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Abstract
The distinguishability language of a regular language L is the set of words distinguishing between
pairs of words under the Myhill-Nerode equivalence induced by L, i.e., between pairs of distinct
left quotients of L. The similarity relation induced by a language L is a similarity relation
inspired by the Myhill-Nerode equivalence and it was used to obtain compact representation of
automata for a finite language L, i.e., deterministic finite cover automata, which are determin-
istic finite automata accepting all the words of L and possibly some other words that are longer
than any word of L. The dissimilarity language of a finite language L is defined as the set of
words that separate a pair of words which are not similar w.r.t. to a (finite) language L. In this
paper we extend the study of distinguishability operation on regular languages to l-dissimilarity,
for l ∈ N, and the dissimilarity operation on finite languages. We examine their properties, the
state complexity, and relations that can be established between these operations.

1. Introduction

The distinguishability language of a regular language L is the set of words distinguishing be-
tween pairs of words under the Myhill-Nerode equivalence induced by L, i.e., between pairs of
distinct left quotients of L. The distinguishability operation was introduced by Câmpeanu et
al. [5], where they proved that this operation is suffix-closed, it has a fixed point under iteration,
and its state complexity is 2n − n, where n is the state complexity of L. This later bound can
be reached by using the universal witness of Brzozowski [1]. The number of elements of the
set of minimal words that can distinguish all left quotients is at most n− 1 and this bound is
reached. The computational complexity of several decision problems for the distinguishability
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language was studied by Holzer and Jakobi [11], and they give a complete characterization of
the synchronizing languages in terms of fixed points of the distinguishability operator, i.e., all
synchronizing languages are fixed points of the distinguishability operator. Thus, the new op-
eration of distinguishability, not only that preserves regularity, but it allows us to characterize
classes of languages as a fixed points of an algebraic operation.

The similarity relation induced by a language L is inspired also by the Myhill-Nerode equiv-
alence, although it is not an equivalence relation [8, 9, 10, 13]. Câmpeanu et al. [8] used this
similarity relation to obtain a more compact cover automaton for a finite language L, i.e., a
deterministic finite automaton accepting all the words of L and possibly some other words
that are longer than any word of L. The number of states of minimal cover automata can be
smaller than the state complexity of L, never exceeding this bound. These automata and their
minimization algorithms were studied by various authors [3, 6, 7, 12, 14]. The dissimilarity
language of a finite language L is defined as the set of words that separate some pair of words
that are not similar w.r.t. to a finite language L. It is just natural to ask if dissimilarity
operation shares the same properties with distinguishability operation. We study what would
be the relation between these two operations and what are the properties of the dissimilarity
operation. We investigate if some of the properties of distinguishability operation will also hold
for dissimilarity (closures, fix-points under iteration, state complexity etc).

We introduce the dissimilarity operation and the set of words that distinguishes dissimilar words
in Section 3., and study general properties in Section 4.. We determine upper-bounds and lower-
bounds for the state complexity of dissimilarity and distinguishability on finite languages in
Section 5.. Distinguishability coincides with suffix closure on finite languages, thus we also
obtain the state complexity for this closure. We analyze the relation between the minimal
DFA, dissimilarity operations, distinguishability operations and a minimal DFCA, and give
several examples for the behaviour of the dissimilarity operation in Section 6..Conclusions and
further research directions are presented in Section 7..

2. Notations and Definitions

We denote the size of a set T by |T |. An alphabet Σ is a finite non-empty set, and the free
monoid generated by Σ is Σ?. A language is any set L ⊆ Σ?. For a word w = a1 · · · an ∈ Σ?,
ai ∈ Σ, 1 ≤ i ≤ n, n = |w| is the length of w. For the case where n = 0, we denote the resulting
empty word by ε. The set of all words with length at most l (l ≥ 0) is denoted by Σ≤l. If
w = ux for some u, x ∈ Σ?, then x is called a suffix of w and u is a prefix of w. Let suff(L),
pref(L) denote the set of all suffixes, respectively prefixes, of a language L. If we consider
an order over Σ, then the quasi-lexicographical order on Σ? is defined as follows: w �l w

′ if
|w| < |w′|, or if |w| = |w′| and w lexicographically precedes w′.

A deterministic finite automaton (DFA) is a quintuple A = 〈Q,Σ, q0, δ, F 〉, where Q is a
finite set of states, Σ is the alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, and δ : Q × Σ −→ Q is the transition function. A reduced DFA is a DFA with all
states reachable from the initial state (accessible), and such that all states can reach a final
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state (useful), with the possible exception of one that is a sink state or dead state (here
named Ω), i.e., a non-final state where all output transitions are self loops. The transition
function δ can be naturally extended to words. The language recognized by a DFA A is
L(A) = {w ∈ Σ? | δ(q0, w) ∈ F}. We denote by Lq and Rq the left and right languages of q,
respectively, i.e., Lq = {w | δ(q0, w) = q}, and Rq = {w | δ(q, w) ∈ F}.

The minimal word in quasi-lexicographical order that reaches state q ∈ Q is xA(q). The length
of xA(q) is the level of q ∈ Q, i.e., level(q) = min {|w| | δ(q0, w) = q}. A regular language L
induces on Σ? the Myhill-Nerode equivalence relation: x ≡L y if, for all w ∈ Σ?, we have that
xw ∈ L if and only if yw ∈ L. The left quotient, or simply quotient, of a regular language L by
a word w is the language w−1L = {x | wx ∈ L}. A quotient corresponds to an equivalence class
of ≡L, i.e., two words are equivalent if and only if their quotients are the same. If a language L
is regular, the number of distinct left quotients is finite, and it is exactly the number of states
in the minimal DFA recognizing L. This number is called the state complexity of L, and is
denoted by sc(L). In a minimal DFA, for each q ∈ Q, Rq is exactly a quotient. If some quotient
of a language L is ∅, the minimal DFA of L has a dead state. The state complexity of an
operation on regular languages is the worst-case state complexity of a language resulting from
that operation, as a function of the state complexities of the operands.

Let L be a finite language. The rank of L is the length of the longest word in L, l = rank(L).
Let A = 〈Q,Σ, q0, δ, F 〉 be a DFA recognizing L and possibly other words of length (strictly)
greater than l. Then A is a deterministic finite cover automaton (DFCA) for L. A minimal
DFCA of a language L is a DFCA of L with minimal number of states. We call this number
the cover state complexity of L and denote it by csc(L). For an arbitrary language L and l ∈ N,
the language L ∩ Σ≤l is always finite, and a DFCA for L ∩ Σ≤l is called l-DFCA for L.

We now recall the definition of distinguishability and minimal distinguishable words introduced
by Câmpeanu et al. [5]. Given x, y ∈ Σ?, the language that distinguishes x from y w.r.t. L is

DL(x, y) = {w | xw ∈ L< yw ∈ L} . (1)

Naturally, we define the distinguishability language of L by

D(L) = {w | ∃x, y ∈ Σ? (xw ∈ L and yw /∈ L)}. (2)

It is immediate that
D(L) =

⋃
x,y∈Σ?

DL(x, y) = suff(L) ∩ suff(L),

i.e., D(L) is suffix closed. In particular, if L is finite, then D(L) = suff(L). It was also
shown that the iteration of D always reaches a fixed point, i.e., for any regular language L,
D3(L) = D2(L). Moreover, D(L) = L if and only if L is suffix-closed and has ∅ as one of its
quotients. Holzer and Jakobi noted that if D2(L) = D(L), then L is accepted by a synchronizing
DFA A, i.e., such that there exists a word w ∈ Σ? which leaves the automaton in one particular
state independently of the starting state. If x, y ∈ Σ? and x 6≡L y, we define

DL(x, y) = min {w | w ∈ DL(x, y)} , (3)
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where minimum is considered with respect to the quasi-lexicographical order. In case x ≡L y,
DL(x, y) is undefined. We can observe that if x 6≡L y, DL(x, y) = min(x−1L∆y−1L), where ∆
is the symmetric difference of operands. The set of minimal words distinguishing quotients of
a language L is

D(L) = {DL(x, y) | x, y ∈ Σ∗, x 6≡L y} . (4)

The language D(L) is also suffix-closed and |D(L)| ≤ n−1, where n ≥ 2 is the state complexity
of L.

3. The Dissimilarity Operation

According to Dwork and Stockmeyer [10], every language L ⊆ Σ? and number l ∈ N induces
the l-similarity relation ∼L,l defined as follows: for x, y ∈ Σ?, if |x| ≤ l and |y| ≤ l, then

x ∼L,l y iff for all w ∈ Σ≤l−max{|x|,|y|}, xw ∈ L⇔ yw ∈ L. (5)

Two words x, y ∈ Σ? are l-dissimilar, and which we denote by x 6∼L,l y, if |x|, |y| ≤ l and
x ∼L,l y does not hold. It is clear that the l-similarity relation ∼L,l generalizes the Myhill-
Nerode equivalence relation. The relation ∼L,l is reflexive, symmetric, but not transitive.
However, ∼L,l is semi-transitive, i.e., if |x| ≤ |y| ≤ |z| if x ∼L,l y and y ∼L,l z (resp. x ∼L,l z),
then x ∼L,l z (resp. y ∼L,l z).

The maximum number of dissimilar words with respect to the relation ∼L,l is denoted by NL(l),
[10]. In case of a finite language, if l is the length of the longest word in L, l-similarity is called
just the similarity induced by L and we omit the subscript l. For an arbitrary language L,
l-similarity relation is the similarity relation induced by the finite language L ∩ Σ≤l.

If two words are dissimilar with respect to the similarity relation induced by a finite language
L with l as the length of the longest word in L, or by a language L and a constant l ∈ N, then
we can find at least one w ∈ Σ≤l−max{|x|,|y|}, such that xw ∈ L and yw /∈ L, or xw /∈ L and
yw ∈ L. Given x, y ∈ Σ?, with |x|, |y| ≤ l, we define the dissimilarity language of x and y w.r.t
L ∩ Σ≤l by

D̃L,l(x, y) = {w ∈ Σ≤l−max{|x|,|y|} | xw ∈ L< yw ∈ L}. (6)

It is clear that we have D̃L,l(x, y) 6= ∅ iff x 6∼L,ly.

Naturally, we define the dissimilarity language of L ∩ Σ≤l by

D̃(L, l) = {w ∈ Σ? | ∃x, y ∈ Σ?(xw ∈ L ∧ yw /∈ L ∧ w ∈ Σ≤l−max{|x|,|y|})}. (7)

It is immediate that D̃(L, l) =
⋃

x,y∈Σ?

D̃L,l(x, y). If L is finite, we omit the argument l. Thus, in

general, we have D̃(L, l) = D̃(L ∩ Σ≤l). Because D̃L,l(x, y) ⊆ DL(x, y), it follows that D̃(L, l) ⊆
D(L). If x, y ∈ Σ? w.r.t. L ∩ Σ≤l we define

D̃L,l(x, y) = min{w ∈ Σ≤l−max{|x|,|y|} | w ∈ D̃L,l(x, y)}, (8)
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where the minimum is taken according to the quasi-lexicographical order1. In case x ∼L,l y,

D̃L,l(x, y) is undefined2.

The set of minimal words that distinguishes dissimilar words w.r.t. L, l is

D̃ (L, l) =
⋃

x,y∈Σ∗
x 6∼L,ly

D̃L,l(x, y). (9)

Given a DFA A = 〈Q,Σ, q0, δ, F 〉 and l ∈ N, let ∼A,l be the relation on Q defined by p ∼A,l q if
for every word w ∈ Σ≤l−max{level(p),level(q)}, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F . Then, for the automaton
A = 〈Q,Σ, q0, δ, F 〉 and p, q ∈ Q, we define

D̃A,l(p, q) = {w ∈ Σ≤l−max{level(p),level(q)} | δ(p, w) ∈ F < δ(q, w) ∈ F}, and

D̃(A, l) = {w | ∃p, q ∈ Q (δ(p, w) ∈ F ∧ δ(q, w) /∈ F ∧ w ∈ Σ≤l−max{level(p),level(q)})}.

Finally, we can also define the set of minimal words that distinguish p, q ∈ Q with p 6∼A,lq:

D̃A,l(p, q) = min{w ∈ Σ≤l−max{level(p),level(q)} | w ∈ D̃A,l(p, q)}, and

D̃ (A, l) =
⋃

p,q∈Q
p 6∼A,lq

D̃A,l(p, q).

A simple calculation shows that D̃A,l(p, q) = D̃L(A),l(xA(p), xA(q)) and D̃A,l(p, q) =

D̃L(A),l(xA(p), xA(q)).

Lemma 3.1 For every finite language L and a DFCA A for L, we have that D̃(A) = D̃(L),

and D̃ (A) = D̃ (L).

Proof. We considerer only the first equality.

D̃(A) =
⋃

p,q∈Q
p 6∼Aq

D̃A(p, q)

=
⋃

p,q∈Q
p 6∼Aq

{
w ∈ Σ≤l−max{level(p),level(q)} | δ(p, w) ∈ F < δ(q, w) ∈ F

}
=
⋃

p,q∈Q
p 6∼Aq

{
w ∈ Σ≤l−max{|xA(p)|,|xA(q)|} | xA(p)w ∈ L< xA(q)w ∈ L

}

=
⋃

x,y∈Σ?

x6∼Ly

{
w ∈ Σ≤l−max{|x|,|y|} | xw ∈ L< yw ∈ L

}
=

⋃
x,y∈Σ?

x 6∼Ly

D̃L(x, y)

= D̃(L).

1D̃L,l(x, y) is a singleton set or empty, because quasi-lexicographical order is a total order.
2This is the case when D̃L,l(x, y) = ∅.
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2

Because the dissimilarity condition is stronger than distinguishability, if L is finite then we have
that D̃(L) ⊆ D(L). Even more, because L is a finite language included in Σ≤l, D̃(L) is finite
and included in Σ≤l−1.

It is clear that the distinguishability operation and dissimilarity operation can differ on finite
languages and it is worth studying the new operation. Moreover, the minimal version of the
dissimilarity operation is different than the minimal version of the distinguishability operation.
In Figures 1 and 2 we can see examples of languages where distinguishability and dissimilarity
languages are different.

0 1 2 3 Ω
a a a a

a

Figure 1: For the language L =
{
ε, a3

}
⊆ {a}?, we have that a3 ∈ D(L) \ D̃(L) and a3 ∈ D(L) \ D̃ (L),

since D(L) =
{
ε, a, a2, a3

}
, D̃(L) =

{
ε, a, a2

}
, D(L) = D(L), and D̃ (L) = {ε, a}.

We observe that if a word w distinguishes between two words x, y w.r.t. a finite language L, and
|x| < |y|, we must have w ∈ Σ≤l−|y| ⊆ Σ≤l−1, i.e., D̃(L) ⊆ D(L)∩Σ≤l−1. This is the case in the
examples of Figures 1 and 2, where even the equality holds. However, in general the equality
is not true, i.e., D(L) ∩ Σ≤l−1 6= D̃(L), because two equivalent words must be similar, but we
may have similar words that are not equivalent. For example, for the language of Figure 3, we
have that D(L) = L, l = 3, and D̃(L) ( D(L)∩Σ≤2. Finally, in Figure 4 we present a language

L for which all the operations D, D, D̃, and D̃ are distinct.

0 1 2 3 Ω
a

b

a

b

a, b a, b
a, b

Figure 2: For the language L = {ε, b, a3, aab}, we have that D(L) = {ε, a, b, a2, ab, a3, a2b}, D(L) =
{ε, a, b, a2}, D̃(L) = {ε, a, b, a2, ab}, and D̃ (L) = {ε, a, b}.

4. Some Properties of D̃ and D̃

In this section we give several characterizations of the dissimilarity languages.

Theorem 4.1 If L is a regular language and l ∈ N, then the language D̃(L, l) is suffix closed,
i.e.,

(∀w ∈ D̃(L, l))(∀x, y ∈ Σ≤l−1)(w = xy =⇒ y ∈ D̃(L, l)).
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0

1

2

3

4

5 Ω

a

b

b

a

b

a

b
a

b
a

a, b
a, b

Figure 3: For the language L = {ε, a, b, b2, ab2, b3}, we have that D(L) = L, D(L) = {ε, a, b, b2},
D̃(L) = {ε, a, b}, and D̃ (L) = D̃(L).

0

1

2

3

4

5 Ω

a

b

a

b

a

b

a
b

a, b

a, b
a, b

Figure 4: For the language L = {ε, b, ab, aaa, baa, bab}, we have that D(L) =
{ε, a, b, aa, ab, aaa, baa, bab}, D(L) = {ε, a, b, aa}, D̃(L) = {ε, a, b, aa, ab}, and D̃ (L) = {ε, a, b}.

Proof. Let w ∈ D̃(L, l), i.e., there exist x, y ∈ Σ≤l such that w ∈ Σ≤l−max{|x|,|y|} and xw ∈ L
and yw /∈ L. If v is a suffix of w, i.e., w = uv, for an u ∈ Σ?, v ∈ Σ≤l−max{|xu|,|yu|}, then we can
write xuv ∈ L and yuv /∈ L, which means that v ∈ D̃(L, l). 2

Theorem 4.2 If L is a regular language and l ∈ N, then D̃ (L, l) is suffix closed.

Proof. Let w ∈ D̃ (L, l) , and let w = uv, with u, v ∈ Σ?. Because w ∈ D̃ (L, l), we can find
two other words, x, y ∈ Σ?, such that xw ∈ L and yw /∈ L, i.e., xuv ∈ L and yuv /∈ L. It
follows that v ∈ D̃L,l(xu, yu). Since v ∈ D̃L,l(xu, yu), there exists v′ = D̃L(xu, yu) and v′ �l v.

Hence, uv′ �l uv and uv′ ∈ D̃L(x, y), which implies that w = uv �l uv
′. Then we must have

uv′ = uv, which implies that v = v′ = D̃L(xu, yu) ∈ D̃ (L). 2

For a language L and l ∈ N, let suff l(L) = suff(L)∩Σ≤l. Because D̃ (L, l) and D̃(L, l) are suffix

closed and D̃ (L, l) ⊆ D̃(L, l) ⊆ Σ≤l−1, it follows that

suff l−1(D̃ (L, l)) = D̃ (L, l) and suff l−1(D̃(L, l)) = D̃(L, l).

Considering that D(L) = suff(L) ∩ suff(L) (cf. [5]), we can formalize the observations made in
the previous section.
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0 1 2

3 4 Ω

a, b a

b a, b

a, b a, b
a, b

Figure 5: For the language L = {ε, a, b, ab, bb, aba, abb, bba, bbb, aaa, baa, aab, bab}, l = 3, we have a
strict inclusion for D̃(L) ( D(L) ∩Σ≤l−1, with D(L) = Σ≤3, D̃(L) = {ε, a, aa, ba}, D(L) = {ε, a, b, ab}
and D̃ (L) = {ε, a}.

Theorem 4.3

1. D̃(L, l) ⊆ suff l−1(L) ∩ suff l−1(L).

2. There is a finite language L such that D̃(L) 6= suff l−1(L) ∩ suff l−1(L).

Proof. For the first inclusion is enough to see that if w ∈ D̃(L, l), then xw ∈ L and
yw /∈ L for some x, y ∈ Σ≤l, thus w ∈ suff(L). We already know that w ∈ suff(L)
and w ∈ Σ≤l−1, therefore it follows that w ∈ suff l−1(L) ∩ suff l−1(L). For the second
part, we consider the finite language accepted by the automaton in Figure 5. For example,
bb ∈ suff l−1(L) ∩ suff l−1(L) = D(L) ∩ Σ≤l−1 = {ε, a, b, aa, ab, ba, bb}. The word bb could only dis-
tinguish between states on level 0 or level 1, i.e., between state 0 and state 1. However,
δ(0, bb) = 3 ∈ F and δ(1, bb) = 4 ∈ F , therefore bb /∈ D̃(L). 2

After applying the dissimilarity operation to a finite language having the longest word at most
equal to l, we obtain another language with the length of the longest word at most l− 1, which
obviously contrasts to the case of distinguishability operation, where we could even have a fixed
point after only two iterations. In the case of dissimilarity nonempty fixed points obviously
do not exist, but it is clear that after at most l − 1 iterations we will get only one state, thus
the dissimilarity language is ∅, and this is the only possible fixed point for D̃. Given L and
for any l ∈ N we have D̃(L ∩ Σ≤l) ⊆ D(L) ∩ Σ≤l−1 ⊆ D(L). If w ∈ D(L), then we have at
least two words x, y such that xw ∈ L and yw /∈ L. Taking l = max{|xw|, |yw|} + 2 we

discover that w ∈ D̃(L ∩ Σ≤l). Thus, for the sequence D̃(L ∩ Σ≤l) this simple computation

shows that ∪l∈N(D̃(L ∩ Σ≤l)) = D(L). Thus if L is regular, then ∪l∈N(D̃(L ∩ Σ≤l)) is also a
regular language [5]. However, if D(L) is regular we cannot say the same thing about L.

Lemma 4.4 There is a non-regular language L such that D(L) is regular.

Proof. If we consider the language L = {an2 | n ≥ 0}, we have that D(L) = {an | n ≥ 0},
which is regular. 2

The next result gives an upper-bound for the number of elements of minimal dissimilar words,
D̃ (L).

Theorem 4.5 If L is a regular language with state complexity n ≥ 2, then |D̃ (L, l)| ≤ n− 1.
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Proof. We can use the exact same argument as in the case of D operation on regular languages:
for any three sets A, B and C we have the equality (A∆B)∆(B∆C) = A∆C. Therefore, we
can distinguish any pair from n distinct sets with at most n− 1 elements. 2

Now, we prove that the upper-bound is reached.

Theorem 4.6 The bound n − 1 for the size of D̃ (L), for a regular language L with state
complexity n ≥ 2, is tight.

Proof. Consider the language Sm = {amb}, m ≥ 0, therefore sc(Sm) = m + 3. We know [5]

that D(Sm) = suff({amb}), therefore we have D̃(Sm) = D(Sm) ∩ Σ≤m+1−1 = {aib | 0 ≤ i < m}.
Because D̃ (Sm) = D̃(Sm) and |D̃(Sm)| = m = sc(Sm) − 2, it follows that the upper-bound is
reached. 2

5. State Complexity of Distinguishability and Dissimi-

larity on Finite Languages

The state complexity of the D operation for regular languages with state complexity n is
2n−n [5]. We also know that for a finite language L, D(L) = suff(L). If L = {w}, for w ∈ Σ? it
is known [16] that sc(suff(L)) ≤ 2|w|. Now let us consider the family of languages Vn = {vn},
where vn = abn, n ≥ 1. It is easy to check, for v = vn that, |v| = n+1, sc(Vn) = n+3 = |v|+2,
and sc(suff(Vn)) = 2n + 2 = 2|v|. Hence, we have sc(D(Vn)) = 2n + 2 = 2|v| = 2sc(Vn) − 4.
Therefore, we have just proved the following lemma.

Lemma 5.1 The state complexity of D operation on singleton languages is equal to 2n− 4 and
the upper bound is reached.

Next proposition relates the state complexity, cover state complexity, distinguishability and
dissimilarity operations.

0 1 2 3 4 5

Ω

a

b

a

b

a

b a

b

a

b

a, ba, b

Figure 6: The automaton for the language Xn, where n = 2.

Proposition 5.2 There exists a family of finite languages Xn over a binary alphabet such that
the length of the longest word in Xn is l = 2n+ 1, and the following statements hold true
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1. sc(Xn) = csc(Xn) = l + 2;

2. D̃(Xn) = D(Xn) ∩ Σ≤l−1;

3. sc(D(Xn)) = (n+1)(n+4)
2

+ 1 = sc(D̃(Xn)) + n+ 1;

4. D(Xn) = D̃ (Xn);

5. |D(Xn)| = l + 1 = sc(Xn)− 1 and sc(D(Xn)) = n+ 3.

Proof. Let us consider the language Xn = {aibai | 0 ≤ i ≤ n}, n ≥ 0. For n = 2 the automaton
is depicted in Figure 6. We observe that the minimal DFA is also a minimal DFCA, as no two
states are similar. For the language Xn, we have sc(Xn) = csc(Xn) = 3 + 2n = l + 2, thus 1.
holds.

We have

D(Xn) =
{
ai | 0 ≤ i ≤ n

}
∪
{
bai | 0 ≤ i ≤ n

}
∪
{
aibaj | 0 ≤ i ≤ n, i ≤ j ≤ n

}
,

and

D̃(Xn) =
{
ai | 0 ≤ i ≤ n

}
∪
{
bai | 0 ≤ i ≤ n

}
∪
{
aibaj | 0 ≤ i ≤ n− 1, i ≤ j ≤ n

}
= D(Xn) ∩ Σ≤l−1,

therefore 2. is true. For the state complexity of D(Xn) we observe the following, where ≡ is
the Myhill-Nerode relation induced by D(Xn):

1. for 0 ≤ j ≤ n, 0 ≤ i < j, aibaj ≡ baj;

2. for 0 ≤ i < j ≤ n, aibai ∈ D(Xn) and ajbai /∈ D(Xn), thus ai 6≡aj;
3. for 0 ≤ i < j ≤ n, aibai ∈ D(Xn) and bajbai /∈ D(Xn), thus ai 6≡baj;
4. for 0 ≤ i < j ≤ n, baibaj /∈ D(Xn) and ajbaj ∈ D(Xn), thus bai 6≡aj;
5. for 0 ≤ i ≤ n, baibai /∈ D(Xn) and aibai ∈ D(Xn), thus ai 6≡bai;
6. for 0 ≤ m, i < j < k ≤ n, ambajan−j ∈ D(Xn) and aibakan−j /∈ D(Xn), thus ambaj 6≡aibak.

Hence,

sc(D(Xn)) = (n+ 1) +
(n+ 1)(n+ 2)

2
+ 1 =

(n+ 1)(n+ 4)

2
+ 1.

For D̃(Xn), we loose the word anban (the longest word), thus

sc(D̃(Xn)) =
(n+ 1)(n+ 4)

2
+ 1− (n+ 1) =

(n+ 1)(n+ 4)

2
− n.

Hence, 3. holds. For the minimal words, we have

D̃ (Xn) =
{
ai | 0 ≤ i ≤ n

}
∪
{
bai | 0 ≤ i ≤ n

}
= D(Xn),

thus 4. holds. We also have |D(Xn)| = 2n+ 2 = l + 1 and sc(D(Xn)) = n+ 3, hence 5. holds.
2
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To obtain the state complexity of the D̃ operation, we first analyze in more detail the D operation
for finite languages, i.e., D(L) = suff(L). For regular languages L with sc(L) = n and ∅ as one
of the quotients, i.e., the minimal DFA has a dead state, the state complexity of suffix closure
is 2n−1 [2]. However, this bound is too large for finite languages and it can be improved. Let
A = 〈{0, . . . , n− 1} ,Σ, 0, δ, F 〉 be the minimal DFA for a finite language L, and let the states
of A be topologically ordered. In A, there exists a last final state, or pre-dead state, for which
all transitions go to the dead state. We assume that the dead state is n− 1 and the last final
state is n− 2.

The standard construction for obtaining a DFA for suff(L) is to mark as initial all useful states
of A, and apply the subset construction. Because A is acyclic and topologically ordered, at
level 0 we have state {0, . . . , n− 1}, at level 1 we have states that are subsets of {1, . . . , n− 1},
and with every increment of the level we loose at least one state. Because we need to reach all
the subsets, and at each level i we can get at most ki states, where k = |Σ|, it follows that the
state complexity of D operation is bounded by

sc(D(L)) ≤
n−2∑
i=0

min
{

2n−1−i, ki
}

=
r−1∑
i=0

ki + 2n−1−r,

where r is minimal with the property that 2n−1−r ≤ kr. This bound is exactly the same as the
one for the reversal operation on finite languages, which is known to be O(k

n
1+log k ) [4, 17]. For

the binary case, i.e., for k = 2, the above upper-bound becomes: if sc(L) = n = 2t, then r = t
and sc(D(L)) = 2t + 2t−1 − 1; and if sc(L) = n = 2t− 1, then r = t− 1 and sc(D(L)) = 2t − 1.

We now consider the language Mm,h = {wav | |w| = m, |v| = h} = ΣmaΣh, for 0 ≤ h ≤ m, over
the alphabet Σ = {a, b}. The language Mm,h has the following properties:

1. sc(Mm,h) = (m+ 1) + (h+ 1) + 1 = m+ h+ 3;

2. D(Mm,h) = Σ≤h ∪ aΣh ∪ Σ≤maΣh = Σ≤h ∪ Σ≤maΣh;

3. For the state complexity of D(Mm,h) we consider two distinct words w1, w2 ∈ Σ≤m+1. If
|w1| < |w2|, w1 is not ≡D(Mm,h) equivalent to w2, because bm−|w1|abh will distinguish them.
Note that if |w2| ≤ m, it is clear and if |w2| = m + 1 one has |w1| ≤ m. In both cases,
w1b

m−|w1|abh ∈ D(Mm,h) and w2b
m−|w1|abh /∈ D(Mm,h).

In case |w1| = |w2|, let 1 ≤ i ≤ h+ 1 be the first position from the right, where w1 and w2

are different. Then bh+1−i will distinguish w1 from w2: if w1 has an a at position i (from
the right), then w1b

h+1−i ∈ D(Mm,h) and w2b
h+1−i /∈ D(Mm,h), or vice-versa. Therefore,

all words up to length h+1 are not equivalent; there are 1+2+ · · ·+2h+1 such words. For
each length between h + 2 and m + 1, we have at least 2h+1 different equivalence classes.
Hence, there are at least

1 + 2 + · · ·+ 2h+1 + 2h+1 + · · ·+ 2h+1︸ ︷︷ ︸
m−h terms

= 2h+2 − 1 + (m− h)2h+1 (10)

equivalence classes. In case of m = h,

sc(D(Mh,h)) = 2h+2 − 1 = 2t − 1,
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where sc(Mh,h) = 2h+ 3 = 2t− 1. In case of m = h+ 1,

sc(D(Mh+1,h)) = 2h+2 − 1 + 2 · 2h = 2t + 2t−1 − 1,

where sc(Mh+1,h) = h+ 1 + h+ 3 = 2h+ 4 = 2t.

We have just proved the following theorem:

Theorem 5.3 For a finite language L with state complexity n, the state complexity of D(L) is
O(k

n
1+logk ), where |Σ| = k. In case L is a finite language over a binary alphabet, then

sc(D(L)) = 2t + 2t−1 − 1,

if n = 2t, and
sc(D(L)) = 2t − 1,

if n = 2t− 1. The upper-bound of the state complexity for D operation is reached.

For the state complexity of D̃, we observe that D̃(L) ⊆ D(L) ∩ Σ≤l−1 = suff l−1(L). Thus, the

state complexity of D̃(L) must be smaller than the state complexity of D(L), as some states
must be merged.

For a lower bound of the state complexity of the D̃ operation we consider again the language
Mm,h with l = m+ h+ 1. It is clear that D̃(Mm,h) = D(Mm,h) ∩ Σ≤l−1, i.e.,

D̃(Mm,h) = Σ≤h ∪ Σ≤m−1aΣh.

Now we count the number of distinguishable words with respect to the language D̃(Mm,h). Using

similar arguments as we used for D operation, we have that sc(D̃(Mh,h)) = 2h+1 + 2h−1−1, and

in case m = h + 1, we have sc(D̃(Mm,h)) = 2h+2 − 1. The second case coincides with the case
m = h for D(Mh,h). For the first case, let w1, w2 ∈ Σ≤h+1. We will denote z ∈ Σ? a witness of

non-equivalence under ≡D̃(Mh,h), if w1z ∈ D̃(Mh,h) and w2z /∈ D̃(Mh,h).

If |w1| ≤ |w2| we have the following cases.

1. if |w1| ≤ h− 1 then w1 6≡D̃(Mh,h) w2 with witness z = bh−1−|w1|abh;

2. if |w1| = h, the following subcases need to be considered. Let y, y1 ∈ Σh−1 and x ∈ {a, b}.
(a) if w2 = ayx and w1 = yb then w1 ≡D̃(Mh,h) w2. First note that w1, w2 ∈ D̃(Mh,h).

For z ∈ Σ+, w1z ∈ D̃(Mh,h) if and only if y = x1ax2 with |x1|, |x2| < h − 1, also,

w2z ∈ D̃(Mh,h). If y = bh−1, then w1z, w2z /∈ D̃(Mh,h), for z ∈ Σ+.

(b) if w2 = ayx and w1 = ya then w1 6≡D̃(Mh,h) w2. For z = bh, w1z ∈ D̃(Mh,h) and

w2z /∈ D̃(Mh,h).

(c) if w2 = ayx and w1 = y1b then w1 6≡D̃(Mh,h) w2. Let i be the first position from the right

such that y1 and y disagree. Then either w1b
h−i+1 ∈ D̃(Mh,h) or w2b

h−i+1 ∈ D̃(Mh,h),
but not both.
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(d) if w2 = by, then w1 6≡D̃(Mh,h) w2 with witness z = ε.

If |w1| = |w2| we have:

1. |w1| = |w2| ≤ h. Let i, with 1 ≤ i ≤ h, be the first position (from the left) such that w1

and w2 disagree. Then, w1 6≡D̃(Mh,h) w2 with witness z = bi.

2. |w1| = |w2| = h + 1 and there exists a position i, with 1 ≤ i ≤ h, such that i is the first
position (from the left) such that w1 and w2 disagree. Then, w1 6≡D̃(Mh,h) w2 with witness

z = bi−1.

3. |w1| = |w2| = h + 1, w1 = ya and w2 = yb. Then w1 ≡D̃(Mh,h) w2, because for z ∈ Σ?,

w1z, w2z ∈ D̃(Mh,h) if and only if there exists an a in y at a position i ≤ h − 1 and
|z| = i− 1.

We can conclude that all words up to length h, i.e., 2h+1−1 words, are not equivalent. There are
2h classes of words of length exactly h+1 and 2h−1 classes of words of length h+1 that coincide
with classes of words of length 2h (case 2a). Finally, let us consider a word w ∈ Σh+1+n, with
1 ≤ n ≤ h− 1. Let w = xys with |x| = n, |y| = h− n and |s| = n+ 1, then w ≡D̃(Mh,h) yb

n+1.

We have that wz ∈ D̃(Mh,h) if and only if y = x1ax2 and |z| = h − n − 1 − |x2|, thus if and

only if ybn+1z ∈ D̃(Mh,h). Hence, the next theorem holds:

Theorem 5.4 For a finite language L over a binary alphabet Σ, with state complexity n, the
state complexity of D̃(L), in the worst case, is at least 2t − 1, if n = 2t and by 2t + 2t−2 − 1, if
n = 2t+ 1.

6. Relation with Minimal DFCAs and D Operation

It is known that minimal DFAs may not be minimal DFCAs. For example, for the language of
Figure 1, the language of a minimal DFCA has only four states, as its language is (a3)?. This
is also the case for the languages of Figure 2 and Figure 3.

One may think that if the minimal DFA is also a minimal DFCA, the dissimilarity language can
be easily computed from the distinguishability language, or, if we know that only longer words
from the distinguishability language are not in the dissimilarity language, then the minimal
DFA is also a minimal DFCA. In general that is not the case, as the following proposition
shows.

Proposition 6.1 Let L be a finite language with the longest word of length l, and A the minimal
DFA for L. None of the following two sentences implies the other, and both can be either true
or false simultaneously.

(1) A is minimal DFCA for L.

(2) D̃(A) = D(A) ∩ Σ≤l−1.

Proof. We consider all cases and for each one a witness language L and a minimal A.
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¬(1) ∧ (2): It is enough to consider the example in Figure 2, where D(L) ∩ Σ≤2 = D̃(L), but
the automaton A is not a minimal DFCA, as state 4 can be merged with state 1 (4 ∼L 1).

0
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b
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a, b

a, b

a

b
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b a

b
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b
a, b

a, b

Figure 7: Example of a DFA A that is a minimal DFCA and D̃(A) ( D(A) ∩ Σ≤l−1

.

(1) ∧ ¬(2): Consider the example in Figure 7, where D(L) ∩ Σ≤5 ( D̃(L), because baabb is in

D(L) ∩ Σ≤5, but not in D̃(L), and the automaton A is also a minimal DFCA.

(1) ∧ (2): Consider the example of Figure 8. The minimal DFA A is also the minimal DFCA,

L = {a, aa, ba, bb, ab, aba}, l = 3, and D̃(L) = D(A) ∩ Σ≤l−1.

0 1

2 3

4

Ω

a

b

a

b

b

a

a
b

a, b

a, b

Figure 8: Example of a DFA A that is a minimal DFCA and D̃(A) = D(A) ∩ Σ≤l−1.

¬(1) ∧ ¬(2): Consider the example in Figure 5. We have D̃(L) ( D(L) ∩ Σ≤2, because bb is in

Σ≤2 ∩ D(L), but not in D̃(L), and the automaton A is also a minimal DFCA.

2

Dissimilarity operation must be distinctly analyzed. Proposition 6.1 shows that we cannot
establish a direct relation between the minimality of an automaton as a DFCA for the finite
language L, distinguishability language, and dissimilarity language for the same language L.

However, we do have a strong relation given by the distinguishability language of minimal words,
and dissimilarity language of minimal words in relation to minimality of cover automata.

Theorem 6.2 Let A be the minimal DFA for the finite language L. If A is also a minimal
DFCA for L, then D̃ (A) = D(A) ∩ Σ≤l−1, but the reverse implication is not necessarily true.
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Figure 9: Example of a language L = {a, aa, aba, aaaa}, where D(L) = D̃ (L) = {ε, a, aa}, but the
minimal DFA (left) is not a minimal DFCA (right).

Proof. Because the DFA A is also a minimal DFCA for every distinct pair of states (p, q), such
that level(p) ≤ level(q), the states p and q are not similar. Thus, we can find v ∈ Σ≤l−level(q) ⊆
Σ≤l−1 such that either δ(p, v) ∈ F and δ(q, v) /∈ F , or δ(p, v) /∈ F and δ(q, v) ∈ F . We can
assume that v is the minimal with this property, thus v must be also in D(A). It follows:

D(A) ∩ Σ≤l−1 =
⋃
p6≡q

level(p)≤level(q)

DA(p, q) =
⋃
p 6≡q

level(p)≤level(q)

D̃A(p, q) = D̃ (A).

For the reverse implication we consider the language L = {a, aa, aba, aaaa}. We have that

D(L) = D̃ (L) = {ε, a, aa}, but the minimal DFA is not a minimal DFCA, as we can see in
Figure 9. 2

7. Conclusion

In this paper we introduced a new operation: the dissimilarity operation on finite languages.
We studied the properties of dissimilarity operation and compared it with distinguishability op-
eration; we gave several examples to show the difficulty in relating the new operation to other
known operations on (regular) languages. Bounds for the state complexity of distinguishability
and dissimilarity operations on finite languages were established, and proved tight for distin-
guishability. We showed the connection between minimal dissimilar words and the minimality
of a DFA as a DFCA, and we plan to address the corresponding relations in an extended version
of the paper. It will be also interesting if we can apply the concepts of distinguishability and
dissimilarity of words to define some metric between formal languages, as it is done in [15].
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[6] Cezar Câmpeanu, Andrei Paun, and Jason R. Smith. Incremental construction of minimal
deterministic finite cover automata. Theor. Comput. Sci., 363(2):135–148, 2006.
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