β ∪ lf(β).

The following theorem relates the method of linearization presented in the
Section 2.2 with linear forms.

Theorem 5. For any re α, lin(α) =
∑

(lf(α)).

Partial Derivatives. Given a re α and a symbol a ∈ Σ, a partial derivative
of α w.r.t. a is a re ρ such that (a, ρ) ∈ lf(α). The set of partial derivatives
of α w.r.t. a is denoted by ∂a(α). The notion of partial derivative of α can be
extended to words w ∈ Σ�, sets of re R ⊆ RE, and sets of words W ⊆ Σ�, as
follows:

∂ε(α) = {α}; ∂w(R) =
⋃

α∈R

∂w(α);

∂ua(α) = ∂a(∂u(α)), for any u ∈ Σ�; ∂W (α) =
⋃

w∈W

∂w(α).

There is a strong connection between the sets of partial derivatives and the
derivatives of a re. Trivially extending the notion of language represented by a re
to sets of re, we have that L(∂w(α)) = L(w−1(α)), for any w ∈ Σ�, α ∈ RE. One
of the advantages of using partial derivatives is that for any α ∈ RE, |PD(α) =
∂Σ�(α)| ≤ |α|Σ , where PD(α) stands for the set of all the syntactically different
partial derivatives.

Antimirov and Mosses’s Rewrite System Revisited 53

Improving equiv by Using Partial Derivatives. Let us now consider a de-
terminization process for linear forms. We say that a linear form is deterministic
if, for each symbol a ∈ Σ, there is at most one element of the form (a, α). Let
lfX be an extended version of the linearization function lf, defined as follows:

lfX(α) = {(a,
∑

(a,α′)∈lf(α)

α′) | a ∈ Σ}.

We can replace the function composition det · lin with the deterministic linear
form obtained with lfX. This new extended linear form allows us to use the
previously defined equiv function with only two slight modifications. We redefine
the derivatives function as follows:

derivatives : Pdet
fin(Σ × RE) × Pdet

fin(Σ × RE) → P(RE × RE)

derivatives(α, β) = {(α′, β′) | (a, α′) ∈ α, (a, β′) ∈ β}.

In the definition of equiv, we change α′ = lfX(α) and β′ = lfX(β). The new
function will be called equivP in the next section.

4 Experimental Results

We will now present some experimental results. These are the running times
for the two methods for checking the equivalence of regular expressions. One
uses the equivalent minimal DFA, the other is the direct re comparison method,
as described on the Section 3. All tests were performed on batches of 10, 000
pairs of uniformly random generated re, and the running times do not include
the time necessary to parse each re. Each batch contains re of size 10, 50 or
100, with either 2, 5 or 10 symbols. For the uniform generation of random re
we implemented the method described by Mairson [Mai94] for the generation of
context-free languages. We used a grammar for almost irreducible re presented
by Shallit [Sha04]. As the data sets were obtained with a uniform random
generator, the size of each sample is sufficient to ensure a 95% confidence level
within a 1% error margin. It is calculated with the formula n = (z

2ε)
2, where z

is obtained from the normal distribution table such that P (−z < Z < z)) = γ,
ε is the error margin, and γ is the desired confidence level.

We tested the equivalence of each pair of re using both the classical approach
and the direct comparison method. We used Glushkov’s algorithm to obtain the
NFAs from the re, and the well-known subset construction to make each NFA
deterministic. As for the DFA minimization process, we applied two different
algorithms: Hopcroft and Brzozowski’s. On one hand, Hopcroft’s algorithm has
the best known worst-case running time complexity analysis, O(kn log n). On the
other, it is pointed out by Almeida et. al [AMR07] that when minimizing NFAs,
Brzozowski’s algorithm has a better practical performance. As for the direct
comparison method, we compared both the original rewriting system (AM) and
our variant of the algorithm both with (equivP) and without partial derivatives

54 M. Almeida, N. Moreira, and R. Reis

2 symbols

0
1
2
3
4

10 50 100
size

time - log(s)

2 symbols

0
1
2
3
4

10 50 100
size

time - log(s)

5 symbols

0
1
2
3
4

10 50 100
size

time - log(s)

5 symbols

0
1
2
3
4

10 50 100
size

time - log(s)

10 symbols

0
1
2
3
4

10 50 100
size

time - log(s)

10 symbols

0
1
2
3
4

10 50 100
size

time - log(s)

a) b)

Hopcroft Brzozowski AM equiv equivP

Fig. 1. Running times of three different methods for checking the equivalence of re.
a) 10.000 pairs of random re; b) 10.000 pairs of syntactically equal random re. The
missing column corresponds to a larger than reasonable observed runtime.

(equiv). Because the direct comparison methods try to compute a refutation,
we performed a set of tests for the worst case scenario of these algorithms: the
equivalence of two syntactically equal regular expressions.

As shown in Figure 1 (a), when comparing randomly generated re, any of the
direct methods is always the fastest. Note also that Hopcroft’s algorithm never
achieves shorter running times than Brzozowski’s. Figure 1 (b) shows the results
of the application of each algorithm to pairs of syntactically equal random re.
Except for the samples of re with size 50 or 100, over an alphabet of 2 sym-
bols, the direct re comparison methods are still the fastest. Again, Brzozowki’s
algorithm always presents better running times than Hopcroft’s. Among the di-
rect comparison methods, equivP always performs better, with a speedup of
20% − 30%. It is important to state that, asymptotically, when using the min-
imal DFA approach, the minimization algorithm is the bottleneck of the entire
process. It always takes over 50% of the total amount of time when the size of
the re and/or the alphabet grows . To ensure the fairness of the comparison for

Antimirov and Mosses’s Rewrite System Revisited 55

the method using NFAs, we tried several algorithms for computing (small) NFAs
from re (c.f Ilie and Yu [IY03]), but the size of the NFAs seems not to affect
significantly the overall performance.

5 Conclusion

We presented a variant method based on a rewrite system for testing the equiva-
lence of two re, that attempts to refute its equivalence by finding a pair of deriva-
tives that disagree in their constant parts. While a good behaviour was expected
for some non-equivalent re, experimental results point to a good average-case
performance for this method, even when feeded with equivalent re. Some im-
provement was also achieved by using partial derivatives. Given the spread of
multi-cores and grid computer systems, a parallel execution of the better be-
havioured classic method and our direct comparison method can lead to an op-
timized framework for testing re equivalence. A better theoretical understanding
of relationships between the two approaches would be helpful towards the char-
acterization of their average-case complexity. In particular, it will be interesting
to compare our method with the one by Hopcroft and Karp [HK71].

References

[AM94] Antimirov, V.M., Mosses, P.D.: Rewriting extended regular expressions. In:
Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory, pp.
195–209. World Scientific, Singapore (1994)

[AMR07] Almeida, M., Moreira, N., Reis, R.: On the performance of automata mini-
mization algorithms. Technical Report DCC-2007-03, DCC - FC & LIACC,
Universidade do Porto (June 2007)

[Ant96] Antimirov, V.M.: Partial derivatives of regular expressions and finite au-
tomaton constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

[Brz64] Brzozowski, J.A.: Derivatives of regular expressions. Journal of the Associ-
ation for Computing Machinery 11(4), 481–494 (1964)

[ESW02] Ellul, K., Shallit, J., Wang, M.: Regular expressions: New results and open
problems. Talk at the DCFS 2002 conference, London, Ontario (2002)

[HK71] Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical Report TR 71 -114, University of California, Berkeley,
California (1971)

[HMU00] Hopcroft, J., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading (2000)

[IY03] Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
[Koz94] Kozen, D.C.: A completeness theorem for Kleene algebras and the algebra

of regular events. Infor. and Comput. 110(2), 366–390 (1994)
[Koz97] Kozen, D.C.: Automata and Computability. Undergrad. Texts in Computer

Science. Springer, Heidelberg (1997)
[KS86] Kuich, W., Salomaa, A.: Semirings, Automata, Languages, vol. 5. Springer,

Heidelberg (1986)
[Mai94] Mairson, H.G.: Generating words in a context-free language uniformly at

random. Information Processing Letters 49, 95–99 (1994)

56 M. Almeida, N. Moreira, and R. Reis

[RMA05] Reis, R., Moreira, N., Almeida, M.: On the representation of finite automata.
In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) Proc. of
DCFS 2005, Como, Italy, pp. 269–276 (2005)

[Sal66] Salomaa, A.: Two complete axiom systems for the algebra of regular events.
Journal of the Association for Computing Machinery 13(1), 158–169 (1966)

[Sha04] Shallit, J.: Regular expressions, enumeration and state complexity. In: Do-
maratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS,
vol. 3317. Springer, Heidelberg (2005)

[SM73] Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time:
Preliminary report. In: Conf. Record of 5th Annual ACM Symposium on
Theory of Computing, Austin, Texas, USA, pp. 1–9. ACM, New York (1973)

	Introduction
	Regular Expressions and Automata
	Succinct Regular Expressions
	Linear Regular Expressions
	Derivatives

	Regular Expression Equivalence
	Regular Expression's Linearization
	Regular Expression Equivalence
	Improved Equivalence Method Using Partial Derivatives

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

