
On the Equivalence of Automata for
KAT-expressions?

Sabine Broda, António Machiavelo, Nelma Moreira, Rogério Reis
sbb@dcc.fc.up.pt,ajmachia@fc.up.pt,{nam,rvr}@dcc.fc.up.pt

CMUP & DM-DCC, Faculdade de Ciências da Universidade do Porto

Abstract. Kleene algebra with tests (KAT) is a decidable equational
system for program verification that uses both Kleene and Boolean al-
gebras. In spite of KAT ’s elegance and success in providing theoretical
solutions for several problems, not many efforts have been made towards
obtaining tractable decision procedures that could be used in practical
software verification tools. The main drawback of the existing methods
relies on the explicit use of all possible assignments to boolean variables.
Recently, Silva introduced an automata model that extends Glushkov’s
construction for regular expressions. Broda et al. extended also Mirkin’s
equation automata to KAT expressions and studied the state complex-
ity of both algorithms. Contrary to other automata constructions from
KAT expressions, these two constructions enjoy the same descriptional
complexity behaviour as their counterparts for regular expressions, both
in the worst case as well as in the average case. In this paper, we general-
ize, for these automata, the classical methods of subset construction for
nondeterministic finite automata, and the Hopcroft and Karp algorithm
for testing deterministic finite automata equivalence. As a result, we ob-
tain a decision procedure for KAT equivalence where the extra burden
of dealing with boolean expressions avoids the explicit use of all possible
assignments to the boolean variables. Finally, we specialize the decision
procedure for testing KAT expressions equivalence without explicitly con-
structing the automata, by introducing a new notion of derivative and a
new method of constructing the equation automaton.

Keywords: Kleene algebra with tests, automata, equivalence, derivative.

1 Introduction

Kleene algebra with tests (KAT) [12] is an equational system that extends Kleene
algebra (KA), the algebra of regular expressions, and that is specially suited to
capture and verify properties of simple imperative programs. In particular, it
subsumes the propositional Hoare logic which is a formal system for the spec-
ification and verification of programs, and that is, currently, the base of most
of the tools for checking program correctness. The equational theory of KAT is

? This work was funded by the European Regional Development Fund through the
programme COMPETE and by the FCT under projects PEst-C/MAT/UI0144/2013
and FCOMP-01-0124-FEDER-020486.

PSPACE-complete and can be reduced to the equational theory of KA, with an
exponential cost [9, 15]. Regular sets of guarded strings are standard models for
KAT (as regular languages are for KA). The decidability, conciseness and ex-
pressiveness of KAT motivated its recent automatization within several theorem
provers [17, 18, 4] and functional languages [3]. Those implementations use (vari-
ants of) the coalgebraic automaton on guarded strings developed by Kozen [14].
In this approach, derivatives are considered over symbols of the from αp, where
p is an alphabetic symbol (program) and α a valuation of boolean variables (the
guard, normally called atom). This induces an exponential blow-up on the num-
ber of states or transitions of the automata and an accentuated exponential com-
plexity when testing the equivalence of two KAT expressions. Recently, Silva [19]
introduced an automata model for KAT expressions that extends Glushkov’s
construction for regular expressions. In this automaton, transitions are labeled
with KAT expressions of the form bp, where b is a boolean expression (and not an
atom) and p an alphabetic symbol. Using similar ideas, Broda et al. [6] extended
the Mirkin’s equation automata to KAT expressions and studied the state com-
plexity of both algorithms. Contrary to other automata constructions for KAT
expressions, these two constructions enjoy the same descriptional complexity be-
haviour as their counterparts for regular expressions, both in the worst-case as
well as in the average-case. In this paper, we generalize, for these automata, the
classical methods of subset construction for nondeterministic finite automata,
and the Hopcroft and Karp algorithm for testing deterministic finite automata
equivalence. As a result, we obtain a decision procedure for KAT equivalence
where the extra burden of dealing with boolean expressions avoids the explicit
use of all possible assignments to the boolean variables. Finally, we specialize
the decision procedure for testing KAT expressions equivalence without explic-
itly constructing the automata, by introducing a new notion of derivative and a
new method of constructing the equation automaton.

Due to limited number of pages, proofs of lemmas and propositions can be
found in the extended version of this paper [7], which is available online.

2 KAT Expressions, Automata, and Guarded Strings

Let P = {p1, . . . , pk} be a non-empty set, usually referred to as the set of program
symbols, and T = {t0, . . . , tl−1} be a non-empty set of test symbols. The set of
boolean expressions over T together with negation, disjunction and conjunction,
is denoted by BExp, and the set of KAT expressions with disjunction, concate-
nation, and Kleene star, by Exp. The abstract syntax of KAT expressions, over
an alphabet P ∪ T, is given by the following grammar, where p ∈ P and t ∈ T,

BExp : b→ 0 | 1 | t | ¬b | b+ b | b · b
Exp : e→ p | b | e+ e | e · e | e?.

As usual, we will omit the operator · whenever it does not give rise to any
ambiguity. For the negation of test symbols we frequently use t instead of ¬t.

The set At, of atoms over T, is the set of all boolean assignments to all elements
of T, At = {x0 · · ·xl−1 | xi ∈ {ti, ti}, ti ∈ T}. Each atom α ∈ At has associated
a binary word of l bits (w0 · · ·wl−1) where wi = 0 if ti ∈ α, and wi = 1 if ti ∈ α.

Now, the set of guarded strings over P and T is GS = (At·P)? ·At. Regular sets
of guarded strings form the standard language-theoretic model for KAT [13]. For
x = α1p1 · · · pm−1αm, y = β1q1 · · · qn−1βn ∈ GS, where m,n ≥ 1, αi, βj ∈ At and
pi, qj ∈ P, we define the fusion product x � y = α1p1 · · · pm−1αmq1 · · · qn−1βn, if
αm = β1, leaving it undefined, otherwise. For sets X,Y ⊆ GS, X � Y is the set
of all x � y such that x ∈ X and y ∈ Y . Let X0 = At and Xn+1 = X �Xn, for
n ≥ 0. Given a KAT expression e, we define GS(e) ⊆ GS inductively as follows:

GS(p) = {αpβ | α, β ∈ At }
GS(b) = {α | α ∈ At ∧ α ≤ b }

GS(e1 + e2) = GS(e1) ∪ GS(e2)
GS(e1 · e2) = GS(e1) � GS(e2)
GS(e?1) = ∪n≥0GS(e1)n,

where α ≤ b if α → b is a propositional tautology. For E ⊆ Exp, let GS(E) =⋃
e∈E

GS(e). Given two KAT expressions e1 and e2, we say that they are equivalent,

and write e1 = e2, if GS(e1) = GS(e2).

A (nondeterministic) automaton with tests (NTA) over the alphabets P and
T is a tuple A = 〈S, s0, o, δ〉, where S is a finite set of states, s0 ∈ S is the
initial state, o : S → BExp is the output function, and δ ⊆ 2S×(BExp×P)×S is
the transition relation. We denote by BExpA the set of boolean expressions that
occur in δ. In general, we assume that there are no transitions (s, (b, p), s′) ∈ δ
such that b is not satisfiable.

A guarded string α1p1 . . . pn−1αn, with n ≥ 1, is accepted by the automaton
A if and only if there is a sequence of states s0, s1, . . . , sn−1 ∈ S, where s0 is the
initial state, and, for i = 1, . . . , n−1, one has αi ≤ bi for some (si−1, (bi, pi), si) ∈
δ, and αn ≤ o(sn−1). The set of all guarded strings accepted by A is denoted
by GS(A). Formally, given an NTA A = 〈S, s0, o, δ〉, one can naturally associate
to the transition relation δ ⊆ 2S×(BExp×P)×S a function δ′ : S × (At · P) −→ 2S ,
defined by δ′(s, αp) = { s′ | (s, (b, p), s′) ∈ δ, α ≤ b }. Moreover, one can define a

function δ̂ : S×GS −→ {0, 1} over pairs of states and guarded strings as follows

δ̂(s, α) =

{
1 if α ≤ o(s),
0 otherwise,

δ̂(s, αpx) =
∑

s′∈δ′(s,αp)

δ̂(s′, x) .

Given a state s, GS(s) = { x ∈ GS | δ̂(s, x) = 1 } is the set of guarded strings
accepted by s, and GS(A) = GS(s0). We say that a KAT expression e ∈ Exp is
equivalent to an automaton A, and write e = A, if GS(A) = GS(e).

Example 1. Given the KAT expression e = t1p(pq
?t2 + t3q)

?, an equivalent NTA
A, obtained by the equation algorithm (see [6]), is the following, where e0 = e,
e1 = (pq?t2+t3q)

? and e2 = q?t2(pq?t2+t3q)
?. Both objects accept, for instance,

the guarded string t1t2t3pt1t2t3pt1t2t3qt1t2t3.

e0 e1 e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (1, q)

(t2t3, q) t2

An NTA is called deterministic (DTA) if and only if for every pair (α, p) ∈
At × P and every state s ∈ S, there is at most one transition (s, (b, p), s′) ∈ δ
such that α ≤ b, i.e. δ′(s, αp) is either empty or a singleton.

3 Determinization

The standard subset construction for converting a nondeterministic finite au-
tomaton (NFA) into an equivalent deterministic finite automaton (DFA) may be
adapted as follows. Given a set of states X ⊆ S, whenever there are transitions
(s1, (b1, p), s

′
1), . . . , (sm, (bm, p), s

′
m), with s1, . . . , sm ∈ X, in the NTA, in the

equivalent DTA we consider “disjoint” transitions to subsets {s′i1 , . . . , s
′
ik
} ⊆

{s′1, . . . , s′m}, labeled by (bi1 · · · bik¬bik+1
· · · ¬bim)p, where {s′ik+1

, . . . , s′im} =

{s′1, . . . , s′m} \ {s′i1 , . . . , s
′
ik
}.

Consider the set of atoms At = {α0, . . . , α2l−1}, with the natural order in-
duced by their binary representation. We define the function

V : BExp −→ 2{0,...,2
l−1}

b 7−→ Vb = { i | αi ≤ b, 0 ≤ i ≤ 2l − 1 }.

This representation of boolean expressions is such that Vb = Vb′ if and only
if b and b′ are logically equivalent expressions. We consider Vb as a canonical
representation of b and write αi ≤ Vb if and only if i ∈ Vb. Conversely, to each
U ⊆ {0, . . . , 2l − 1} we associate a unique boolean expression B(U), where

B : 2{0,...,2
l−1} −→ BExp

U 7−→
∑
i∈U

αi.

For b, b′ ∈ BExp we have V¬b = Vb, Vb+b′ = Vb ∪Vb′ and Vb·b′ = Vb ∩Vb′ , where
U = {0, . . . , 2l − 1} \ U for any U ⊆ {0, . . . , 2l − 1}.

Example 2. For T = {t1, t2} and At = {t1t2, t1t2, t1t2, t1t2}, we have Vt2 = {1, 3}
and Vt1+¬t2 = {0, 1, 3}. Also, B({1, 3}) = t1t2 + t1t2.

We now describe the subset construction that, given an NTA, A = 〈S, s0, o, δ〉
over the alphabets P and T, produces an DTA, Adet = 〈2S , {s0}, odet, δdet〉 over
P and T, such that GS(A) = GS(Adet). First, we define two functions

δ̃det : 2S × (2{0,...,2
l−1} × P) −→ 2S and õdet : 2S −→ 2{0,...,2

l−1}.

Then, we take δdet = { (X, (B(V), p), Y) | (X, (V, p), Y) ∈ δ̃det } as well as

odet = B ◦ õdet. For X ⊆ S, we define õdet(X) =
⋃
s∈X

Vo(s). To define δ̃det, we

consider the following sets. Given X ⊆ S and p ∈ P, Let

Γ (X, p) = { (b, s′) | (s, (b, p), s′) ∈ δ, s ∈ X },
∆(X, p) = { s′ | (b, s′) ∈ Γ (X, p) }.

For s′ ∈ ∆(X, p), we define VX,p,s′ =
⋃
{ Vb | (b, s′) ∈ Γ (X, p) } , And for each

Y ⊆ ∆(X, p) the set

VX,p,Y =
⋂(
{ VX,p,s′ | s′ ∈ Y } ∪

{
VX,p,s′ | s′ ∈ ∆(X, p) \ Y

})
.

Finally, we have

δ̃det = { (X, (VX,p,Y , p), Y) | X ⊆ S, Y ⊆ ∆(X, p), p ∈ P, VX,p,Y 6= ∅ }.

Proposition 1. For every NTA A = 〈S, s0, o, δ〉, the automaton Adet is deter-
ministic and GS(A) = GS(Adet).

Example 3. Applying the construction above to the NTA from Example 1, we
obtain the following DTA:

e0 e1 e2 e1, e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (¬(t2t3), q)

(t2t3, q)

t2

(t3, q)

(1, p), (¬t3, q) 1

3.1 Implementation and Complexity

It is important to notice that in the determinization algorithm, the construction
of all the 2|S| subsets X of the set of states S can be avoided by considering
only reachable states from the initial state. In order to efficiently deal with
boolean operations it is essential to have an adequate representation for the
boolean expressions b as well as the sets Vb. A possible choice is to use OBDDs
(ordered binary decision diagrams), for which there are several software packages
available. The sets VX,p,Y may also be constructed using a (variant) of the
standard Quine-McCluskey algorithm.

In the worst case, the determinization algorithm exhibits an extra exponential
complexity to compute the sets VX,p,Y . The deterministic automaton Adet has
at most 2n states and k · 2n+l transitions where n = |S|, l = |T|, and k = |P|.
Contrary to what happens with other KAT automata where the set At is explicitly
used, in practice and with adequate data structures, we can expect that the
number of sets X ⊆ S and of sets VX,p,Y is kept within tractable limits. It is
an open problem to theoretically obtain the average-case complexity of both the
power set construction and the sets VX,p,Y .

4 Equivalence of Deterministic Automata

Hopcroft and Karp [11] presented an almost linear algorithm (HK) for testing the
equivalence of two DFAs that avoids their minimization. Considering the merge
of the two DFAs as a single one, the algorithm computes the finest right-invariant
relation, on the set of states, that makes the initial states equivalent. Recently
this algorithm was analyzed and extended to NFAs in [2, 5]. In this section, we
extend it, again, for testing equivalence of deterministic automata for guarded
strings. We will only consider DTAs, A = 〈S, s0, o, δ〉, where all states are useful,
i.e. for every state s ∈ S, GS(s) 6= ∅.

Given a DTA, A = 〈S, s0, o, δ〉, over the alphabets P and T, and s, t ∈ S, we
say that s and t are equivalent, and write s ≈ t, if GS(s) = GS(t). A binary
relation R on S is right invariant if for all s, t ∈ S if sRt then the following
conditions hold:

– ∀α ∈ At, α ≤ o(s)⇔ α ≤ o(t);
– ∀αp ∈ At · P, (δ′(s, αp) = δ′(t, αp) = ∅) or (δ′(s, αp) = {s′}, δ′(t, αp) = {t′}

and s′Rt′).

It is easy to see that the relation ≈ is right invariant. Furthermore, whenever
R is a right-invariant relation on S and sRt, for s, t ∈ S, one has s ≈ t.

Let A1 = 〈S1, s0, o1, δ1〉 and A2 = 〈S2, r0, o2, δ2〉 be two DTAs over the
alphabets P and T, such that S1 ∩ S2 = ∅. The algorithm HK, given below,
decides if these two automata are equivalent, i.e. if GS(A1) = GS(A2), by building
a right-invariant relation that checks whether s0 ≈ r0. Consider A = 〈S, s0, o, δ〉,
where

S = S1 ∪ S2, o(s) =

{
o1(s) if s ∈ S1

o2(s) if s ∈ S2
and δ = δ1 ∪ δ2.

Lemma 1. Given two DTAs, A1 and A2, let A be defined as above. Then, s0 ≈
r0 (in A) if and only if GS(A1) = GS(A2).

The algorithm uses an initially empty stack H and a set partition P of S,
which are both updated during the computation. The set partition P is built us-
ing the UNION-FIND data structure [10]. Within this structure, three functions
are defined:

– MAKE(i): creates a new set (singleton) for one element i (the identifier);
– FIND(i): returns the identifier Si of the set which contains i;
– UNION(i, j, k): combines the sets identified by i and j into a new set Sk =
Si ∪ Sj ; Si and Sj are destroyed.

An arbitrary sequence of i operations MAKE, UNION, and FIND, j of which
are MAKE operations, necessary to create the required sets can, in worst-case,
be performed in O(iα(j)) time, where α(j) is related to a functional inverse of
the Ackermann function, and, as such, grows very slowly, and for practical uses
can be considered a constant. In the whole we assume that whenever FIND(i)
fails, MAKE(i) is called.

Algorithm 1.1. HK algorithm for deterministic automata.

1 def HK(A1, A2) :
2 MAKE(s0) ; MAKE(r0)
3 H = ∅
4 UNION(s0, r0, r0) ; PUSH(H, (s0, r0))
5 while (s, t) = POP(H) :
6 i f Vo(s) 6= Vo(t) : return False
7 for p ∈ P :
8 B1 = Γ ({s}, p)
9 B2 = Γ ({t}, p)

10 i f
⋃

(b1,)∈B1

Vb1 =
⋃

(b2,)∈B2

Vb2 :

11 for (b1, s
′) ∈ B1 :

12 for (b2, t
′) ∈ B2 :

13 i f Vb1 ∩ Vb2 6= ∅ :
14 s′ = FIND(s′)
15 t′ = FIND(t′)
16 i f s′ 6= t′ :
17 UNION(s′, t′, t′)
18 PUSH(H, (s′, t′))
19 else : return False
20 return True

The algorithm terminates because every time it pushes a pair onto the stack
it performs a union of two disjoint sets in the partition, and this can be done
at most |S| − 1 times. Given that set operations introduce what can be consid-
ered a constant time factor, the worst-case running time of the algorithm HK
is O(m2kn), where n = |S|, k = |P|, and m = |BExpA|. The correctness of this
version of algorithm HK is given by the proposition below, whose proof follows
closely the one for DFAs.

Proposition 2. The algorithm returns True if and only if s0 ≈ r0.

5 Equivalence of Nondeterministic Automata

We can embed the determinization process directly into the HK algorithm, ex-
tending it, so that it can be used to test the equivalence of NTAs. As before,
given two NTAs with disjoint sets of states, A1 and A2, we consider them as
a single NTA, A = 〈S, s0, o, δ〉. The worst-case complexity of this combined al-
gorithm, which we denote by HKN, is consequently O(m2k2n), where n = |S|,
k = |P| and m = |BExpA|.

Algorithm 1.2. HKN algorithm for nondeterministic automata.

1 def HKN(A1, A2) :
2 MAKE({s0}) ; MAKE({r0})
3 H = ∅

4 UNION({s0}, {r0}, {r0}) ; PUSH(H, ({s0}, {r0}))
5 while (X,Y) = POP(H) :
6 i f õdet(X) 6= õdet(Y) : return False
7 for p ∈ P :
8 B1 = Γ (X, p)
9 B2 = Γ (Y, p)

10 i f
⋃

(b1,)∈B1

Vb1 =
⋃

(b2,)∈B2

Vb2 :

11 for X ′ ⊆ ∆(X, p) :
12 for Y ′ ⊆ ∆(Y, p) :
13 i f VX,p,X′ ∩ VY,p,Y ′ 6= ∅ :
14 X ′ = FIND(X ′)
15 Y ′ = FIND(Y ′)
16 i f X ′ 6= Y ′ :
17 UNION(X ′, Y ′, Y ′)
18 PUSH(H, (X ′, Y ′))
19 else : return False
20 return True

6 Equivalence of KAT Expressions

Given two KAT expressions, e1 and e2, their equivalence can be tested by first
converting each expression to an equivalent NTA and then, either by determiniz-
ing both and applying the HK algorithm (Section 4), or by directly using the
resulting NTAs in algorithm HKN (Section 5). In particular, we could use the
equation construction given in [6] to obtain NTAs equivalent to the given KAT
expressions and then apply the HKN algorithm. The equation automaton for
KAT expressions is an adaptation of Mirkin’s construction [16] for regular ex-
pressions. Given e0 ≡ e ∈ Exp, a set of KAT expressions π(e) = {e1, . . . , en}
is defined inductively by π(p) = {1}, π(b) = ∅, π(e + f) = π(e) ∪ π(f),
π(e · f) = π(e)f ∪ π(f), and π(e?) = π(e)e?. This set satisfies the follow-
ing system of equations ei =

∑n
j=1 bij1p1ej + · · ·+

∑n
j=1 bijkpkej + out(ei) for

i = 0, . . . , n, pr ∈ P, k = |P|, some bijr ∈ BExp, and where function out is
defined below. The equation automaton is Aeq(e) = 〈{e} ∪ π(e), e, out, δeq〉 with
δeq = { (ei, (bijr, pr), ej) | if bijrprej is a component of the equation for ei }.

In this section, we will use this construction to define an algorithm for testing
equivalence of KAT expressions by a recursive computation of their derivatives
without explicitly building any automaton. However, the correctness of this pro-
cedure is justified by the correctness of the equation automaton. We first present
a slightly different formalization of this automaton construction, which is more
adequate for our purposes. The construction resembles the partial derivative au-
tomaton for regular expressions (that is known to be identical to the Mirkin
automaton [8]). The resulting decision procedure for KAT equivalence is also
similar to the ones recently presented for regular expressions (see [1, 2]) and
can be seen as a syntactic (and more compact) version of the one presented by
Kozen [14].

For e ∈ Exp and a program symbol p ∈ P, the set ∂p(e) of partial derivatives
of e w.r.t. p is inductively defined as follows:

∂p : Exp −→ BExp× Exp

∂p(p
′) =

{
{(1, 1)} if p′ ≡ p
∅ otherwise

∂p(b) = ∅

∂p(e+ e′) = ∂p(e) ∪ ∂p(e′)
∂p(ee

′) = ∂p(e)e
′ ∪ out(e)∂p(e

′)
∂p(e

?) = ∂p(e)e
?,

where out : Exp −→ BExp is defined by
out(p) = 0
out(b) = b

out(e1 + e2) = out(e1) + out(e2)
out(e1 · e2) = out(e1) · out(e2)

out(e?) = 1,

and for R ⊆ BExp× Exp, e ∈ Exp, and b ∈ BExp, Re = { (b′, e′e) | (b′, e′) ∈ R }
and bR = { (bb′, e′) | (b′, e′) ∈ R }. We also define ∆p(e) = { e′ | (b, e′) ∈ ∂p(e) }.
The functions ∂p, out, and ∆p are naturally extended to sets X ⊆ Exp. Moreover
we define the KAT expression

∑
∂p(e) ≡

∑
(bi,ei)∈∂p(e) bipei.

Example 4. The states of the equation automaton in Example 1 satisfy the fol-
lowing system of equations:

e0 = t1pe1
e1 = 1pe2 + t3qe1 + 1
e2 = t2pe2 + t2t3qe1 + 1qe2 + t2.

For instance, note that ∂p(e2) = {(t2, e2)}, ∂q(e2) = {(t2t3, e1), (1, e2)},
out(e2) = t2, and e2 =

∑
∂p(e2) +

∑
∂q(e2) + out(e2).

Given e ∈ Exp, we define the partial derivative automaton Apd(e) = 〈{e} ∪
π(e), e, δpd, out(e)〉 where δ = { (e1, (b, p), e2) | p ∈ P, (b, e2) ∈ ∂p(e1) }.

Lemma 2. For e ∈ Exp, Apd(e) and Aeq(e) are identical.

Proposition 3. GS(Apd(e)) = GS(e).

Now, it is easy to see that we can define a procedure, HKK, that directly
tests the equivalence of any given two KAT expressions. For that, it is enough
to modify HKN by taking ({e1}, {e2}) as the initial pair and, for X ⊆ Exp,
õdet(X) = out(X), Γ (X, p) = ∂p(X) and ∆(X, p) = ∆p(X).

7 Conclusions

We considered an automata model for KAT expressions where each transition
is labeled by a program symbol and, instead of an atom, a boolean expression.
Each transition can, thus, be seen as labeled, in a compact way, by a set of
atoms, the ones that satisfy the appropriate boolean expression. Recently, sym-
bolic finite automata (SFA) where transitions are labeled with sets of alphabetic
symbols were introduced in order to deal with large alphabets [20]. Although the
extension of classical finite automata algorithms to SFAs bears similarities with
the ones here presented, SFAs are interpreted over sets of finite words and not
over sets of guarded strings. Experiments with the algorithms presented in this
paper must be carried out in order to validate their practical applicability and
also to suggest goals for a theoretical study of their average-case complexity.

References

1. Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite system revis-
ited. International Journal of Foundations of Computer Science 20(04), 669 – 684
(2009)

2. Almeida, M., Moreira, N., Reis, R.: Testing regular languages equivalence. Journal
of Automata, Languages and Combinatorics 15(1/2), 7–25 (2010)

3. Almeida, R., Broda, S., Moreira, N.: Deciding KAT and Hoare logic with deriva-
tives. In: Faella, M., Murano, A. (eds.) Proc. 3rd GANDALF. EPTCS, vol. 96, pp.
127–140 (2012)

4. Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based on
Kleene algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) 4th Inter. Conference ITP 2013, Rennes, France. Proceedings. LNCS, vol.
7998, pp. 197–212. Springer (2013)

5. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to con-
gruence. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-
SIGACT Symposium POPL ’13. pp. 457–468. ACM (2013)

6. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov
and equation automata for KAT expressions. In: 19th Inter. Symposium on Fun-
damentals of Computation Theory. pp. 72–83. No. 8070 in LNCS, Springer (2013)

7. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for KAT expressions.
Tech. Rep. DCC-2014-01, FCUP & CMUP, Universidade do Porto (January 2014),
http://www.dcc.fc.up.pt/dcc/Pubs/TReports/

8. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inform. 45(3), 195–205 (2001)

9. Cohen, E., Kozen, D., Smith, F.: The complexity of Kleene algebra with tests. Tech.
Rep. TR96-1598, Computer Science Department, Cornell University (07 1996)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, second edn. (2003)

11. Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite au-
tomata. Tech. Rep. TR 71 -114, University of California, Berkeley, California (1971)

12. Kozen, D.: Kleene algebra with tests. Trans. on Prog. Lang. and Systems 19(3),
427–443 (05 1997)

13. Kozen, D.: Automata on guarded strings and applications. Matématica Contem-
porânea 24, 117–139 (2003)

14. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Tech. Rep. http:
//hdl.handle.net/1813/10173, Cornell University (05 2008)

15. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability. In:
van Dalen, D., Bezem, M. (eds.) Proc. 10th CSL. LNCS, vol. 1258, pp. 244–259.
Springer (1996)

16. Mirkin, B.G.: An algorithm for constructing a base in a language of regular ex-
pressions. Engineering Cybernetics 5, 51—57 (1966)

17. Pereira, D.: Towards Certified Program Logics for the Verification of Imperative
Programs. Ph.D. thesis, University of Porto (2013)

18. Pous, D.: Kleene algebra with tests and Coq tools for While programs. CoRR
abs/1302.1737 (2013)

19. Silva, A.: Position automata for Kleene algebra with tests. Sci. Ann. Comp. Sci.
22(2), 367–394 (2012)

20. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic regular expression ex-
plorer. In: 3rd Inter. Conference on Software Testing, Verification and Validation,
ICST 2010, Paris, France, April 7-9. pp. 498–507. IEEE Computer Society (2010)

