
A Static Type Inference for Python

Eva Maia
Faculdade de Ciências da

Universidade do Porto
Portugal

emaia@dcc.fc.up.pt

Nelma Moreira
CMUP, Faculdade de Ciências

da Universidade do Porto
Portugal

nam@dcc.fc.up.pt

Rogério Reis
CMUP, Faculdade de Ciências

da Universidade do Porto
Portugal

rvr@dcc.fc.up.pt

ABSTRACT
Dynamic languages, like Python, are attractive because they
guarantee that no correct program is rejected prematurely.
However, this comes at a price of losing early error detection,
and making both code optimization and certification harder
tasks when compared with static typed languages. Having
the static certification of Python programs as a goal, we de-
veloped a static type inference system for a subset of Python,
known as RPython. Some dynamic features are absent from
RPython, nevertheless it is powerful enough as a Python di-
alect and exhibits most of its main features. Our type infer-
ence system tackles with almost all language constructions,
such as object inheritance and subtyping, polymorphic and
recursive functions, exceptions, generators, modules, etc.,
and is itself written in Python.

Categories and Subject Descriptors
F.3.2 [Logics and Meaning of Programs]: Semantic of
Programming Languages—Program Analysis; F.3.3 [Logics
and Meaning of Programs]: Studies of Program Con-
structors—Type structure

General Terms
Languages, Theory, Verification

Keywords
Dynamic Languages, Python, Static Type Systems, Type
Inference

1. INTRODUCTION
Formal software verification is becoming very important

due to the increased need to certify software as reliable. Spe-
cial attention is devoted to critical and embedded systems
in order to ensure its integrity, safety, and correction. Due
to performance constraints, these systems are usually imple-
mented in C or Java. However, when time performance is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DYLA 2011
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

not absolutely critical, the speed and simplicity of the devel-
opment cycle and the safety and clarity of the code justify
the use of high-level languages, such as Python [15].

Python is a very high-level, object-oriented programming
language with a clear syntax which facilitates the readability
of the code and program development. Python is dynami-
cally typed and allows variables to take values of different
types in different program places. When an assignment is
evaluated the type of the assignment right side is given to
the variable on left side. This variable could already have a
type, but at the moment of the assignment it acquires the
new type. Python supports inheritance, in other words, it
allows to derive new classes from existing classes. A derived
class has access to the attributes and methods of the base
classes, and it can redefine them. Inheritance can be sin-
gle or multiple depending on whether the class inherits from
one or more existing classes. Python has also introspective
and reflective features which allow to obtain, at runtime,
information about the object types.

The enforcement of static type systems for several dy-
namic languages have been studied in the literature (see [7]
and references therein). However, for Python only some par-
tial or non formal approaches have been attempted [2, 3].

Our goal is to add a type discipline that ensures static type
safety for Python programs. We begin by choosing a Python
subset, called RPython, and that was introduced within the
PyPy project [12]. The PyPy project aims to produce a
flexible and fast Python implementation. The main idea
is to write a high-level specification of the interpreter to
be translated into lower-level efficient executables such as
C/POSIX environment, JVM, and CLI [14]. Other goal
of PyPy is to develop a Just-In-Time compiler for Python
in order to improve the performance of the language. The
PyPy interpreter is written in RPython [1], which is a subset
of Python where some dynamic features have been removed.
The main features of this language are:

a) the variables can not change type;

b) complex types have to be homogeneous, i.e. all elements
of a list must have the same type; the dictionary keys
must have all the same type, as well as the values, but
the keys do not have to be of the same type of the values;

c) not having some introspective or reflective characteris-
tics;

d) not allowing the use of special methods (*);

e) not allowing the definition of functions inside functions;

f) not allowing the definition and the use of global variables;

g) not allowing the use of multiple inheritance.

The first three features are the most relevant, as they are
the ones that make possible the static type inference.

In the next sections we describe the development of a
static type inference system for a superset of RPython, cor-
responding to features a) - c). We begin by describing for-
mally the (abstract) syntax of the language and the type
system. Then we present some type inference rules, and an
illustrative example. Finally we comment on some experi-
mental tests and address future work.

2. TYPE SYSTEM
A type system [10, 4] is composed by a set of types and

a set of rules that define the assignment of these types to
program constructors, in a given context. The association
of a type τ to a constructor e is called a type assignment,
and it is denoted by e :: τ . A context Γ is a set of type
assignments to variables. Given a context Γ, a constructor e
and a type τ , Γ ` e :: τ means that considering the context
Γ it is possible to infer that the constructor e has type τ .

The following grammar describes the abstract syntax of
an extended version of RPython.

p ::= [s1, . . . , sn]

s ::= | x = e | x op = e | del e | print e | pass
| assert e | break | continue
| return [e]? | raise [e]?

| if e : p [else p]? | while e : p [else p]?

| def f (x1, . . . , xn) : p | for x in e : p [else p]?

| class c() : p | class c(l) : p

| with e [as x]? : p | try : p1 finally : p2

| try : p1 [except ē as x : p2]? [else : p3]?

| try : p1 [except (ē1, . . . , ēn) : p2]? [else : p3]?

| exec e1 in e2

| exec e | exec e1 in e2, e3 | import l [as l1]?

| from l import ∗ | from l import l1, . . . , lm
e, ē ::= n | l | x | (e1, . . . , en) | [e1, . . . , en] | e op e | e opc e

| e opb e | opu e | {ē1 : e1, . . . , ēn : en}
| e[ē] | e[ē1 : ē2] | e[ē1 :] | e[: ē2]

| e if e else e | [e1 for x in e2 (if e3)∗]

| f (e1, . . . , en) | c (e1, . . . , en)

| e.m(e1, . . . , en) | e(ē1, . . . , ēn).m (e1, . . . , en)

| lambda e1, . . . , en : ē | yield [e]?

The optional elements are enclosed in []?. A program p
is a statement list. A statement can be an assignment in
which the right side must be an expression, a conditional,
a function definition, a class definition, etc. An expression
e is, for example, a number n, a constant l, a variable x, a
tuple, a list, an operation, or a dictionary. In operations, we
can use binary operators (op), comparison operators (opc),
boolean operators (opb), and unary operators (opu).

2.1 Types
In Python, everything is an object, and every object is

a class instance. However, we can assign types to them,

according to the context in which they are used. Figure 1
presents a grammar for the set of types τ and type schemes
η of our system.

τ, α ::= σ ∈ TV ar | eInt | eF loat | eLong | eString
| eBool | eNone | eList(τ) | eTuple(τ1, . . . , τn)

| eAcc({i1 : τi1 , . . . , in : τin}) | eDict(α, τ)

| eIter(τ) | eArrow([τ1, . . . , τn], α)

| eGen(τ) | eGer(f,Ω) | eClass(c,Ω)

| eAbs([(x1, η1), . . . , (xn, ηn)], η)

| eCt(x, [τ1, . . . , τn]) | eMod(x,Ω)

η ::= τ

| eAll([σ1, . . . , σn], τ))

Figure 1: Types

TV ar is the set of the type variables σ. Numeric val-
ues have type eInt, eF loat or eLong. Constants have type
eString. True and False are special constants which have
type eBool, as well as the comparison operations. The state-
ments which do not return a value have type eNone. Lists
are homogeneous objects, i.e., all their elements have the
same type. A list has type eList(τ), where τ is the common
type of all its elements. On the other hand, tuple elements
do not need to be of the same type. Because of this, a tu-
ple has type eTuple([τ1, . . . , τn]), where τi is the type of the
element in the ith position.

If it is possible to infer a type only for some tuple po-
sitions and we don’t know the tuple arity, type eAcc({i1 :
τi1 , . . . , in : τin}) is used to indicate that the ijth tuple po-
sition has an object of type τij , for 1 ≤ j ≤ n.

In a dictionary, all keys must have the same type α and
all values must have the same type τ . Thus, eDict(α, τ) is
the dictionaries’ type.

Python supports the concept of an iteration over a con-
tainer. All the elements of a given container have the same
type τ . So, eIter(τ) is the iterator type.

A non polymorphic function has type eArrow([τ1, . . . , τn],
α), where τi is its ith argument type and α is the return
type. The type of a polymorphic function is eAll([σ1, . . . σn],
eArrow([τ1, . . . τn], α)), where σi are type variables, τi is the
ith argument type, and α is the return type.

The use a yield statement in a function definition is suffi-
cient to turn that definition into a generator function instead
of a normal one. The type of an yield statement is eGen(τ),
where τ is the type of the associated expression. When a
generator function is called it returns an iterator, known as
generator. So, eGer(f,Ω) is the type of this kind of call,
where f is the function name, and Ω is a local environ-
ment with the two methods that characterize the generator :
iter and next . These generators are a simple tool for

creating iterators, which permit the access to elements in a
container, one at a time. The iterators type is eIter(τ).

The local context Ω of a class c assigns types to its meth-
ods, i.e. Ω ::= {m0 :: η0, . . . ,mn :: ηn}, where mi are
method names. A class has type eClass(c,Ω), where c is its
name.

To deal with inheritance, we must consider the potential
existence of the abstract methods. Often it is useful to define
a class that serves as a model for a particular purpose, and
the classes that inherit from it can complete that model

with a more specific behaviour. In this case, methods of the
model classes can use methods that do not belong to the
current class but to a more specific one. This methods are
called abstract methods. The type of an abstract method is
eAbs([(m1, η1), . . . , (mn, ηn)], η), where mi is the name of a
method that do not belong to the current class and ηi is
its type, and η is the type of the abstract method if those
methods exist in the class.

Union types are types describing values which type can be
one of a set of types. The type eCt(x, [τ1, . . . , τn]) describes
a collection of types.

A module is a file containing Python definitions and state-
ments. Code reuse is one of the primary reasons for having
modules. The eMod(x,Ω) is the type of a module which
name is x and Ω is its local context.

2.2 Subtypes
The notion of subtype expresses the intuitive concept of

inclusion between types, where types are treated as collec-
tions of values [10, 9]. Given a subtyping relation <:, τ is a
subtype of α (τ <: α) if any term of type τ can be used in
the context where a term of type α is expected.

The subtyping relation must be reflexive and transitive.
Some of the subtyping rules are presented in the Figure 2.
Notice that if a type is a type variable, unification must be
used. As usual, the function rule Sf is contravariant.

τ <: τ (Ref)
τ <: eNone (Sen)
eInt <: eLong (Sil)
eInt <: eF loat (Sif)
eLong <: eF loat (Slf)

τ <: α

eList(τ) <: eList(α)
(Sl)

α2 <: α1 τ1 <: τ2

eDict(α1, τ1) <: eDict(α2, τ2)
(Sd)

τi <: αi 1 ≤ i ≤ n
eTuple(τ1, . . . , τn) <: eTuple(α1, . . . , αn)

(St)

αi <: τi 1 ≤ i ≤ n τ <: α

eArrow([τ0, . . . , τi], τ) <: eArrow([α1, . . . , αi], α)
(Sf)

l1 ⊆ l2
eCt(id1, l1) <: eCt(id2, l2)

(SCt)

Figure 2: Subtyping Rules

The transitivity and the termination of the subtyping al-
gorithm was proved.

3. TYPE INFERENCE RULES
Let Γ ::= {t0 :: τ0, . . . , tn :: τn} be a context where ti ∈
{x, f, c}. We denote by Γf the restriction of Γ to function
and class names:

Γf ::= {ti :: ηi | ηi is eArrow([τ], α) or ηi is eAll([σ], α)
or ηi is eClass(c,Ω)}

Figure 3 shows some of the our type inference rules. In
the following paragraphs we describe briefly these rules.

(Var) A variable x has type τ , if the assignment of type
τ to the variable x exists in Γ.

(Atr) An assignment of an expression e to a variable x
has type eNone, if it is possible to infer e :: τ1 and x :: τ2,
and τ1 <: τ2 or τ2 <: τ1.

Γ ` n :: τ (Num)
where τ ∈ {eInt, eF loat, eLong}

Γ ` x :: τ, if (x :: τ) ∈ Γ (Var)

Γ ` e :: τ1 Γ ` x :: τ2 τ1 <: τ2 or τ2 <: τ1

Γ ` x = e :: eNone
(Atr)

Γ ` e1 :: τ1 Γ ` e2 :: τ2 τ1 <: τ2 or τ2 <: τ1

Γ ` e1 opc e2 :: eBool
(Opc)

Γ ` return :: eNone (Return1)

Γ ` e :: τ

Γ ` return e :: τ
(Return2)

Γ ` e0 :: eBool Γ ` e1 :: τ
Γ ` e2 :: α τ <: α

Γ ` if e0 : e1 else e2 :: α
(Cond1)

Γ ` e0 :: eBool Γ ` e1 :: τ
Γ ` e2 :: α α <: τ

Γ ` if e0 : e1 else e2 :: τ
(Cond2)

Γ̄ = {xi :: τi} 1 ≤ i ≤ n
Γ̄ ∪ Γf ∪ {e :: τ} ` e :: α τ <: α

Γ′′ ` def f (x1, . . . , xn) : e :: eNone
(DefFunc)

where Γ′′ = Γ ∪ f :: eArrow([τ1, . . . , τn], α)

Γ ` f :: eArrow([τ1, . . . , τn], α)
Γ ` ēi :: αi αi <: τi 1 ≤ i ≤ n

Γ ` f(ē1, . . . , ēn) :: α
(Application1)

Γ ` f :: eAll([σ1, . . . , σn], eArrow([τ1, . . . , τn], α))
Γ ` ēi :: αi αi <: τi 1 ≤ i ≤ n

Γ ` f(ē1, . . . , ēn) :: α
(Application2)

Γf ⊆ Γ Γf ` e1 :: η1, . . . , Γf ` en :: ηn

Γ′′ ` class c() : [e1, . . . , en] :: eNone
(DefCla1)

where Γ′′ = Γ ∪ eClass(c, {m1 :: η1, . . . ,mn :: ηn})

Γf ⊆ Γ Γ ` l :: eClass(id,Ω)
Γ′ = Γf ∪ Ω Γ′ ` e1 :: η1, . . . , Γ′ ` en :: ηn

Γ′′ ` class c(l) : [e1, . . . , en] :: eNone
(DefCla2)

where Γ′′ = Γ ∪ eClass(c,Ω ∪ {m1 :: η1, . . . ,mn :: ηn})

Γ ` c :: eClass(c,Ω)
Γ, Ω ` init (e1, . . . , en) :: eNone

Γ ` c(e1, . . . , en) :: eClass(c,Ω)
(Inst1)

Γ ` c :: eClass(c,Ω)
Γ, Ω ` init (e1, . . . , en) :: eClass(c,Ω)

Γ ` c(e1, . . . , en) :: eClass(c,Ω)
(Inst2)

Γ ` c(e1, . . . , en) :: eClass(c,Ω)
Ω ` m(τ1, . . . , τn) :: η Γ ` ēi :: αi

αi <: τi 2 ≤ i ≤ n
Γ ` c(e1, . . . , en).m(ē1, . . . , ēn) :: η

(Acm1)

Figure 3: Type Inference Rules

(Opc) One operand type must be a subtype of the other.
The comparison operation opc has always type eBool. For
example, 1 < 2 :: eBool.

(Return[1,2]) When no value is returned, the type of the
statement is eNone. Otherwise, the statement has the type
of object that is returned. For example, return 1 :: eInt.

(Cond[1,2]) Conditional tests have type eBool. The type
of one branch must be a subtype of the type of the other
branch. For example, if 2 < 3 : return 1.0 else :
return 2 :: eF loat, because 2 < 3 :: eBool, return 1.0 ::
eF loat, return 2 :: eInt, and eInt <: eF loat.

(DefFunc) A function has type eArrow([τ1, . . . , τ2], α).
The argument types are inferred in a new context Γ̄. Initially
we assign to the body of the function, a type variable σ
which later is unified with α. This type assignment is added
to context Γ̄. The type of the function body is inferred in
the context Γ̄ ∪ Γf .

(Application[1,2]) The types of the function call argu-
ments must agree with the correspondent parameter types
of its definition. In that case, the type of the call is the
return type of the function.

(DefCla[1,2]) In a class definition, we infer the type (ηi)
of each of its methods (mi). These types are stored in the
class local context which is part of the class type. When
a class B inherits from another class A, the context of the
class A, removing all type assignments that occur in B, is
added to the context of the class B.

(Inst[1,2]) When an instance of a class A is created, the
function init is invoked in the class local context. Even
if the init function would have eNone as return type,
the instance type is always the class type.

(Acm1) Class methods may or may not have formal argu-
ments. Either way a first argument, the context, is always
present.

Besides the rules here presented our system has type in-
ference rules for all constructors presented in the abstract
syntax [8].

3.1 Example
Consider the following Python code:� �

1c l a s s Num() :
2def i n i t (s e l f) :
3re tu rn s e l f
4

5def f a c (s e l f , num) :
6i f num <= 1 :
7re tu rn 1
8e l s e :
9re tu rn num∗ s e l f . f a c (num−1)
10

11f = Num() . f a c (3)� �
The first statement is a class definition. According to

the DefCla1 rule, we need to infer the type of the meth-
ods, using the DefFunc rule. In method fac, we infer the
type of the body which is a conditional statement. For that
the Cond1 rule is used: the type of num ≤ 1 has to be
eBool. In the comparison, one argument must be subtype
of the other, so num :: τ and τ <: eInt. The type of the
statement in line 7 must be a subtype of the statement in
line 9. The type of the statement return 1 is eInt.To in-
fer the type of the statement return num∗self. fac(num−1),

the type of the expression is inferred. As we already know
that num type is a subtype of eInt, the return type of func-
tion (self . fac(num−1)) is also a subtype of eInt, because
they are the operands of a multiplication operation. The
argument self is an special argument, which refers the class
itself. In the following, when representing the class itself,
we omit its local context. Recall that instead of eInt any
supertype can be used, so the fac method has type

eArrow([eClass(Num), eCt(eInt, eF loat, eLong)],

eCt(eInt, eF loat, eLong)),

where Int, Float, and Long are the class names of the cor-
responding type. After inferring the type of init and fac
methods, we conclude that the type of the class Num is

eClass(Num,
{fac :: eArrow([eClass(Num), eCt(eInt, eF loat, eLong)],

eCt(eInt, eF loat, eLong),
init :: eArrow([eClass(Num)], eClass(Num)}).

To infer the type of the assignment in line 11 we use the
Atr* rule. The type of the assignment right side is eInt. As
f does not have any type assigned, we conclude that f:: eInt.

4. CONCLUSIONS
Our type inference system is written in Python, using as

input the program syntactic trees produced by the Python
AST module, which defines the Python abstract syntax [13].
Built-in functions and some Python modules must be pro-
totyped by hand, as they are not written in Python. We
are currently testing the system with different applications,
like FAdo [5] and Yappy [16]. We are also using some of the
PyPy benchmarks [11] in the tests.

As future work, we aim to use this type inference system
within a certification system based in Hoare logics, like the
Why tool [6]. Why is multi-language and multi-prover in the
sense that it can be used for annotated programs in various
programming languages and the generated proof obligations
verified by several automatic or interactive-assistant provers.
The proof obligations, when checked, enforce the correctness
and security of the program towards the annotated proper-
ties.

5. REFERENCES
[1] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis.

RPython: a step towards reconciling dynamically and
statically typed oo languages. In Proc. of DLS ’07,
pages 53–64, New York, NY, USA, 2007. ACM.

[2] J. Aycock. Aggressive type inference, 2004.

[3] B. Cannon. Localized type inference of atomic types
in Python. Master’s thesis, California Polytechnic
State University, 2005.

[4] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. ACM Computing
Surveys, 17:471–522, 1985.

[5] FAdo Project Team. Fado: Tools for formal languages
manipulation. http://fado.dcc.fc.up.pt/. Access date:
1.04.2011.

[6] J.-C. Filliâtre. Why: a multi-language multi-prover
verification tool. Technical Report 1366, LRI,
Université Paris Sud, March 2003.

[7] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static
type inference for Ruby. In Proceedings of the 2009
ACM symposium on Applied Computing, SAC ’09,
pages 1859–1866, New York, NY, USA, 2009. ACM.

[8] E. Maia, N. Moreira, and R. Reis. A static type
inference system for rpython (with extensions).
Technical Report DCC-2011-04, FCUP (Faculdade de
Ciências da Universidade do Porto), Porto, Portugal,
2011.

[9] J. C. Mitchell. Type inference with simple subtypes. J.
Funct. Program., 1(3):245–285, 1991.

[10] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[11] PyPy Project Team. Pypy benchmarks.
http://codespeak.net/svn/pypy/benchmarks/. Access
date: 1.04.2011.

[12] PyPy Project Team. PyPy: flexible and fast Python
implementation. http://codespeak.net/pypy. Access
date: 1.04.2011.

[13] Python Software Foundation. Abstract syntax trees.
http://docs.python.org/library/ast.html. Access date:
1.04.2011.

[14] A. Rigo and S. Pedroni. Pypy’s approach to virtual
machine construction. In OOPSLA ’06, pages
944–953, New York, NY, USA, 2006. ACM.

[15] G. Rossum. Python reference manual. Technical
report, CWI (Centre for Mathematics and Computer
Science), Amsterdam, The Netherlands, 1995.

[16] Yappy Project Team. Yappy: Lr parser generator for
Python. http://www.dcc.fc.up.pt/ rvr/naulas/Yappy/.
Access date:1.04.2011.

