
Yappy

Yet another LR(1) parser generator for Python

Rogério Reis, Nelma Moreira

DCC-FC & LIACC, Universidade do Porto, Portugal

2000-2003

1 What is Yappy?

Yappy provides a lexical analyser and a LR parser generator for Python applications. Currently
it builds SLR, LR(1) and LALR(1) parsing tables. Tables are kept in Python shelves for use in
parsing. Some ambiguous grammars can be handled if priority and associativity information is
provided.
Yappy can also be useful for teaching and learning LR parsers techniques, although for the moment
no special functionalities are built-in, apart from some information in the Yappy API documenta-
tion.

2 How to use

To build a parser you must provide:

a tokenizer the rules for the lexical analyser

a grammar the grammar productions and the associated semantic actions

After a parser is generated it can be used for parsing strings of the language.
We assume familiarity with some basic notions of formal languages as regular expressions, context-
free grammars, LR grammars and LR parsing [ASU86, HMU00, GJ90]. Some knowledge of the
Python language [Lut96] is also required.

2.1 Lexer

The class Lexer implements a lexical analyser based on Python regular expressions. An instance
must be initialised with a tokenizer, which is, a list of tuples:
(re,funct,op?)

where:

re is an uncompiled Python regular expression

funct the name of a function that returns the pair (TOKEN, SPECIAL VALUE), where TOKEN is the
token to be used by the parser and SPECIAL VALUE an eventual associated semantic value.
If funct equals "" the token is ignored. This can be used for delimiters. The argument is
the string matched by re.

op if present, is a tuple with operator information: (TOKEN,PRECEDENCE,ASSOC)where PRECEDENCE
is an integer and ASSOC the string ’left’ or ’right’.

Restriction: if a keyword is substring of another its rule must appear after the
larger keyword for the obvious reasons...

1

The following list presents a tokenizer for regular expressions:

l = [("\s+",""),

("@epsilon",lambda x: (x,x)),

("@empty_set",lambda x: (x,x)),

("[A-Za-z0-9]",lambda x: ("id",x)),

("[+]",lambda x: ("+",x),("+",100,’left’)),

("[*]",lambda x: (x,x),("*",300,’left’)),

("\(|\)",lambda x: (x,x))]

A lexical analyser is created by instantiating a Lexer class:

>>> from yappy.parser import *

>>> a=Lexer(l)

Information about operators may be retrieved from

2.1.1 Scanning

Lexer has two methods for scanning:

scan(): from a string

readscan(): from stdin

>>> from yappy.parser import *

>>> a=Lexer(l)

>>> a.scan("(a + b)* a a b*")

[(’(’, ’(’), (’id’, ’a’), (’+’, ’+’), (’id’, ’b’), (’)’, ’)’),

(’*’, ’*’), (’id’, ’a’), (’id’, ’a’), (’id’, ’b’), (’*’, ’*’)]

>>>

See Yappy documentation for more details.

2.2 LRparser

The class LRParser implements a LR parser generator. An instance must be initialised with:

grammar

table shelve a file where the parser is saved

no table if 0, table shelve is created even if already exists; default is 1.

tabletype type of LR table: SLR, LR1, LALR; default is LALR

operators provided by Lexer

2.2.1 Grammars

A grammar is a list of tuples

(LeftHandSide,RightHandSide,SemFunc,Prec)

with

LeftHandSide nonterminal (currently a string)

RightHandSide a list of symbols (terminals and nonterminals)

2

SemFunc a semantic action

Prec if present, a pair (PRECEDENCE,ASSOC) for conflict disambiguation.

Restriction: The first production is for the start symbol.

Here is an unambiguous grammar for regular expressions:

grammar = [("r",["r","|","c"],self.OrSemRule),

("r",["c"],self.DefaultSemRule),

("c",["c","s"],self.ConcatSemRule),

("c",["s"],self.DefaultSemRule),

("s",["s","*"],self.StarSemRule),

("s",["f"],self.DefaultSemRule),

("f",["b"],self.DefaultSemRule),

("f",["(","r",")"],self.ParSemRule),

("b",["id"],self.BaseSemRule),

("b",["@empty_set"],self.BaseSemRule),

("b",["@epsilon’’],self.BaseSemRule)]

The previous description can be easily rephrased in a more user-friendly manner. We provide two
ways:

grules() function Allows the grammar productions being described as Word -> Word1 ... Word2

or Word -> [] (for empty rules), where the rule symbol and the separator of the RHS words
can be specified.

The previous grammar can be rewritten as:

grammar = grules([("r -> r | c",self.OrSemRule),

("r -> c",self.DefaultSemRule),

("c -> c s",self.ConcatSemRule),

("c -> s",self.DefaultSemRule),

("s -> s *",self.StarSemRule),

("s -> f",self.DefaultSemRule),

("f -> b",self.DefaultSemRule),

("f -> (r)",self.ParSemRule),

("b -> id",self.BaseSemRule),

("b -> @empty_set",self.BaseSemRule),

("b -> @epsilon",self.BaseSemRule)])

We can also write an ambiguous grammar if we provided precedence information, that allows
to solve conflicts (shift-reduce).

grammar = grules([("reg -> reg | reg",self.OrSemRule),

("reg -> reg reg",self.ConcatSemRule,(200,’left’)),

("reg -> reg *",self.StarSemRule),

("reg -> (reg)",self.ParSemRule),

("reg -> id",self.BaseSemRule),

("reg -> @empty_set",self.BaseSemRule),

("reg -> @epsilon",self.BaseSemRule)

])

As a string that allows multiple productions for a left hand side:

3

grammar =""" reg -> reg + reg {{ self.OrSemRule }} |

reg reg {{ self.ConcatSemRule // 200 left }} |

reg * {{ self.StarSemRule }} |

(reg) {{self.ParSemRule }} |

id {{ self.BaseSemRule }};

"""

where:

rulesym="->" production symbol

rhssep=’’ RHS symbols separator

opsym=’//’ operator definition separator

semsym=’{{’ semantic rule start marker

csemsym=’}}’ semantic rule end marker

rulesep=’|’ separator for multiple rules for a LHS

ruleend=’;’ end marker for one LHS rule

The separators can be redefined in the tokenizer of Yappy grammar class. An empty rule
can be reg ->; . If no semantic rule is given, DefaultSemRule is assumed.

See Yappy documentation for more details.

2.2.2 Semantic Actions

As usual the semantic value of an expression will be a function of the semantic values of its parts.
The semantics of a token is defined by the tokenizer 2.1. The semantic actions for grammar
rules are specified by Pythonfunctions that can be evaluated in a given context. Our approach is
essentially borrowed from the kjParsing package [rs00]: a semantic function takes as arguments
a list with the semantic values of the RightHandSide of a rule and a context and returns a value
that represents the meaning of the LeftHandSide and performs any side effects to the context.
For instance, by default the semantic value of a rule can be the semantic value of the first element
of the RightHandSide:

def DefaultSemRule(list,context=None):

"""Default semantic rule"""

return list[0]

Assuming the definition of some objects for regular expressions, t Trivial semantic rules for printing
regular expressions can be:

def OrSemRule(self,list,context):

return "%s+%s" %(list[0],list[2])

def ConcatSemRule(self,list,context):

return list[0]+list[2]

def ParSemRule(self,list,context):

return "(%s)" %list[1]

def BaseSemRule(self,list,context):

return list[0]

def StarSemRule(self,list,context):

return list[0]+’*’

4

2.2.3 Error handling

No error recovery is currently implemented. Errors are reported with rudimentary information,
see the exception error classes in Yappy documentation.

2.2.4 Parser generation

Given the above information, a parser is generated by instantiating a LRparser class:

>>>from yappy.parser import *

>>>parse = LRparser(grammar,table,no_table,tabletype,operators)

Some information about LR table generated can be retrieved, by printing some attributes:

• The grammar rules can listed by print parse.cfgr

• The LR table (ACTION and GOTO functions) can be listed by print parse

>>> print parse.cfgr

0 | (’reg’, [’reg’, ’+’, ’reg’], RegExp2.OrSemRule, (’200’, ’left’))

1 | (’reg’, [’reg’, ’reg’],RegExp2.ConcatSemRule, (’200’, ’left’))

2 | (’reg’, [’reg’, ’*’],RegExp2.StarSemRule)

3 | (’reg’, [’(’, ’reg’, ’)’], RegExp2.ParSemRule)

4 | (’reg’, [’id’], RegExp2.BaseSemRule)

5 | (’@S’, [’reg’], DefaultSemRule)

>>> print parse

Action table:

State

+ * () id $ #

0 s1 s2

1 s1 s2

2 r4 r4 r4 r4 r4 r4

3 s5 s6 s1 s2 r[]

4 s5 s6 s1 s8 s2

5 s1 s2

6 r2 r2 r2 r2 r2 r2

7 r1 s6 r1 r1 s2 r1

8 r3 r3 r3 r3 r3 r3

9 r0 s6 r0 r0 s2 r0

Goto table:

State

reg @S

0 3

1 4

3 7

4 7

5 9

7 7

9 7

If DEBUG is set, several comments are printed during the table construction, in particular the
collection of LR items.

5

Conflict resolution If the grammar is ambiguous, parsing action conflicts will be generated.
If the noconflicts attribute is 0, only the precedence and associativity information will be used
for shift/reduce conflict resolution. But if noconflicts is 1, conflicts will be resolved in the
standard manner (for yacc like-parsers):

shit/reduce if precedence/associativity information is available try to use it; otherwise conflict
is resolved in favor of shift. No messages will be given if the number of this type of conflicts
is exactly the value of the expect attribute. The expect attribute can be set when some
conflicts is legitimate.

reduce/reduce the rule listed first will be choosed

If any of these conflicts occurs, a list of the resolved conflicts are listed and more information can
be found in the Log attribute. The Log has the following attributes:

items the set of LR items (self.Log.items) (not current available)

conflicts the shit/reduce (sr) and the reduce/reduce (rr) conflicts(self.Log.conflicts)

Currently no prettyprinting is available for these values.

2.2.5 Parsing

The method parsing accepts a list of tokens and a context and returns a parsed result:

>>>parse.parsing(a.scan("(a+b)*aab*"))

The attribute output records the grammar rules that were applied for parsing the string:

>>>parse.output

[4, 4, 0, 3, 2, 4, 1, 4, 1, 4, 1, 2]

If DEBUG is set, it is possible to see each application of a table action and the values in the stack.

2.3 Yappy

The Yappy class is a wrapper for defining a parser and for parsing. Basically it creates the lexical
analyser and the parser. This class is a subclass of LRparser.
It defines the following I/O functions:

input for inputing a string to be parsed: or as argument, or if not given, from stdin.

inputfile accepts input from a file

Here is a complete parser for regular expressions:

from yappy.parser import *

class ParseReg(Yappy):

def __init__(self,no_table=0, table=’tablereg’):

grammar ="""

reg -> reg + reg {{ self.OrSemRule }} |

reg reg {{ self.ConcatSemRule // (200,’left’) }} |

reg * {{ self.StarSemRule }} |

(reg) {{self.ParSemRule}} |

id {{ self.BaseSemRule}} |

@empty_set {{ self.BaseSemRule}} |

@epsilon {{ self.BaseSemRule}} | ;

"""

6

tokenize = [

("\s+",""),

("@epsilon",lambda x: ("id’’,x),("id",400,’left’)),

("@empty_set",lambda x: ("id",x),("id",400,’left’)),

("[A-Za-z0-9]",lambda x: ("id",x),("id",400,’left’)),

("[+]",lambda x: ("+",x),("+",100,’left’)),

("[*]",lambda x: (x,x),("*",300,’left’)),

("\(|\)",lambda x: (x,x))]

Yappy.__init__(self,grammar,tokenize,table,no_table)

##Semantic rules build a parse tree...

def OrSemRule(self,list,context):

return "(%s+%s)" %(list[0],list[2])

def ConcatSemRule(self,list,context):

return "(%s%s)" %(list[0],list[2])

def ParSemRule(self,list,context):

return "(%s)" %list[1]

def BaseSemRule(self,list,context):

return list[0]

def StarSemRule(self,list,context):

return "(%s*)" %list[0]

An instance is used as:

>>> d = ParseReg()

>>> d = input("(a+b)*aab*")

>>> (a+b)*aab*

See Yappy documentation for more details.

3 Download

Yappy system requires Python (≥ 2.2). It was only tested in GNU Linux Systems.
It is available for download at http://www.ncc.up.pt/fado/Yappy.

4 History, current and future work

This project began in early 2000 as part of the FAdo project. Although several parser generator
systems are now available for Python it seems that the ones implementing LR parsers are not very
dynamic...
Some current/future work includes:

• extensions for GLR parsers

• semantic actions in the middle of rules

• EBNF grammar rules

• error recovery

And anyone who would like to collaborate/give suggestions is obviously welcome...

7

5 What’s new

2004-03-25

• Corrected bug in Yappy grammar semantic rules, concerning precedence values.

• If DEBUG is set, the collection of items used in the generation of a LR table is printed.

6 Documentation

The Yappy api documentation can be found at http://www.ncc.up.pt/fado/Yappy/api/index.html
Some simple demo parsers can be found in the file demo.py in the examples directory (for instance
/usr/share/doc/python2.2/examples):

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques

and Tools. Addison Wesley, 1986.

[GJ90] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques - A Practical Guide. Prentice
Hall, 1990. Available for downloading in PostScript format.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages and Computation. Addison Wesley, 2nd edition, 2000.

[Lut96] M. Lutz. Programming Python. O’Reilly & Associates, 1996.

[rs00] Aaron Watte rs. Parse Generation in Python. New Jersey Institute of Technology, 2000.

8

