
Fundamenta Informaticae XX (2016) 1–24 1

DOI 10.3233/FI-2012-0000

IOS Press

Distinguishability Operations and Closures

Cezar Câmpeanu
Department of Computer Science

The University of Prince Edward Island, Charlottetown, PE, Canada

ccampeanu@ upei. ca

Nelma Moreira∗, Rogério Reis∗

Centro de Matemática e Faculdade de Ciências da Universidade do Porto,

4169-007 Porto, Portugal

{ nam,rvr}@ dcc. fc. up. pt

Abstract. Given a language L, we study the language of words D(L), that distinguish between
pairs of different left quotients of L. We characterize this distinguishability operation, show that its
iteration has always a fixed point, and we generalize this result to operations derived from closure
operators and Boolean operators. For the case of regular languages, we give an upper bound for the
state complexity of the distinguishability operation, and prove its tightness. We show that the set of
minimal words that can be used to distinguish between different left quotients of a regular language
L has at most n− 1 elements, where n is the state complexity of L, and we also study the properties
of its iteration. We generalize the results for the languages of words that distinguish between pairs
of different right quotients and two-sided quotients of a language L.

Keywords: Formal Languages, Myhill-Nerode Relations, Quotients, Language Operations, Clo-
sures, Regular Languages, State Complexity.

1. Introduction

Regular languages and operations over them have been extensively studied during the last sixty years,
the applications of automata being continuously extended in different areas. As a practical example, we
∗This work was partially funded by the European Regional Development Fund through the programme COMPETE and by the
Portuguese Government through the FCT under projects PEst-C/MAT/UI0144/2013 and FCOMP-01-0124-FEDER-020486.



2 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

can use automata to model various electronic circuits. The testing of the circuits can be done by applying
several inputs to various pins of a circuit, and checking the output produced. Because in many cases the
circuits emulate automata, it is useful to develop general tools for testing various properties of automata,
such as testing the relation between the response of the circuit for the same signal, applied to different
gates. To answer if an automaton is minimal requires to test if two states are equivalent or not. The
easiest way to do this is to use as input different words, and see if for both states, we reach states with
the same finality, thus, in case of a circuit, for both input gates we will get the same value of the output
bit. However, checking every possible word is a tedious task, and it would be useful to limit the testing
only to the words that can distinguish between states. Therefore, it is worth studying the languages that
distinguish between all non-equivalent states of a given deterministic finite automaton.

For an automaton A we denote the distinguishing language by D(A) and the language of mini-
mal words distinguishing between all non-equivalent states by D(A). We can also consider the distin-
guishability languages D(L), and D(L) for a regular language, L, which will distinguish between all
non-equivalent words. Moreover, the distinguishability operation can be defined for arbitrary languages.

The idea of studying word or state distinguishability is not new. In 1958, Ginsburg studied the
length of the smallest uniform experiment which distinguishes the terminal states of a machine [14],
and with Spanier in [15], he studies whether or not an arbitrary semigroup can serve as an input for a
machine that distinguishes between the elements of the input semigroup. A comparable work was done
for terminal distinguishability by Sempere [22], where terminal segments of automata are studied to
characterize language families that can be identified in the limit from positive data. Indeed, knowing that
an automaton A has at most n states, and having the language D(A), together with the words of length
at most n + 1 that are in the language L(A), we can recover the initial automaton A. Note that without
the language D(A), any learning procedure will only approximate the language L(A). For example,
in case we know M to be the set of all the words of a language L with length at most n + 1, we can
infer that L is a cover language for M , but we cannot determine which one of these cover languages is
L. Thus, any learning procedure would only be able to guess L from M , and the guess would not be
accurate, as the number of cover automata for a finite language can be staggeringly high [8, 11]. In
[20], Restivo and Vaglica proposed a graph-theoretical approach to test automata minimality. For a given
automaton A they associate a digraph, called pair graph, where vertices are pairs {p, q} of states of A,
and edges connect vertices for which the states have a transition from the same symbol in A. Then, two
states p and q of A are distinguishable if and only if there is a path from the vertex {p, q} to a vertex
{p′, q′}, where p′ is final and q′ is non final, i.e., there exists a word that distinguishes between them. A
related research topic is the problem of finding a minimal DFA that distinguishes between two words by
accepting one and rejecting the other. It was studied by Blumer et al. in [2], and recently Demaine et al.
in [13] reviewed several attempts to solve the problem and presented new results.

In the present paper we do not separate two words by a language; instead, we distinguish between
non-equivalent quotients of the same language. In Section 2, we introduce the notations we are going to
use. In Section 3, we define and prove general properties of the distinguishability operation on arbitrary
languages. For regular languages, we study the state complexity of the distinguishability operation in
Section 4. We use many powerful tools such as language quotients, atoms, and universal witnesses that
hide proof complexity, helping us to produce a presentation easier to follow. Afterwards, in Section 5, we
analyze the set of minimal words with respect to quasi-lexicographical order that distinguishes different
quotients of a language and give several characterizations when the language is regular.

In Section 6, we present an algorithm that can be used as a positive learning procedure for a language



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 3

L if D(L) is known. In Section 7, we present a class of operands using closure operations and Boolean
operations, operands that have a fixed point under iteration. In Section 8, we define other distinguishabil-
ity operations and study their properties. The conclusions, together with open problems and future work,
are included in Section 9. A preliminary version of some of the results presented here has previously
appeared in [9].

2. Notation and Definitions

For a set T , its cardinality is denoted by |T |. An alphabet Σ is a finite non-empty set, and the free monoid
generated by Σ is Σ?. A word w is an element of Σ? and a language is a subset of Σ?. The complement
of a language L is L = Σ? \L. The length of a word w ∈ Σ?, w = a1a2 . . . an, ai ∈ Σ, 1 ≤ i ≤ n, with
n ∈ N is |w| = n. The empty word is ε, and |ε| = 0. If w = uxv for some u, v, x ∈ Σ? then u is a prefix
of w, x is a factor (or infix) of w, and v a suffix of w. Given an arbitrary language L over an alphabet Σ,
the set of suffixes of L is defined by suff(L) = {w | xw ∈ L}. In the same way, we define the set of
prefixes of L, pref(L), and the set of infixes of L, infix(L).

The reverse wR of a word w ∈ Σ? is defined as follows: εR = ε, and (wa)R = awR, for a ∈ Σ.
The reverse of a language L is denoted by LR and defined as LR = {wR | w ∈ L}. Consider an order
over Σ. In Σ?, we define the quasi-lexicographical order as: w � w′ if |w| < |w′| or |w| = |w′| and w
lexicographically precedes w′.

A language L induces on Σ? the Myhill-Nerode equivalence relation: x ≡L y if, for all w ∈ Σ?, we
have that xw ∈ L if and only if yw ∈ L. The left quotient, or simply quotient, of an arbitrary language
L by a word w is the language w−1L = {x | wx ∈ L}. A quotient corresponds to an equivalence class
of ≡L, i.e., two words are equivalent if and only if their quotients are the same.

A deterministic finite automaton (DFA) is a quintuple A = 〈Q,Σ, q0, δ, F 〉, where Q is a finite
non-empty set, the set of states, Σ is the alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, and δ : Q × Σ −→ Q is the transition function. This function defines for each symbol of the
alphabet a transformation of the set Q of states (i.e., a map from Q to Q). The transition semigroup of
a DFA A, [1], is the semigroup of transformations of Q generated by the transformations induced by
the symbols of Σ. A reduced DFA is a DFA with all states reachable from the initial state (accessible),
and all states can reach a final state (useful), except at most one that is a sink state or dead state, i.e., a
state where all output transitions are self loops. In the case of an incomplete automaton the transition
function is a partial function and we can add the dead state to make the automaton complete. A trimmed
DFA is a DFA with all states reachable and all states useful, thus it may be incomplete, i.e., where not all
transitions are defined. The transition function δ can be extended to δ : Q × Σ? −→ Q by δ(q, ε) = q,
and δ(q, wa) = δ(δ(q, w), a).

The language recognized by a DFA A is L(A) = {w ∈ Σ? | δ(q0, w) ∈ F}. We denote by
Lq and Rq the left and right languages of q, respectively, i.e., Lq = {w | δ(q0, w) = q}, and Rq =
{w | δ(q, w) ∈ F}. The minimal word in quasi-lexicographical order that reaches state q ∈ Q is xA(q);
the word xA(q) is also the minimal element of Lq. If A = 〈Q,Σ, δ, q0, F 〉 is a DFA recognizing the
language L and Rq = Rp, then we say that p and q are equivalent, and write p ≡A q. A DFA is minimal
if it has no equivalent states.

A regular language is a language recognized by a DFA. If a language L is regular, the number of
distinct left quotients is finite, and it is exactly the number of states in the minimal DFA recognizing L.



4 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

This number is called the state complexity of L, and it is denoted by sc(L). In a minimal DFA, for each
q ∈ Q, Rq is exactly a quotient. If some quotient of a language L is ∅, this means that the minimal DFA
of L has a dead state.

A nondeterministic finite automata (NFA) is a quintupleN = 〈Q,Σ, I, δ, F 〉, whereQ, Σ, and F are
the same as in the DFA definition, I ⊆ Q is the set of initial states, and δ : Q×Σ −→ 2Q is the transition
function. The transition function can also be extended to subsets of Q instead of states, and to words
instead of symbols of Σ. The language recognized by an NFA N is L(N ) = {w | δ(I, w) ∩ F 6= ∅}. It
is obvious that a DFA is also an NFA. Any NFA can be converted into an equivalent DFA by the well-
known subset construction. Given an NFA N for L, an NFA NR for LR is obtained by interchanging
the sets of final and initial states of N and reversing all transitions between states.

More notation and definitions related to formal languages can be looked up in [21, 23].

3. The (Left) Distinguishability Operation

Let L be a regular language. For every pair of words, x, y ∈ Σ?, with x 6≡L y, there exists at least one
word w such that either xw ∈ L or yw ∈ L. Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA such that L = L(A). If
two states p, q ∈ Q, p 6≡A q, then there exists at least one word w such that δ(p, w) ∈ F < δ(q, w) ∈ F .
We say that w distinguishes between the words x and y, in the first case, and the states p and q, in the
second case. Given x, y ∈ Σ?, the language that distinguishes x from y w.r.t. L is

DL(x, y) = {w | xw ∈ L< yw ∈ L} . (1)

Naturally, we define the left distinguishability language (or simply, distinguishability language) of L
by

D(L) = {w | ∃x, y ∈ Σ? (xw ∈ L ∧ yw /∈ L)}. (2)

It is immediate that D(L) =
⋃

x,y∈Σ?

DL(x, y).

In the same way, for the DFA A, we define DL(p, q) for p, q ∈ Q, and

D(A) = {w | ∃p, q ∈ Q (δ(p, w) ∈ F ∧ δ(q, w) /∈ F )}. (3)

Lemma 3.1. Let A1,A2 be two reduced DFAs such that L(A1) = L(A2) = L. Then D(A1) =
D(A2) = D(L).

Proof:
Let A1 = 〈Q,Σ, q0, δ, F 〉 and L = L(A1) = L(A2). It is enough to prove that D(L) = D(A1). If
w ∈ D(L), then we have two words x, y ∈ Σ? such that xw ∈ L and yw /∈ L. Let p = δ(q0, x) and
q = δ(q0, y). Then, δ(q0, xw) ∈ F and δ(q0, yw) /∈ F , so w ∈ D(A1). If w ∈ D(A1), then there
exist p, q ∈ Q such that δ(p, w) ∈ F and δ(q, w) /∈ F ; as A1 is reduced, there must exist x, y with
δ(q0, x) = p and δ(q0, y) = q, therefore δ(q0, xw) = δ(p, w) ∈ F and δ(q0, yw) = δ(q, w) /∈ F , hence,
xw ∈ L and yw /∈ L, i.e., we conclude w ∈ D(L). ut

This shows that the operator D is independent of the automata we choose to represent the language,
as long as both automata are reduced.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 5

The distinguishability operation can be extended to arbitrary languages by using the suffix operator:

D(L) = suff(L) ∩ suff(L̄). (4)

It is easy to see that both definitions (2) and (4) are equivalent. In what follows, we present some
characterization results for the distinguishability operation, and show that iterating the operation always
leads to a fixed point.

The distinguishability operation can be expressed directly by means of language quotients, as it can
be seen in the following result.

Theorem 3.2. Let L be an arbitrary language with
{
w−1L | w ∈ Σ?

}
being its set of (left) quotients.

Then we have the equality
D(L) =

⋃
x∈Σ?

x−1L \
⋂

x∈Σ?

x−1L.

Proof:
We first consider the cases where L is a trivial language over Σ, i.e., L = ∅ or L = Σ?.

If L = ∅, then for any w ∈ Σ we have w−1L = ∅ = L and D(L) = ∅, hence, the equality holds.
If L = Σ?, then for any w ∈ Σ? we have w−1L = Σ? = L, hence:⋃

x∈Σ?

x−1L \
⋂

x∈Σ?

x−1L = Σ? \ Σ? = ∅.

On the other hand, by definition (4), D(L) = suff(L) ∩ suff(L̄) = Σ? ∩ ∅ = ∅, hence, again the
equality holds.

Now let L be an arbitrary non-trivial language over Σ. Then, for any w ∈ D(L), by defini-
tion ∃x, y ∈ Σ? such that xw ∈ L and yw /∈ L. Then w ∈ x−1L ∧ w /∈ y−1L, there-
fore D(L) ⊆

⋃
x∈Σ?

x−1L \
⋂

x∈Σ?

x−1L. Let w ∈
⋃

x∈Σ?

x−1L \
⋂

x∈Σ?

x−1L, then let x and y be such that

w ∈ x−1L and w /∈ y−1L. Thus, w ∈ D(L). Hence, we conclude

D(L) =
⋃

x∈Σ?

x−1L \
⋂

x∈Σ?

x−1L.

ut

Corollary 3.3. For a an arbitrary language L and x, y ∈ Σ?, DL(x, y) is the symmetric difference of the
correspondent quotients, DL(x, y) = (x−1L)∆(y−1L).

To help the reader better understand how this operation looks like, we now present some more ex-
amples. In the first three examples we consider L a regular language and the correspondent minimal
DFAs.

Example 3.4. If L is a regular language and D(L) = {ε}, then we can only distinguish between final
and non-final states, thus the minimal DFA of L has exactly two states corresponding to its two quotients.



6 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Example 3.5. In this example we consider a family of languages Ln for which D(Ln) = Σ?. Let Ln =
L(An) for 3 ≤ n, with An = 〈Qn, {0, 1}, δn, 0, {0}〉, where Qn = {0, . . . , n− 1}, δn(i, 0) = i + 1
mod n−1, for 0 ≤ i ≤ n−1 and δn(1, 1) = 0, δn(0, 1) = 1, δn(i, 1) = i, for 2 ≤ i ≤ n−1. In Figure 1,
we present A5. Both symbols of the alphabet induce permutations on Qn: 1 induces a transposition (2-
cycle), and 0, an n cyclic permutation. It follows that, the transition semigroup of An is the symmetric
group Sn of degree n, i.e., the set of all permutations of Qn. We always have ε ∈ D(L), and every
w ∈ Σ+ induces a permutation on the states, for 0 ≤ i, j ≤ n− 1, δ(i, w) = iw and δ(j, w) = jw, with
iw 6= jw. Then, there must exist at least a pair (i, j), such that w ∈ Ri and w /∈ Rj , i.e., w ∈ D(Ln),
thus D(Ln) = Σ?. Bell et al. [1] studied those families of automata, and in particular, proved that they
are uniformly minimal, i.e., minimal for every non-trivial choice of final states [20].

0, 1

0

1

0

1

0 1

1

0

0, 1

Figure 1. Automaton A5 (left) and its distinguishability language, Σ? (right).

0

1

0

0

1

1

0

0
1

1

0

0

1
0

1

0

1

0

1

0, 1

1

0

Figure 2. Example of an automaton with L(A) 6= D(L(A)).

Example 3.6. Consider the automaton A in Figure 2. We have that L(A) 6= D(L(A)), but
D(D(L(A))) = D(L(A)). The minimal automaton for D(L(A)) is presented in Figure 3.

Lemma 3.7. There is a non-regular language L such that D(L) is regular.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 7

0

1 0 1

1

0 0, 1

0, 1

Figure 3. Example of an automaton A1 where D(L(A1)) = L(A1), i.e., the distinguishability language is the
same as the language of the words it can distinguish.

Proof:
If we consider the language L = {an2 | n ≥ 0}, we have that D(L) = {an | n ≥ 0}, which is regular.

ut

Example 3.8. Considering the language L = {anbncn | n ≥ 0}, we have that D(L) = suff(L), because
L ⊇ {anbncnw | w 6= ε}.

Example 3.9. A Dyck language is a language with k balanced parentheses and it is well-known to be
context-free. If L is a Dyck language, then D(L) = suff(L) and it is also context-free.

Example 3.10. Considering the context-free language L = Σ∗{abab} ∪ {anbn | n ≥ 0}, we have that
D(L) 6= suff(L), because abab ∈ suff(L), but abab /∈ D(L). Moreover, one can check that D(L) is also
context-free (and non-regular).

Example 3.11. Considering the language L = L(((0 + 1)(0 + 1))?(ε + 1)). In Figure 4 one can find,
from left to right, a DFA that accepts L, one that accepts D(L) = (0 + 1?10)?, and one for Dn(L) = ε,
for n ≥ 2.

0

1

0, 1

0, 1

10

0

1 0, 1

0, 1

Figure 4. Automata for the languages L, D(L), and Dn(L), n ≥ 2.

From the last example, we can see that the language D(L) contains the word 0110, but also the words
110, 10, and 0, which are all suffixes of 0110. This observation suggests that D(L) is suffix closed, which
will be proved in the next theorem (for the general case again) later.

The following lemmas are useful in general.

Lemma 3.12. The suffix operator is an idempotent operator, i.e., for any set M , suff(suff(M)) =
suff(M).



8 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Proof:
For any M , by definition, M ⊆ suff(M). Hence, for any w ∈ suff(M), w ∈ suff(suff(M)), too, i.e.,
suff(suff(M)) ⊇ suff(M). On the other hand, for any v ∈ suff(suff(M)), by definition, there must
exist x, y such that yv ∈ suff(M) and xyv ∈ M , which means v ∈ suff(M), too, i.e., suff(suff(M)) ⊆
suff(M). ut

Lemma 3.13. If L,M ⊆ Σ? are suffix-closed languages, then suff(L) ∩ suff(M) = suff(L ∩M), and
suff(L) ∪ suff(M) = suff(L ∪M).

Proof:
It is obvious that the equality holds for union, and the inclusion suff(L ∩M) ⊆ suff(L) ∩ suff(M), for
intersection is true, too. If w ∈ suff(L) ∩ suff(M), then there exist x, y ∈ Σ? such that xw ∈ L and
yw ∈M . Because L and M are suffix closed, then w ∈ L ∩M ⊆ suff(L ∩M). ut

Theorem 3.14. For any arbitrary language L, we have suff(D(L)) = D(L). Hence, the language D(L)
is suffix closed.

Proof:
According to 4, we have D(L) = suff(L) ∩ suff(L̄). Therefore, using Lemmas 3.12 and 3.13, we get
suff(D(L)) = suff(suff(L)∩suff(L̄)) = suff(suff(L))∩suff(suff(L̄)) = suff(L)∩suff(L̄) = D(L). ut

Due to the preceding theorem, D(L) = suff(D(L)), hence, suff(D(L)) ⊆ D(L) ⊆ suff(L) and
D2(L) ⊆ D(L) ⊆ suff(L). In general, for every n ≥ 1, we have the following inclusion

Dn+1(L) ⊆ Dn(L). (5)

Consequently, we may ask if this hierarchy is infinite or not, in other words, we may ask if for any
language L, there exists an n ≥ 0 such that Dn+1(L) = Dn(L).

Example 3.15. Consider the language L = L(A), where A is given in Figure 5, on the left. For the
language L, we have that L 6= D(L) and D(L) 6= D2(L) = Dn(L), for n ≥ 2. The minimal automaton
for D2(L) is depicted on the right. The minimal automaton for D(L) has 7 states.

In the following result, we prove that the iteration of D operations always reaches a fixed point.

Theorem 3.16. Let L ⊆ Σ? be an arbitrary language. Then we have that D3(L) = D2(L).

Proof:
We have the following equalities:

D2(L) = D(D(L)) = suff(D(L)) ∩ suff(D(L)) = D(L) ∩ suff(D(L)). (6)

Now, computing the next iteration of D, we get D3(L) = suff(D2(L)) ∩ suff(D2(L)).
Using (6) and Lemma 3.13, we obtain the equalities

suff(D2(L)) = suff(D(L) ∩ suff(D(L))) = suff(D(L)) ∪ suff(suff(D(L))).



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 9

0

1

1

0

0

1

0, 1
0

1

0, 1
0

1
1

0

0
1

0 1

0
10 1

0, 1

Figure 5. Example of a language L with D(L) 6= D2(L) = Dn(L), for n ≥ 3. On the left, a DFA for L and on
the right a DFA for D2(L).

Because D2(L) is a suffix-closed language, it follows that

D3(L) = D2(L) ∩ (suff(D(L)) ∪ suff(suff(D(L))))

= (D2(L) ∩ suff(D(L))) ∪ (D2(L) ∩ suff(suff(D(L)))))

= D2(L) ∪ (D2(L) ∩ suff(suff(D(L))))) = D2(L).

ut

The following results give characterizations for some languages that are fixed points for D.

Lemma 3.17. Given any language L, if L has ∅ as a quotient, then D(L) = suff(L).

Proof:
Because z−1L = ∅, for some word z, we have suff(L) = Σ?. ut

This lemma makes the following result immediate.

Theorem 3.18. L is a fixed point for D, i.e., D(L) = L, if and only if L is suffix closed and has ∅ as one
of its quotients.

Corollary 3.19. Let L be any language, then D(L) has ∅ as a quotient if and only if D2(L) = D(L).

Note that the condition L to be suffix closed is not sufficient to ensure that L has ∅ as a quotient. For
that, it is enough to consider the language given by 0? + 0?1(1 + 00?1)?. However, if L is a D fixed
point, the implication holds at least for regular languages.

Theorem 3.20. Let L be a regular language. If D(L) = L, then L has ∅ as a quotient.



10 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Proof:
Let L be a regular language that is fixed point for D, thus L is suffix closed and

(∀w ∈ L)(∃u ∈ Σ?)(uw /∈ L). (7)

Assume that L does not have ∅ as quotient, i.e.,

(∀w ∈ Σ?)(∃v ∈ Σ?)(wv ∈ L). (8)

Let w /∈ L (Σ? is not a fixed point for D). Thus, by (8) there exists a v0 ∈ Σ? such that wv0 ∈ L and
because L is suffix closed, it follows that v0 ∈ L. Using (7), there exists u0 such that u0wv0 /∈ L. Using
the same reasoning, we can find u1 ∈ Σ? and v1 ∈ L such that

u0wv0v1 ∈ L and u1u0wv0v1 /∈ L.

The word wv0v1 distinguishes u0 from u1u0, thus these words cannot belong to the same quotient.
Suppose that we have iterated n times this process having

un−1 · · ·u0wv0 · · · vn ∈ L and un · · ·u0wv0 · · · vn /∈ L,

with all ui · · ·u0 belonging to distinct quotients. We can apply this process one more time, obtaining

un · · ·u0wv0 · · · vn+1 ∈ L and un+1 · · ·u0wv0 · · · vn+1 /∈ L.

It is easy to see that the word wv0 · · · vn+1 distinguishes un+1 · · ·u0 from any of the previous words
ui · · ·u0 (with i ≤ n) because ui · · ·u0wv0 · · · vn+1 is a suffix of un · · ·u0wv0 · · · vn+1 ∈ L. Thus, the
number of L quotients cannot be finite, a contradiction. ut

By contraposition over the last result, we get that a language L with all its quotients being non-
empty cannot be a fixed point for D. We know that if a language L is such that Σ? = suff(L), then ∅
must be one of the quotients of L. In Examples 3.5–3.11 and Example 3.15, we have languages L with
all quotients being non-empty and L 6= D(L). Considering Theorem 3.20 and Theorem 3.16, given any
regular language L we can iterate D at most two times to obtain a language that has ∅ as a quotient.

For a finite language L, it follows from Lemma 3.17 that the distinguishability language of L coin-
cides with the set of all suffixes of L, therefore, D(L) is a fixed point of the D operator.

Corollary 3.21. If L is a finite language, then D(L) = suff(L).

The minimal DFA that represents the set of suffixes of a finite language L is called the suffix automa-
ton, and several optimized algorithms for its construction were studied in the literature. Thus, we can
use an algorithm for building the suffix automaton in order to obtain D(L). Recently, Mohri et al. [19]
gave new upper bounds on the number of states of the suffix automaton as a function of the size of the
minimal DFA of L, as well as other measures of L. In Section 4, we study the state complexity of D(L)
as a function of the state complexity of L, for any general regular language L. The state complexity of D
for finite languages was studied by Câmpeanu et al. [10]. In Section 7, we generalize the results on the
characterization of the distinguishability operation, defining languages that distinguish between pairs of
different right and two-sided quotients.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 11

4. State Complexity

Let L be a regular language. By definition, D(L) can be obtained using the suffix operator, complement
and intersection, therefore, it is a result of combining three operations, two unary and one binary. We
would like to estimate the state complexity of the D operation and check if the upper bound is tight. We
recall that the state complexity of an operation is the worst-case state complexity of a language resulting
from that operation, as a function of the state complexities of the operands.

The following theorem shows the construction for D(L), in case L is recognized by a DFA.

Theorem 4.1. Let A = (Q,Σ, δ, i, F ) be a reduced DFA recognizing a (nontrivial) language L. Then
Ad = (Qd,Σ, δd, Q, Fd) is a DFA that accepts D(L), where

• Qd = {S | S ⊆ Q},

• for a ∈ Σ and S ∈ Qd, δd(S, a) = {δ(q, a) | q ∈ S},

• Fd = {S | S ∩ F 6= ∅ and S ∩ (Q \ F ) 6= ∅}.

Proof:
Considering that D(L) = suff(L) ∩ suff(L), we can use the usual subset construction for suff(L) to
build an NFA with the same transition function as A, and all its states being initial. For suff(L), the
corresponding NFA will be the same, but flipping the finality for all the states. Because both operands
share the same structure, the DFA corresponding to the intersection will be the DFA resulting from the
subset construction considering a suitable set of final states (they must contain at least one final state and
a non-final one). ut

Let A = (Q,Σ, δ, i, F ) be the minimal DFA recognizing L with |Q| = n. Let Q = {0, . . . , n − 1}
and Ri, 0 ≤ i ≤ n− 1, be the left quotients of L (possibly including the empty set). From Theorem 3.2,
we have:

D(L) =
⋃
i∈Q

Ri \
⋂
i∈Q

Ri =

⋃
i∈Q

Ri

 ∩
⋂

i∈Q
Ri

 =

⋂
i∈Q

Ri

 ∪
⋂

i∈Q
Ri

. (9)

In the following we identify the states of A with the corresponding left quotients. Instead of using
traditional techniques to prove the correctness of tight upper bounds of operational state complexity, here
we consider a method based on the atoms of regular expressions. Using this approach, we aim to provide
yet another piece of evidence for their broad applicability.

Brzozowski and Tamm introduced the notion of atoms of regular languages in [6] and studied their
state complexity in [7]. An atom of a regular language L with n quotients R0, . . . , Rn−1 is a non-empty
intersection K0 ∩ · · · ∩ Kn−1, where each Ki is a quotient Ri, or its complement Ri. Atoms of L are
partitions of Σ?. In particular, AQ =

⋂
i∈QRi (A∅ =

⋂
i∈QRi) is an atom with zero complemented

(uncomplemented) quotients. In [7] it was proved that the state complexity of both those atoms is 2n−1.
Using similar arguments, we prove the following theorem.

Theorem 4.2. If a regular language L has a minimal DFA with n ≥ 2 states, then sc(D(L)) ≤ 2n − n.



12 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Proof:
Let A = (Q,Σ, δ, i, F ) be the minimal DFA recognizing L with |Q| = n. Then Q = {0, . . . , n − 1},
and let Ri, 0 ≤ i ≤ n − 1 be the (left) quotients of L. Using Equation (9), every quotient w−1D(L) of
D(L), for w ∈ Σ?, is given by:

w−1D(L) =

⋃
i∈Q

w−1Ri

 ∩
⋂

i∈Q
w−1Ri

,
where all w−1Ri, 0 ≤ i ≤ n − 1, are also quotients of L, and they may not be distinct. Considering all
non-empty subsets of quotients of L, there would be at most 2n quotients of D(L). However, all subsets,
Rj , with exactly one element will lead to the empty quotient1. Thus, sc(D(L)) ≤ 2n − n. ut

Brzozowski [3] presented a family of languagesUn which provides witnesses for the state complexity
of several individual and combined operations over regular languages. Brzozowski and Tamm [7] proved
that Un was also a witness for the worst-case state complexity of atoms. This family is defined as
follows. For each n ≥ 2, we construct the DFAs Dn = ({0, . . . , n− 1} , {0, 1, 2} , δ, 0, {n− 1}), where
δ(i, 0) = i + 1 mod n, δ(0, 1) = 1, δ(1, 1) = 0, δ(i, 1) = i for i > 1, δ(i, 2) = i for 0 ≤ i ≤ n − 2,
and δ(n− 1, 2) = 0. We denote by Un the language accepted by Dn, i.e.,

Un = L(Dn). (10)

We show that Un is also a witness for the lower bound of the state complexity of D(L). First, observe
that the automata Dn, n ≥ 2 are minimal. In Figure 6, we present D4.

2 0, 1
0

1

2

0

1, 2 1

0, 2

Figure 6. Universal witness D4.

Next, we give the lower bound for the number of states of a DFA accepting D(Un).

Theorem 4.3. For n ≥ 2, the minimal DFA accepting D(Un) has 2n − n states.

Proof:

Let An = (R0 ∩ . . . ∩ Rn−1), and A∅ = (R0 ∩ . . . ∩ Rn−1), be the two atoms of Un as above,
where Ri are its quotients 0 ≤ i ≤ n− 1. Then D(Un) = An ∪A∅. Brzozowski and Tamm proved that
sc(An) = sc(A∅) = 2n − 1. Applying the construction given in Theorem 4.1 to D(Un), and noting that
a regular language and its complement have the same state complexity, we obtain the upper bound. ut
1Because all transitions are deterministic from singleton sets of states only singleton sets will be reached, which will be either
a final state or a non-final one.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 13

If sc(L) = 1, as noted in the proof of Theorem 3.2, we have that sc(D(L)) = 1. If L has ∅ as a
quotient, by Lemma 3.17, the upper bound for sc(D(L)) coincides with the one for suff(L), i.e., it is
2n−1 if sc(L) = n, cf. [5]. This upper bound is achieved by the family of languages represented in
Figure 7.

s0 s1 s2 · · · sn−2

sn−1

0

1

0

1

0

1

0

0

1

0, 1

Figure 7. Witness family for sc(D(L)) when L has ∅ as a quotient.

Having considered some properties of the distinguishability language, we would like to select only
the set of minimal words that distinguishes between distinct quotients. Obviously, this is a subset of
D(L), and in the following section we study some of its properties.

5. Minimal Distinguishable Words

An even more succinct language distinguishing all different quotients of a regular language, in fact a
finite one, can be obtained if we consider only the shortest word that distinguishes each pair of quotients.

Definition 5.1. Let L be an arbitrary language, and assume we have an order over the alphabet Σ. If
x, y ∈ Σ? and x 6≡L y, we define

DL(x, y) = min {w | w ∈ DL(x, y)} ,

where minimum is considered with respect to the quasi-lexicographical order. In case x ≡L y, DL(x, y)
is undefined. We can observe that if x 6≡L y, DL(x, y) = min(x−1L∆y−1L).

The set of minimal words distinguishing quotients of a language L is

D(L) = {DL(x, y) | x, y ∈ Σ∗, x 6≡L y} .

Example 5.2. We present a few simple cases. Similar to the D operator, we have the equalities: D(Σ?) =
D(∅) = ∅ and D({ε}) = {ε}. In case 0 ∈ Σ, D({0}) = D({0}) = {0, ε}, and D({0n}) = D({0n}) ={

0i | 0 ≤ i ≤ n
}

, for n ≥ 2.

Example 5.3. Consider the language L in the proof of Lemma 3.7. We have that D(L) = {0n | n ≥ 0},
because 0n is the minimal word distinguishing between 0k

2−n and 0k
2−n−1, where k is such that there

is no perfect square in the set
{
k2 − n− 1, k2 − n, . . . , k2 − 1

}
, for n ≥ 0.



14 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Example 5.4. Consider the language L of Example 3.15. We have the following equalities D(L) =
{ε, 0, 1, 01, 11}, D(D(L)) = {ε, 1, 01, 11}, and D(D2(L)) = {ε, 1, 11}.

The previous example suggests that also D(L) is suffix closed.

Theorem 5.5. If L is an arbitrary language, then D(L) is suffix closed.

Proof:
Let w ∈ D(L), and let w = uv, with u, v ∈ Σ?. Because w ∈ D(L), we can find two other words,
x, y ∈ Σ?, such that xw ∈ L and yw /∈ L, i.e., xuv ∈ L and yuv /∈ L. It follows that v ∈ DL(xu, yu).
Since v ∈ DL(xu, yu), there exists v′ ∈ DL(xu, yu) and v′ � v. Hence, uv′ � uv and uv′ ∈ DL(x, y),
which implies that w = uv � uv′. Then we must have uv′ = uv, which implies that v = v′, hence,
DL(xu, yu) ∈ D(L). ut

The next result gives an upper bound for the number of elements of D(L).

Theorem 5.6. If L is a regular language with state complexity n ≥ 2, then |D(L)| ≤ n− 1.

Proof:
For any three sets A,B and C we have the equality (A∆B)∆(B∆C) = A∆C. Therefore, we can
distinguish any pair from n distinct sets with at most n− 1 elements. To prove the theorem it is enough
to choose the minimal words satisfying the above conditions, since the n quotients of L are all distinct
(their symmetric difference is non-empty). ut

Now, we prove that the upper bound is reached.

Theorem 5.7. The bound n − 1 for the size of D(L), for a regular language L with state complexity
n ≥ 2, is tight.

Proof:
Consider again the family of languages Un, described by Equation (10). For each state 0 ≤ i ≤ n− 1 of
Dn, let Ri be the corresponding quotient. It is easy to see that the minimal word for each quotient Ri is
0n−i−1, and we can disregard the largest one of those. ut

The previous proof, we have that sc(D(Un)) = sc(
{

0i | 0 ≤ i ≤ n− 2
}

) = n. This shows that for
regular languages with state complexity n, a lower bound for the state complexity of D is n.

Now we consider the iteration of the D operator. Because D(L) ⊆ D(L), D(L) ⊆ suff(L), and D(L)
is suffix closed, it follows that D2(L) ⊆ D(L), and, in general,

Dn+1(L) ⊆ Dn(L), for all n ≥ 1. (11)

By the finiteness of D(L), it follows that there exists n ≥ 0 such that Dn+1(L) = Dn(L). For
instance, considering the family of languages Un defined by Equation (10), we have that D2(Un) =
D(Un).

Contrary to the hierarchy for D(L), where the fixed point is reached for n = 2, in the case of D(L)
we have that for any n ≥ 0, there is a language for which the fixed point is reached after n iterations
of D.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 15

Theorem 5.8. Given a regular language L with state complexity n, the fixed point of Di(L), 0 ≤ i ≤
n− 2 is reached for some i ≤ n− 2.

Proof:
Because D(L) is suffix closed, ε ∈ Di(L) for all every i ≥ 1, thus any automaton recognizing Di(L)
has at least 2 states. By Theorem 5.6, sc(D(L)) ≤ n − 1; thus, taking into account that Di(L) is suffix
closed for i ≥ 1, we either must get the same set or a smaller set, in that case losing at least one element
at each iteration. Hence, i ≤ n− 2. ut

If in the previous theorem we have established an upper bound for the number of iterations of the D
operator necessary to reach a fixed point, in the next one we show that the upper bound can be reached.

Theorem 5.9. For all n ≥ 3, there exists a regular language Ln, with sc(Ln) = n, such that

i) Dm−1(Ln) 6= Dm(Ln), for all m < n− 2, and

ii) Dn−2(Ln) = Dn−1(Ln).

Proof:
Consider the family of languages Wm = suff(0m1) =

{
0i1 | 0 ≤ i ≤ m

}
∪ {ε}, m ≥ 0. Then

sc(Wm) = m + 3 and D(Wm) =
{

0i1 | 0 ≤ i ≤ m− 1
}
∪ {ε} = Wm−1. Because W0 = {1, ε}

is a fixed point for D, i.e., D(W0) = W0, we obtain

1. Dm−1(Wn−3) 6= Dm(Wn−3), for all m < n− 2, and

2. Dn−2(Wn−3) = Dn−1(Wn−3).

Hence, we can just take Ln = Wn−3. ut

In the next section we use D(L) to recover L as an l-cover language for L ∩ Σ≤l.

6. Using Minimal Distinguishability Words to Recover the Original
Language

In Section 1 we claim that for any regular language L, there exists a constant l, such that having the
distinguishability language D(L), we can recover the original language L, if we know all the words in L
of length less than or equal to l, i.e., the set L ∩ Σ≤l.

Thus, a positive learning procedure can be designed to recover the original language, L, from
every pair (D(L), l) such that l is large enough. It is obvious that if L is a regular language, and
A = (Q,Σ, δ, q0, F ) a finite automaton recognizing L, i.e., L = L(A), then L is always an l-cover
language for L ∩ Σ≤l. Thus, the goal is to determine the language L as a unique l-cover language for
L ∩ Σ≤l.

Let A = (Q,Σ, δ, q0, F ), and L be a regular language such that L = L(A). The automaton A is
minimal if for any two states p, q ∈ Q, p 6= q, we can find a word to distinguish between them. Hence,
A is minimal if we can find a word w ∈ D(L) such that it distinguishes between p and q, thus the words
xA(p) and xA(q) are distinguishable by some word in w ∈ D(L).



16 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Let us consider the Myhill-Nerode equivalence induced by L, ≡L. Two words x1 and x2 are equiva-
lent, with respect to ≡L, if and only if there exists w ∈ D(L) such that x1w ∈ L iff x2w ∈ L. Thus, by
generating all words in the language of length max(|x1|, |x2|) + max{|w| | w ∈ D(L)}, we can decide
after a finite number of steps if x1 ≡L x2.

Therefore, the following algorithm can select all words xA(p) for a minimal DFA recognizing L:
1: n← 1, x← ε, xA(n)← x,Q← {n}, l← 0
2: y ← Succ(x), where Succ(x) is the next word for the quasi-lexicographical order
3: while |y| ≤ l + 1 do
4: if y 6≡ xA(q), ∀q ∈ Q then
5: n← n+ 1, xA(n)← y,Q← Q ∪ {n}, l← |y|
6: else
7: δ(p, a)← q, where y = za ≡L xA(q), z = xA(p), a ∈ Σ
8: end if
9: x← y, y ← Succ(x)

10: while y is unreachable and |y| ≤ l + 1 do . i.e., y = xA(q)wa, xA(q)w ≡L xA(p),
for some p, q ∈ Q, w ∈ Σ+, a ∈ Σ

11: x← y, y ← Succ(x)
12: end while
13: end while
14: Set as final all q ∈ Q such that xA(q) ∈ L

We observe that if all the words of length |x| = l + 1 are equivalent with some shorter words, then
all the words of length greater than l + 1 will be declared unreachable by the previous algorithm, and
no new transition can be added. On the other hand, δ(q, a) is always defined, as xA(q)a = xA(p), for
some p 6≡ q, or xA(q)a ≡ xA(p), and δ(q, a) = p. All the states in the above construction correspond to
distinguishable words xA(q), thus the DFA is minimal.

Note that when testing in quasi-lexicographical order if a new word in Σ? is equivalent with pre-
viously distinct ones, will prune the branches corresponding to equivalent words, and testing done in
line 10 needs only to test if y is on a cut-out branch. Because all words of length greater than n = sc(L)
must be equivalent with some word of length less than n, it is enough to test only words of length at most
sc(L)+1. In order to conduct the equivalence test, it is enough to generate all words of length n+d+1,
where d = max{|w| | w ∈ D(L)}. Hence, all steps in the algorithm are well defined and they are only
executed a finite number of times, thus it will produce a minimal DFA after a finite number of steps.

Therefore, we just have proved the following theorem:

Theorem 6.1. Let L be a regular language and LD = D(L). If we have an algorithm to generate all
words in the language L up to a given length m, then we have an algorithm to compute

i) A number l, such that L is an l-cover language for L ∩ Σ≤l;

ii) A minimal DFA A for L, which is at the same time, an l-DFCA for L ∩ Σ≤l.

A crucial role for producing the algorithm is the fact that testing the equivalence of two words can
be done using a finite number of steps, and this is possible if we know D(L). However, it is not known



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 17

if an equivalent procedure can be obtained if we know only D(L), as it is possible to have two languages
L1,L2 such that they share the same D languages, but different D languages.

For example, we can take L1 = {w | w = aaxban, x ∈ {a, b}∗, n ≥ 0} and L2 = {w | w =
bbxabn, x ∈ {a, b}∗, n ≥ 0}. We have that D(L1) = {b, ab, e, aab}, D(L2) = {a, e, ba, bba}, and
D(L1) = D(L2) = Σ?. This example suggests why knowing D(L) may not be enough.

In the next section we check under what conditions the results obtained so far can be generalized.

7. Boolean Operations and Closure

In Section 3 we used Boolean operations and the suffix operation to compute the distinguishability lan-
guage. The suffix operation has the following properties:

i) suff(∅) = ∅;

ii) L ⊆ suff(L);

iii) suff(suff(L)) = suff(L);

iv) suff(L1 ∪ L2) = suff(L1) ∪ suff(L2),

thus, it is a closure operator.

If we consider the distinguishability operation as a unary operation on r languages, we can see that
it is obtained by applying finitely many times a closure operator and Boolean operations. The Closure-
Complement Kuratowski Theorem [18] says that using one set, one can obtain at most 14 distinct sets
using finitely many times one closure operator and the complement operation. For the case of regular
languages, Brzozowski et al. [4] determine the number of languages that can be obtained by applying
finitely many times the Kleene closure and complement. However, the corresponding property (iv) is not
satisfied by the Kleene closure.

In this section we analyze the case of closure operators and Boolean operations, and ask if applying
them finitely many times, we can still obtain only finitely many sets, or what is a necessary condition to
obtain only finitely many sets.

In order to do this, we need to prove some technical lemmata. In the following, M denotes a
nonempty set.

Lemma 7.1. Let N = {A1, . . . , An}, where Ai ∈ 2M , 1 ≤ i ≤ n. Then the free algebra
(N,∪,∩, ·, ∅, N) has a finite number of elements.

Proof:

All expressions can be reduced to the disjunctive normal form, and we only have finitely many such
formulae. ut

Lemma 7.2. Let c1, c2 : 2M −→ 2M be two closure operators such that c1 and c2 commute, i.e.,
c1 ◦ c2 = c2 ◦ c1. Then the composition c = c2 ◦ c1 is also a closure operator.



18 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Proof:
Let us verify the properties of a closure operator, thus if L,L1, L2 ∈ 2M , we have:

i) c(∅) = (c2 ◦ c1)(∅) = c2(c1(∅)) = ∅;

ii) L ⊆ c2(L) ⊆ c1(c2(L)) = (c2 ◦ c1)(L) = c(L);

iii) c(c(L)) = (c2◦c1)((c2◦c1)(L)) = (c2◦c1)((c1◦c2)(L)) = (c2◦c1◦c1◦c2)(L) = (c2◦c1◦c2)(L) =
(c2 ◦ c2 ◦ c1)(L) = (c2 ◦ c1)(L) = c(L);

iv) c(L1 ∪ L2) = (c2 ◦ c1)(L1 ∪ L2) = c2(c1(L1 ∪ L2)) = c2(c1(L1) ∪ c1(L2)) = c2(c1(L1)) ∪
c2(c1(L2)) = c(L1) ∪ c(L2).

ut

In general, not all closure operators commute, for example,N0, N1 : 2N −→ 2N defined byN0(A) =
A∪{x ∈ N | ∃k > 0, x = 2k if 2k−1 ∈ A}, N1(A) = A∪{x ∈ N | ∃k >= 0, x = 2k+1 if 2k ∈ A},
do not commute one with each other, as N0 adds all the even numbers that are successors of elements in
the set A, and N1 adds all the odd numbers that are successors of elements in the set A. Applying the
closure operators alternatively to a finite set A, we always obtain a new set.

The next result is well known for the behaviour of closure operators when applied to an intersection
of two other sets.

Lemma 7.3. Let c be a closure operator on 2M . If L1, L2 ∈ 2M are closed subsets, then c(L1)∩c(L2) =
c(L1 ∩ L2).

Assume we have a finite number of sets L1, . . . , Lm. Using closure and complement for each set Li,
1 ≤ i ≤ m, we can obtain a finite number of sets [18], sayM1, . . . ,Ml. Now consider a Boolean expres-
sion using M1, . . . ,Ml. Because we can transform all these Boolean expressions in disjunctive normal
form, the number of Boolean expressions over M1, . . . ,Ml is finite. Applying the closure operator to
such an expression will commute with union, and the other sets are in the form c(Mi1 ∩ · · ·∩Mik). If all
Mij 1 ≤ j ≤ k are closed sets, then c(Mi1∩· · ·∩Mik) is a conjunction of some other setsMj1 , . . . ,Mjk ,
1 ≤ ji ≤ l. Otherwise, if a set Mij 1 ≤ j ≤ k is not closed, we may obtain new sets, as we can see
from the following example: if L1 = {aaaa, abaabbaa, b}, L2 = {bbb, baaab, aa}, where c = suff, then
c(L1 ∩ c(L2)) ∩ L2 6= c(L1) ∩ L2.

This suggests that if a unary operation that combines Boolean operations and closure operators is
repeatedly applied to a set and we first apply the closure operator to the set and its complement, then we
use other Boolean operations or the closure operator finitely many times, we will always obtain finitely
many sets. Thus, we have just proved the following lemma:

Lemma 7.4. Let c be a closure operator on 2M . If O : 2M −→ 2M is defined as a union and intersections
over c(L) and c(L), for L ∈ 2M , then

1. for every set A, O(A) = c(B), for some B ∈ 2M ;

2. any iteration of O will produce a finite number of sets;

3. if O(L) ⊂ L, for all L, then O has a fixed point.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 19

Of course, if we have more than one closure operator, and we want to obtain finitely many sets, we
must first apply one closure operator to the collection of sets and their complements, then all the other
Boolean operators and closure operator again. In this way, we have guaranteed that we can only obtain
finitely many sets. In case the operation defined this way is monotone and bounded, it will have a fixed
point.

In particular, we have a generalization of Theorem 3.16.

Corollary 7.5. Let L ∈ 2M and c be a closure operator on 2M . If O(L) = c(L) ∩ c(L) then O3(L) =
O2(L).

8. More Distinguishability Operations

A natural extension of D, as defined in Equation (4), is to consider the prefix operator and the infix
operator, thus, E(L) = pref(L) ∩ pref(L), and F(L) = infix(L) ∩ infix(L). Because pref and infix
are closure operators, E and F will share properties of D. In particular, E(L) is prefix-closed, F(L) is
infix-closed, and both satisfy Corollary 7.5. If L is ∅ or Σ?, then E(L) = F(L) = ∅.

In the following subsections we briefly consider these operators.

8.1. Right Distinguishability

Given a language L, the (Myhill-Nerode) relation on Σ? x hL y if (∀u ∈ Σ?) ux ∈ L ⇔ uy ∈ L is an
equivalence relation and left invariant. If L is regular, the relation hL has finite index. The right quotient
of L by a word u ∈ Σ? is the language Lu−1 = {x ∈ Σ? | xu ∈ L} and corresponds to an equivalence
class of hL, [12, 21]. For x, y ∈ Σ?, we define EL(x, y) = L−1x∆L−1y. Then, if we define the right
distinguishability language of L by

E(L) = {w | ∃x, y ∈ Σ? (wx ∈ L ∧ wy /∈ L)}, (12)

it is immediate that
E(L) =

⋃
x∈Σ?

Lx−1 \
⋂

x∈Σ?

Lx−1,

and
E(L) = pref(L) ∩ pref(L).

For u ∈ Σ?, (Lu−1)R = (uR)−1LR, i.e., the right quotients of L are exactly the reversals of the (left)
quotients of LR. If L is regular, the (left) quotients of LR correspond to the atoms of L, [6]. In this case,
E(L) is the language of the words that distinguish between pairs of different atoms of L. We have that

E(L) = (D(LR))R, (13)

i.e., D(L)R = E(LR).

Lemma 8.1. Let L be a language. If L does not have ∅ as a quotient, then E(L) = pref(L).

Proof:
Because ∅ is not a quotient of L, we have pref(L) = Σ?, therefore E(L) = pref(L). ut



20 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

We have E(L) = L if and only if D(LR) = LR. In particular, L has ∅ as a right quotient if and only
if LR has ∅ as quotient. The fact that L has an empty right quotient does not imply that L has an empty
(left) quotient, as can be seen with L = (a+ b)?a, where E(L) = Σ?. The results in Lemma 8.2 follow
immediately from 3.17–3.21.

Lemma 8.2. Let L be a language. Then the following statements hold true:

i) if L has ∅ as a right quotient, then E(L) = pref(L).

ii) if L is prefix-closed and L has a ∅ as a right quotient, then E(L) = L.

iii) if L is regular and E(L) = L, then L has ∅ as a right quotient.

Example 8.3. In Figure 8 one can see, from left to right, the minimal DFA accepting the language L,
the language E(L), E(L) 6= E2(L), and the language E2(L) = En(L), for n ≥ 3.

0

1

1
0

0

1

0
1

0, 1

0

1

0, 1

0
1

0, 1

1

0

0
1

0, 1

Figure 8. Automata for the languages L, E(L), and En(L), n ≥ 2.

Corollary 8.4. If L is a finite language, then E(L) = pref(L).

The state complexity of the E operation is given by the following theorem.

Theorem 8.5. If L is recognized by a minimal DFA with n ≥ 2 states, then sc(E(L)) = n.

Proof:
If both L and L do not have ∅ as a quotient, then E(L) = Σ? and only one state is needed for a DFA
accepting E(L). Otherwise, let A = (Q,Σ, δ, i, F ) be the minimal DFA recognizing L with |Q| = n.
We have that at least one of A or A has a dead state. To obtain a DFA for pref(L) one needs only to
consider all states of A final, except the dead state, if it exists. To get a DFA for E(L), we also need to
exclude from the set of final states the possible dead state of the DFAA, recognizing L, which coincides
with A, except that the set of final states is Q \ F . Tightness is achieved for the family of languages
Ln = {ai | i ≤ n− 2}, which are prefix closed, [5]. ut

In Section 5, we have considered the language of the shortest words that distinguish pairs of left
quotients of L, D(L). In this case, we can define E(L) = {EL(x, y) | x 6hL y}, where EL(x, y) =
min {w | w ∈ EL(x, y)} if x 6hL y, and minimum is considered with respect to the quasi-lexicographical
order.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 21

If L is regular and using Equation (13), one can have a finite set of words that distinguish between
right quotients, namely (D(LR))R. However, using the notion of atoms we can compute directly E. As
we seen before, E(L) distinguishes between pairs of atoms of L. To estimate the number of elements of
E(L), we recall the relation between atoms and right quotients.

Let A = (Q = {0, . . . , n − 1},Σ, δ, i, F ) be the minimal DFA recognizing L and let Ri, 0 ≤
i ≤ n − 1 be the left quotients of L. Each atom can be characterized by a set S ⊆ Q such that
AS =

⋂
i∈S Ri

⋂⋂
i/∈S Ri. Every x ∈ Σ? belongs exactly to one atom ASx , and if x hL y, i.e,

Lx−1 = Ly−1, then x and y belong to the same atom. Thus, the minimal word that distinguishes two
distinct right quotients with correspondent sets S and S′ is

min{w | w ∈ LS < w ∈ LS′},

where LT =
⋃

i∈T Li for T ⊆ Q and min{w | w ∈ LT } = min{xA(i) | i ∈ T}. Therefore,
EL(x, y) = min{xA(i) | i ∈ Sx∆Sy}. Using Theorem 5.6, it follows that the number of elements of
E(L) is less than or equal to n−1. We also have that E is prefix closed, En+1(L) ⊆ En(L), for all n ≥ 1,
and we can reach the fixed point in maximum n−2 iterations, using Theorem 5.8 and Theorem 5.9, with
Wn = pref(10n).

8.2. Two-sided Distinguishability

Given a languageL ⊆ Σ?, we can define the (Myhill-Nerode) equivalence relation on Σ?×Σ?, (x, y) 6uL

(x′, y′) if and only if (∀u ∈ Σ?) xuy ∈ L ⇔ x′uy′ ∈ L. For u, v ∈ Σ?, the two-sided quotient
u−1Lv−1 = {x ∈ Σ? | uxv ∈ L} corresponds to an equivalence class of uL and the relation uL is of
finite index if and only if L is regular. We note that u−1Lv−1 = (u−1L)v−1 = u−1(Lv−1). Two-sided
quotients were recently used to define biautomata, deterministic versions of which recognize exactly
regular languages, [16, 17], and couple NFAs, which can recognize linear languages, [12].

We define the two-sided distinguishability language of L by

F(L) = {w | ∃x, y, x′, y′ ∈ Σ? (xwy ∈ L ∧ x′wy′ /∈ L)}. (14)

It is immediate that
F(L) =

⋃
x,y∈Σ?

x−1Ly−1 \
⋂

x,y∈Σ?

x−1Ly−1,

and
F(L) = infix(L) ∩ infix(L).

Please note that for all languages L, D(L) ⊆ F(L) and E(L) ⊆ F(L). If L has ∅ as a (left) quotient,
then ∅ is also a two-sided quotient. The following lemmata shows that F is always an infix operation.

Lemma 8.6. Let L be a language. If L does not have ∅ as a quotient, F(L) = infix(L).

Proof:
Since ∅ is not a quotient of L, it follows that infix(L) = Σ?, therefore F(L) = infix(L). ut

Lemma 8.7. Let L be a language. If L has ∅ as a quotient, then F(L) = infix(L).



22 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

Proof:
We know that suff(L) = Σ?, thus infix(L) = Σ?. ut

If L is infix closed, then L is also suffix and prefix closed. Excluding Σ?, the fixed points of F are
exactly the infix-closed languages. To see that, by the previous lemma we have:

Lemma 8.8. If L is a infix-closed language and L has a ∅ as a quotient, then F(L) = L.

Lemma 8.9. Let L be a language. If F(L) = L, then L has ∅ as a quotient.

Proof:
Assume L does not have ∅ as a quotient. By Lemma 8.6, it follows F(L) = infix(L), thus L would not
be a fixed point of F. ut

From these two lemmata, one has

Theorem 8.10. If L is a language different from Σ?, F(L) = L if and only if L is infix closed.

Corollary 8.11. If L is a finite language, then F(L) = infix(L).

In case L = Σ?, F(L) = Σ? ∩ ∅ = ∅. Because, F(∅) = ∅ ∩ Σ? = ∅, we have F2(L) = F(L). This
result can be generalized for all languages L, such that F(L) 6= Σ?.

Corollary 8.12. Given a language L, if F(L) 6= Σ? then F2(L) = F(L).

Proof:
If F(L) 6= Σ?, then either L or L has ∅ as a quotient. Hence, F(L) = infix(L) and F2(L) =
infix(infix(L)) = F(L) or F(L) = infix(L) and F2(L) = infix(F(L)) = F(L). ut

If L is a regular language, the state complexity of F coincides with the state complexity of the infix
operation.

Theorem 8.13. If L is recognized by a minimal DFA with n ≥ 2 states, then sc(F(L)) = 2n−1.

Proof:
If both L and L do not have ∅ as a quotient, then F(L) = Σ?, therefore only one state is needed for a DFA
accepting F(L). Otherwise, let A = (Q,Σ, δ, i, F ) be the minimal DFA recognizing L with |Q| = n,
hence at least one of A or A has a dead state. An NFA recognizing infix(L) can be obtained by marking
as initial and final all states of Q and deleting the possible dead states. The correspondent DFA has at
most 2n−1 states, [5]. An analogous construction can be used for infix(L). Considering Lemma 8.6
and Lemma 8.7, a DFA for F(L) is one of the above. Tightness is achieved for the family of languages
recognized by DFAs represented in Figure 7. ut

In this case, we can also define F(L) = {FL(x, y) | x 6uL y}, where FL(x, y) =
min {w | w ∈ FL(x, y)}. Although it is easy to see that F(L) enjoys similar properties as D(L) and
E(L), we leave open how to compute this set.



C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures 23

9. Conclusion

In this paper we have introduced language operations that help us to distinguish non-equivalent words
under the Myhill-Nerode equivalence and related equivalences.

The operation D finds all the words that distinguish pairs of different left quotients of a given lan-
guage. This set contains exactly the words that are simultaneously the suffixes of the language and of its
complement. We show that D has a fixed point under iteration and the number of iterations is bounded
by two. For a regular language L with state complexity n, we show that D(L) is regular with state com-
plexity bounded by 2n − n. This bound is tight for Brzozowski’s universal witness, Un. We also studied
the operation D that produces only the minimal words that distinguish pairs of different left quotients
of the language, where minimum is considered with respect to the quasi-lexicographical order. If the
language is regular we show that D has also a fixed point under iteration and the number of iterations
until a fixed point is reached is bounded by the state complexity of the starting language. In the case of
the D operation, the maximum number of words in the language is n−1, where n is the state complexity
of the original (regular) language. We used D to recover the original (regular) language L as an l-cover
language of an initial segment of the language, where words have length at most l, by generating words
in the language up to length l + d, where d is the length of the longest word in D(L).

We have generalized some results for these types of operations with arbitrary closures and Boolean
operations. We have extended the study to infix and prefix operators to distinguish right quotients and
two-sided quotients of a language.

As open problems and future work, for regular languages we can consider the state complexity of
combined operations, when one of them is in the set {D,E,F}. Is worth mentioning that recovering
the whole language from a finite number of words in the language is very useful in learning algorithms,
thus it would be useful to study all conditions that can help us to reconstruct it, if we know some of the
distinguishability languages.

For arbitrary languages, we gave some examples and we proved only general results. We plan to
address in more detail this case of non-regular languages in a future paper.

Acknowledgements

We gratefully acknowledge the constructive comments of the referees and the fruitful discussions with
Rudi Freund which helped us to improve the paper.

References

[1] Bell, J., Brzozowski, J. A., Moreira, N., Reis, R.: Symmetric Groups and Quotient Complexity of Boolean
Operations, Proc. 41st ICALP (J. Esparza, P. Fraigniaud, T. Husfeldt, E. Koutsoupias, Eds.), 8573, Springer,
2014, ISBN 978-3-662-43950-0.

[2] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M. T., Seiferas, J. I.: The Smallest Automaton
Recognizing the Subwords of a Text, Theor. Comput. Sci., 40, 1985, 31–55.

[3] Brzozowski, J. A.: In Search of Most Complex Regular Languages, Int. J. Found. Comput. Sci., 24(6), 2013,
691–708.



24 C. Câmpeanu, N. Moreira, R. Reis / Distinguishability Operations and Closures

[4] Brzozowski, J. A., Grant, E., Shallit, J.: Closures in Formal Languages and Kuratowski’s Theorem, Int. J.
Found. Comput. Sci., 22(2), 2011, 301–321.

[5] Brzozowski, J. A., Jirásková, G., Zou, C.: Quotient Complexity of Closed Languages, Theory Comput. Syst.,
54(2), 2014, 277–292.

[6] Brzozowski, J. A., Tamm, H.: Theory of Átomata, Proc. 15th DLT (G. Mauri, A. Leporati, Eds.), 6795,
Springer, 2011, ISBN 978-3-642-22320-4.

[7] Brzozowski, J. A., Tamm, H.: Complexity of Atoms of Regular Languages, Int. J. Found. Comput. Sci.,
24(7), 2013, 1009–1028.

[8] Câmpeanu, C.: Cover Languages and Implementations, Proc. 18th CIAA (S. Konstantinidis, Ed.), 7982,
Springer, 2013, ISBN 978-3-642-39273-3.

[9] Câmpeanu, C., Moreira, N., Reis, R.: The Distinguishability Operation on Regular Languages, Proc. 6th
NCMA 2014 (S. Bensch, R. Freund, F. Otto, Eds.), Oesterreichische Computer Gesellschaft, 2014.

[10] Câmpeanu, C., Moreira, N., Reis, R.: On the Dissimilarity Operation on Finite Languages, Eighth Workshop
on Non-Classical Models of Automata and Applications (NCMA 2016) (H. Bordihn, R. Freund, B. Nagy,
G. Vaszil, Eds.), 321, Österreichische Computer Gesellschaft, 2016.

[11] Câmpeanu, C., Păun, A.: Counting the Number of Minimal DFCA Obtained by Merging States, Int. J. Found.
Comput. Sci., 14(6), 2003, 995–1006.

[12] Champarnaud, J., Dubernard, J., Jeanne, H., Mignot, L.: Two-Sided Derivatives for Regular Expressions
and for Hairpin Expressions, Proc. 7th LATA 2013 (A. H. Dediu, C. Martı́n-Vide, B. Truthe, Eds.), 7810,
Springer, 2013.

[13] Demaine, E. D., Eisenstat, S., Shallit, J., Wilson, D. A.: Remarks on Separating Words, Proc. 13th DCFS
(M. Holzer, M. Kutrib, G. Pighizzini, Eds.), 6808, Springer, 2011, ISBN 978-3-642-22599-4.

[14] Ginsburg, S.: On the Length of the Smallest Uniform Experiment which Distinguishes the Terminal States
of a Machine, J. ACM, 5(3), 1958, 266–280.

[15] Ginsburg, S., Spanier, E.: Distinguishability of a Semi-group by a Machine, Proceedings of the American
Mathematical Society, 12(4), 1961, 661–668.

[16] Holzer, M., Jakobi, S.: Nondeterministic Biautomata and Their Descriptional Complexity, Proc. 15th DCFS
2013 (H. Jürgensen, R. Reis, Eds.), 8031, Springer, 2013.

[17] Klı́ma, O., Polák, L.: On Biautomata, RAIRO - Theor. Inf. and Applic., 46(4), 2012, 573–592.

[18] Kuratowski, C.: Sur l’Operation A de l’Analysis Situs, Fund. Math., 3, 1922, 182–199.

[19] Mohri, M., Moreno, P., Weinstein, E.: General Suffix Automaton Construction Algorithm and Space Bounds,
Theor. Comput. Sci., 410(37), 2009, 3553–3562.

[20] Restivo, A., Vaglica, R.: A Graph Theoretic Approach to Automata Minimality, Theor. Comput. Sci., 429,
2012, 282–291.

[21] Sakarovitch, J.: Elements of Automata Theory, Cambridge University Press, 2009.

[22] Sempere, J. M.: Learning Reversible Languages with Terminal Distinguishability, Proc. 8th ICGI 2006
(Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, E. Tomita, Eds.), 4201, Springer, 2006, ISBN 3-540-
45264-8.

[23] Yu, S.: Regular languages, in: Handbook of Formal Languages (G. Rozenberg, A. Salomaa, Eds.), vol. 1,
Springer, 1997, 41–110.


