
Automata for Regular Expressions with Shuffle

Sabine Broda, António Machiavelo, Nelma Moreira, Rogério Reis

CMUP & DCC, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal

Abstract

We generalize the partial derivative automaton and the position automaton to
regular expressions with shuffle, and study their state complexity in the worst,
as well as in the average case. The number of states of the partial derivative
automaton (Apd) is, in the worst case, at most 2m, where m is the number
of letters in the expression. The asymptotic average is bounded by (4

3)m. We
define a position automaton (Apos) that is homogeneous, but in which several
states can correspond to a same position, and we show that Apd is a quotient of
Apos. The number of states of the position automaton is at most 1+m(2m−1),
while the asymptotic average is no more than m(4

3)m.

Keywords: regular expressions, shuffle operation, partial derivatives, finite
automata, position automata, average case, analytic combinatorics

1. Introduction

The class of regular languages is closed under shuffle (or interleaving opera-
tion), and extended regular expressions with shuffle can be much more succinct
than the equivalent ones with disjunction, concatenation, and star operators.
For the shuffle operation, Mayer and Stockmeyer [16] studied the computational
complexity of membership and nonequivalence problems. Nonequivalence is
exponential-time-complete, and membership is NP-complete for some classes of
regular languages. In particular, they showed that for regular expressions (REs)
with shuffle, of size n, an equivalent nondeterministic finite automaton (NFA)
needs at most 2n states, and presented a family of REs with shuffle, of size
O(n), for which the corresponding NFAs have at least 2n states. Gelade [12],
and Gruber and Holzer [14, 13] showed that there exists a double exponential
trade-off in the translation from REs with shuffle to stantard REs. Gelade also
gave a tight double exponential upper bound for the translation of REs with

IThis work was partially funded by the European Regional Development Fund through the
programme COMPETE and by the Portuguese Government through the FCT under project
UID/MAT/00144/2013.

Email addresses: sbb@dcc.fc.up.pt (Sabine Broda), ajmachia@fc.up.pt (António
Machiavelo), nam@dcc.fc.up.pt (Nelma Moreira), rvr@dcc.fc.up.pt (Rogério Reis)

Preprint submitted to Elsevier December 11, 2017

shuffle to DFAs. Recently, conversions of shuffle expressions to finite automata
were presented by Estrade et al. [9], and Kumar and Verma [15]. In the former
an expression is transformed first into a parallel finite automaton and then to
an ε-NFA of size 22r−3c, where r is the size of the expression and c the number
of occurrences of the concatenation operator. In the latter the authors give an
algorithm for the construction of an ε-free NFA based on the classic Glushkov/-
position construction, which the authors claim to have at most 2m+1 states,
where m is the number of letters that occur in the RE with shuffle. Each state
corresponds to a set of positions of letters in RE, and in opposition to what
happens in the position automaton for standard REs, the automaton is not ho-
mogeneous, i.e. the incoming transitions of a state do not share necessarily the
same label.

In this paper we present a conversion method of REs with shuffle to ε-free
NFAs, by generalizing the partial derivative construction for standard REs [1,
17]. For standard REs, the partial derivative automaton (Apd) is a quotient of
the Glushkov/position automaton (Apos), and Broda et al. [3, 4] showed that,
asymptotically, and on average, the size ofApd is half the size ofApos. In the case
of REs with shuffle we show that the number of states of the partial derivative
automaton is, in the worst case, 2m (with m as before) and an upper bound
for the average size is, asymptotically, (4

3)m. We also present a construction of
a position automaton Apos from a RE with shuffle which is homogeneous, and
for which the partial derivative automaton is a quotient. The number of states
of Apos is, in the worst case, 1 + m(2m − 1) (with m as before), and an upper
bound for the average size is, asymptotically, m(4

3)m.
This paper is organized as follows. In the next section we review the shuffle

operation and regular expressions with shuffle. In Section 3 we consider equation
systems, for languages and expressions, associated with nondeterministic finite
automata, and define a solution for a system of equations for a shuffle expression.
An alternative and equivalent construction, denoted by Apd, is given in Section 4
using the notion of partial derivative. In Section 5, we give the construction of
an automaton based on the notion of positions, denoted by Apos, and show that
Apd is a quotient of Apos. In Section 6, we study the average state complexity of
both Apd and Apos using the framework of analytic combinatorics. We conclude
in Section 7 with some considerations about the upper bounds obtained in this
paper, and point out some possible directions for some related future work.

2. Regular Expressions with Shuffle

Given an alphabet Σ, the shuffle of two words in Σ? is a finite set of words
defined inductively as follows, for x, y ∈ Σ? and a, b ∈ Σ

x� ε = ε� x = {x}
ax� by = { az | z ∈ x� by } ∪ { bz | z ∈ ax� y }.

This definition is extended to sets of words, i.e., languages, in the natural

2

way:

L1 � L2 =
⋃

x∈L1,y∈L2

x� y.

It is well known that if two languages L1, L2 ⊆ Σ? are regular then L1 � L2

is regular. One can extend regular expressions to include the � operator. Given
an alphabet Σ, we let T� denote the set containing ∅ plus all terms finitely gen-
erated from Σ∪{ε} and operators +, ·,�, ?, that is, the expressions τ generated
by the grammar

τ → ∅ | α (1)

α → ε | a | (α+ α) | (α · α) | (α� α) | α? (a ∈ Σ). (2)

As usual, the (regular) language L(τ) represented by an expression τ ∈ T�
is inductively defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a} for a ∈ Σ,
L(α?) = L(α)?, L(α + β) = L(α) ∪ L(β), L(αβ) = L(α)L(β), and L(α� β) =
L(α) � L(β). We say that two expressions τ1, τ2 ∈ T� are equivalent, and
write τ1

.
= τ2, if L(τ1) = L(τ2). The set of alphabet symbols occurring in an

expression τ is denoted by Στ .

Example 1. Consider αn = a1 � · · ·� an, where n ≥ 1, ai 6= aj for 1 ≤ i 6=
j ≤ n. Then,

L(αn) = { ai1 · · · ain | i1, . . . , in is a permutation of 1, . . . , n}.

We recall that standard regular expressions constitute a Kleene algebra and
the shuffle operator � is commutative, associative, and distributes over +. One
also has that for all a, b ∈ Σ and τ1, τ2 ∈ T�,

aτ1 � bτ2
.
= a(τ1 � bτ2) + b(aτ1 � τ2).

Given a language L, we define ε(τ) = ε(L(τ)), where, ε(L) = ε if ε ∈ L and
ε(L) = ∅ otherwise. Using the identity elements of · and +, and the absorbing
property of ∅, a recursive definition of ε : T� −→ {∅, ε} is given by the following:
ε(a) = ε(∅) = ∅, ε(ε) = ε(α?) = ε, ε(α + β) = ε(α) + ε(β), ε(αβ) = ε(α)ε(β),
and ε(α � β) = ε(α)ε(β). Moreover, in what follows we will always consider
expressions reduced according to the following equations α � ε

.
= ε � α

.
= α

and αε
.
= εα

.
= α. These are natural simplifications that do not affect the

complexity upper bounds obtained.

3. Automata and Systems of Equations

We first recall the definition of an NFA as a tuple A = 〈S,Σ, S0, δ, F 〉, where
S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S the set of initial states,
δ : S × Σ −→ P(S) the transition function, and F ⊆ S the set of final states.
The extension of δ to sets of states and words is defined by δ(X, ε) = X and
δ(X, ax) = δ(∪s∈Xδ(s, a), x). A word x ∈ Σ? is accepted by A if and only

3

if δ(S0, x) ∩ F 6= ∅. The language of A is the set of words accepted by A and
denoted by L(A). The right language of a state s, denoted by Ls, is the language
accepted by A if we take S0 = {s}. If two automata A1 and A2 are isomorphic
we say that A1 ' A2. An equivalence relation ≡ on S is right invariant w.r.t. A
if and only if for all s, t ∈ S, s ≡ t implies that

• s ∈ F if and only if t ∈ F ;

• for all s′ ∈ δ(s, a), a ∈ Σ, there exists t′ ∈ δ(t, a), such that s′ ≡ t′.

The quotient automaton A/≡ is equivalent to A.
It is well known that, for each n-state NFA A over Σ = {a1, . . . , ak}, with

S = [1, n], having right languages L1, . . . ,Ln, it is possible to associate a system
of linear language equations

Li = a1Li1 ∪ · · · ∪ akLik ∪ ε(Li), i ∈ [1, n]

where each Lij =
⋃
l∈δ(i,aj) Ll , i.e (possibly empty) union of elements in

{L1, . . . ,Ln}, and L(A) =
⋃
i∈S0
Li.

In the same way, it is possible to associate with each regular expression
a system of equations on expressions. Here, we extend this notion to regular
expressions with shuffle.

Definition 1. Consider Σ = {a1, . . . , ak} and α0 ∈ T�. A support of α0 is a
set {α1, . . . , αn} that satisfies a system of equations

αi
.
= a1αi1 + · · ·+ akαik + ε(αi), i ∈ [0, n] (3)

for some αi1, . . . , αik, each one a (possibly empty) sum of elements in {α1, . . . , αn}.
In this case {α0, α1, . . . , αn} is called a prebase of α0.

It is clear from what was just said above, that the existence of a support
of α implies the existence of an NFA that accepts the language determined by
α. Namely, A = 〈{α0, . . . , αn} ,Σ, {α0}, δ, F 〉, with F = {αi | ε(αi) = ε} and
δ(αi, aj) = χ(αij) (where χ(αi1 + · · ·+ αil) = {αi1 , . . . , αil}).

Note that the system of equations (3) can be written in matrix form Aα
.
=

C · Mα + Eα, where Mα is the k × (n + 1) matrix with entries αji (j ∈ [1, k],
i ∈ [0, n]) and Aα, C and Eα denote respectively the following three matrices,

Aα =
[
α0 · · · αn

]
, C =

[
a1 · · · ak

]
, and Eα =

[
ε(α0) · · · ε(αn)

]
,

and C ·Mα denotes the matrix obtained from C and Mα applying the standard
rules of matrix multiplication, but replacing the multiplication by concatenation.
This notation will be used below.

A support for an expression τ ∈ T� can be computed using the function
π : T� −→ P(T�) recursively given in following definition.

4

Definition 2. Given τ ∈ T�, the set π(τ) is inductively defined by,

π(∅) = π(ε) = ∅
π(a) = {ε} (a ∈ Σ)
π(α?) = π(α)α?

π(α+ β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)

π(α� β) = π(α)� π(β)∪
∪π(α)� {β} ∪ {α}� π(β),

where, given S, T ⊆ T� and β ∈ T� \ {∅}, S � T = { α� β | α ∈ S, β ∈ T },
Sβ = { αβ | α ∈ S }, βS = { βα | α ∈ S }, and S∅ = ∅S = ∅.

The following lemma follows directly from the definitions and will be used
in the proof of Proposition 2.

Lemma 1. If α, β ∈ T�, then ε(β) · L(α) ⊆ L(α� β).

Proposition 2. If τ ∈ T�, then the set π(τ) is a support of τ .

Proof. For ∅ is obvious. We proceed by induction on the structure of α.
Excluding the case where α is α0 � β0, the proof can be found in [17, 6]. We
now describe how to obtain a system of equations corresponding to an expression
α0 � β0 from systems for α0 and β0. Suppose that π(α0) = {α1, . . . , αn} is a
support of α0 and π(β0) = {β1, . . . , βm} is a support of β0. For α0 and β0

consider C, Aα0
, Mα0

, Eα0
and Aβ0

, Mβ0
, Eβ0

as above. We wish to show that

π(α0 � β0) = {α1 � β1, . . . , α1 � βm, . . . , αn � β1, . . . , αn � βm} ∪
∪{α1 � β0, . . . , αn � β0} ∪ {α0 � β1, . . . , α0 � βm}

is a support of α0 � β0. Let Aα0�β0
be the (n + 1)(m + 1)-entry row-matrix

whose entries are[
α0 � β0 α1 � β1 · · · αn � βm α1 � β0 · · · αn � β0 α0 � β1 · · · α0 � βm

]
.

Then, Eα0�β0
is defined as usual, i.e. containing the values of ε(α) for all entries

α in Aα0�β0
. Finally, let Mα0�β0

be the k× (n+1)(m+1) matrix whose entries
γl,(i,j), for l ∈ [1, k] and (i, j) ∈ [0, n]× [0,m], are defined by

γl,(i,j) = αil�βj + αi�βjl.

Note that, since by the induction hypothesis each αil is equivalent to a
sum of elements in π(α) and each βjl is equivalent to a sum of elements in
π(β), due to the distributivity of � over +, each element of Mα0�β0

is in fact
equivalent to a sum of elements in π(α0 � β0). We will show that Aα0�β0

.
=

C ·Mα0�β0 + Eα0�β0 . For this, consider αi� βj for some (i, j) ∈ [0, n]× [0,m].
We have αi

.
= a1αi1 + · · ·+ akαik + ε(αi) and βj

.
= a1βj1 + · · ·+ akβjk + ε(βj).

Consequently, using properties of �, namely distributivity over +, as well as
Lemma 1,

5

αi � βj
.
= (a1αi1 + · · ·+ akαik + ε(αi))� (a1βj1 + · · ·+ akβjk + ε(βj))
.
= a1 (αi1 � βj + αi � βj1 + ε(βj)αi1 + ε(αi)βj1) + · · · +

ak (αik � βj + αi � βjk + ε(βj)αik + ε(αi)βjk) + ε(αi � βj)
.
= a1 (αi1 � βj + αi � βj1) + · · · +

ak (αik � βj + αi � βjk) + ε(αi � βj)
.
= a1γ1,(i,j) + · · ·+ akγk,(i,j) + ε(αi � βj).

�

It is clear from its definition that π(α) is finite. In the following proposition,
an upper bound for the size of π(α) is given. Example 2 is a witness that this
upper bound is tight.

Proposition 3. Given τ ∈ T�, one has |π(τ)| ≤ 2|τ |Σ − 1, where |τ |Σ denotes
the number of alphabet symbols in τ .

Proof. The proof proceeds by induction on the structure of τ . It is clear that
the result holds for ∅, ε and a ∈ Σ. Now, suppose the claim is true for α
and β. There are four induction cases to consider. We will make use of the
fact that, for m,n ≥ 0 one has 2m + 2n − 2 ≤ 2m+n − 1. For α?, one has
|π(α?)| = |π(α)α?| = |π(α)| ≤ 2|α|Σ − 1 = 2|α

?|Σ − 1. For α + β, one has
|π(α+β)| = |π(α)∪π(β)| ≤ 2|α|Σ − 1 + 2|β|Σ − 1 ≤ 2|α|Σ+|β|Σ − 1 = 2|α+β|Σ − 1.
For αβ, one has |π(αβ)| = |π(α)β ∪ π(β)| ≤ 2|α|Σ − 1 + 2|β|Σ − 1 ≤ 2|αβ|Σ − 1.
Finally, for α�β, one has |π(α�β)| = |π(α)�π(β)∪π(α)�{β}∪{α}�π(β)| ≤
(2|α|Σ − 1)(2|β|Σ − 1) + 2|α|Σ − 1 + 2|β|Σ − 1 = 2|α|Σ+|β|Σ − 1 = 2|α�β|Σ − 1. �

Example 2. Considering αn = a1 � · · ·� an, where n ≥ 1, ai 6= aj for 1 ≤
i 6= j ≤ n again, one has

|π(αn)| = |{ �
i∈I
ai | I ({1, . . . , n} }| = 2n − 1,

where by convention �
i∈∅
ai = ε.

The proof of Proposition 2 gives a way to construct a system of equations
for an expression τ ∈ T�, corresponding to an NFA that accepts the language
represented by τ . This is done by recursively computing π(τ) and the matrices
Aτ and Eτ , obtaining the whole NFA in the final step.

In the next section we will show how to build the same NFA in a more
efficient way using the notion of partial derivative.

4. Partial Derivative Automaton

Recall that the left quotient of a language L w.r.t. a symbol a ∈ Σ is

a−1L = { x | ax ∈ L }.

6

The left quotient of L w.r.t. a word x ∈ Σ? is then inductively defined by
ε−1L = L and (xa)−1L = a−1(x−1L). Note that for L1, L2 ⊆ Σ? and a, b ∈ Σ
the shuffle operation satisfies a−1(L1 � L2) = (a−1L1)� L2 ∪ L1 � (a−1L2).

Definition 3. The set of partial derivatives of a term τ ∈ T� w.r.t. a letter
a ∈ Σ, denoted by ∂a(τ), is inductively defined by

∂a(∅) = ∂a(ε) = ∅

∂a(b) =

{
{ε} if b = a

∅ otherwise

∂a(α?) = ∂a(α)α?

∂a(α+ β) = ∂a(α) ∪ ∂a(β)
∂a(αβ) = ∂a(α)β ∪ ε(α)∂a(β)

∂a(α� β) = ∂a(α)� {β} ∪ {α}� ∂a(β),

where the expressions involving sets of expressions are as specified in Defini-
tion 2.

The set of partial derivatives of τ ∈ T� w.r.t. a word x ∈ Σ? is inductively
defined by ∂ε(τ) = {τ} and ∂xa(τ) = ∂a(∂x(τ)), where, given a set S ⊆ T�,
∂a(S) =

⋃
τ∈S ∂a(τ).

We let ∂(τ) denote the set of all partial derivatives of an expression τ ,
i.e. ∂(τ) =

⋃
x∈Σ? ∂x(τ), and by ∂+(τ) the set of partial derivatives excluding

the trivial derivative by ε, i.e. ∂+(τ) =
⋃
x∈Σ+ ∂x(τ). Given a set S ⊆ T�, we

define L(S) =
⋃
τ∈S L(τ). The following result has a straightforward proof.

Proposition 4. Given x ∈ Σ? and τ ∈ T�, one has L(∂x(τ)) = x−1L(τ).

The following properties of ∂+(τ) will be used in the proof of Proposition 6.

Lemma 5. For τ ∈ T�, the following hold.

1. If ∂+(τ) 6= ∅, then there is α0 ∈ ∂+(τ) with ε(α0) = ε.

2. If ∂+(τ) = ∅ and τ 6= ∅, then L(τ) = {ε} and ε(τ) = ε.

Proof. 1. From the grammar rule (2) it follows that ∅ cannot appear as a
subexpression of a larger term. Suppose that there is some γ ∈ ∂+(τ). We
conclude, from Definition 3 and from the previous remark, that there is
some word x ∈ Σ+ such that x ∈ L(γ). This is equivalent to ε ∈ L(∂x(γ)),
which means that there is some α0 ∈ ∂x(γ) ⊆ ∂+(τ) such that ε(α0) = ε.

2. ∂+(τ) = ∅ implies that ∂x(τ) = ∅ for all x ∈ Σ+. Thus, L(∂x(τ)) = { y |
xy ∈ L(τ) } = ∅, and consequently there is no word z ∈ Σ+ in L(τ). On
the other hand, since ∅ does not appear in τ , it follows that L(τ) 6= ∅.
Thus, L(τ) = {ε}. �

Proposition 6. ∂+ satisfies the following:

∂+(∅) = ∂+(ε) = ∅
∂+(a) = {ε} (a ∈ Σ)
∂+(α?) = ∂+(α)α?

∂+(α+ β) = ∂+(α) ∪ ∂+(β)
∂+(αβ) = ∂+(α)β ∪ ∂+(β)

∂+(α� β) = ∂+(α)� ∂+(β)∪
∪ ∂+(α)� {β} ∪ {α}� ∂+(β).

7

Proof. The proof proceeds by induction on the structure of α. It is clear that
∂+(∅) = ∅, ∂+(ε) = ∅ and, for a ∈ Σ, ∂+(a) = {ε}.

In the remaining cases, to prove that an inclusion ∂+(γ) ⊆ E holds for some
expression E, we show by induction on the length of x that for every x ∈ Σ+ one
has ∂x(γ) ⊆ E. We will therefore just indicate the corresponding computations
for ∂a(γ) and ∂xa(γ), for a ∈ Σ. We also make use of the fact that, for any
expression γ and letter a ∈ Σ, the set ∂+(γ) is closed for taking derivatives
w.r.t. a, i.e., ∂a(∂+(γ)) ⊆ ∂+(γ).

Now, suppose the claim is true for α and β. There are four induction cases
to consider.

• For α + β, we have ∂a(α + β) = ∂a(α) ∪ ∂a(β) ⊆ ∂+(α) ∪ ∂+(β), as
well as ∂xa(α + β) = ∂a(∂x(α + β)) ⊆ ∂a(∂+(α) ∪ ∂+(β)) ⊆ ∂a(∂+(α)) ∪
∂a(∂+(β)) ⊆ ∂+(α)∪∂+(β). Similarly, one proves that ∂x(α) ⊆ ∂+(α+β)
and ∂x(β) ⊆ ∂+(α+ β), for all x ∈ Σ+.

• For α?, we have ∂a(α?) = ∂a(α)α? ⊆ ∂+(α)α?, as well as

∂xa(α?) = ∂a(∂x(α?)) ⊆ ∂a(∂+(α)α?) ⊆ ∂a(∂+(α))α? ∪ ∂a(α?)

⊆ ∂+(α)α? ∪ ∂a(α)α? ⊆ ∂+(α)α?.

Furthermore, ∂a(α)α? = ∂a(α?) ⊆ ∂+(α?) and ∂xa(α)α? = ∂a(∂x(α))α? ⊆
∂a(∂x(α)α?) ⊆ ∂a(∂+(α?)) ⊆ ∂+(α?).

• For αβ, we have ∂a(αβ) = ∂a(α)β ∪ ε(α)∂a(β) ⊆ ∂+(α)β ∪ ∂+(β) and

∂xa(αβ) = ∂a(∂x(αβ)) ⊆ ∂a(∂+(α)β ∪ ∂+(β)) = ∂a(∂+(α)β) ∪ ∂a(∂+(β))

⊆ ∂a(∂+(α))β ∪ ∂a(β) ∪ ∂a(∂+(β)) ⊆ ∂+(α)β ∪ ∂+(β).

Also, ∂a(α)β ⊆ ∂a(αβ) ⊆ ∂+(αβ) and

∂xa(α)β = ∂a(∂x(α))β ⊆ ∂a(∂x(α)β) ⊆ ∂a(∂+(αβ)) ⊆ ∂+(αβ).

Finally, if ε(α) = ε, then ∂a(β) ⊆ ∂a(αβ) and ∂xa(β) = ∂a(∂x(β)) ⊆
∂a(∂x(αβ)) = ∂xa(αβ). We conclude that ∂x(β) ⊆ ∂x(αβ) for all x ∈ Σ+,
and therefore ∂+(β) ⊆ ∂+(αβ). Otherwise, ε(α) = ∅, and it follows
from Lemma 5 that ∂+(α) 6= ∅, and that there is some α0 ∈ ∂+(α)
with ε(α0) = ε. As above, this implies that ∂x(β) ⊆ ∂x(α0β) for all
x ∈ Σ+. On the other hand, have already shown that ∂+(α)β ⊆ ∂+(αβ).
In particular, α0β ∈ ∂+(αβ). From these two facts, we conclude that
∂x(β) ⊆ ∂x(α0β) ⊆ ∂x(∂+(αβ)) ⊆ ∂+(αβ), which finishes the proof for
the case of concatenation.

• For α� β, we have

∂a(α� β) = ∂a(α)� {β} ∪ {α}� ∂a(β)

⊆ ∂+(α)� ∂+(β) ∪ ∂+(α)� {β} ∪ {α}� ∂+(β)

8

and

∂xa(α� β) ⊆ ∂a(∂+(α)� ∂+(β) ∪ ∂+(α)� {β} ∪ {α}� ∂+(β))

= ∂a(∂+(α)� ∂+(β)) ∪ ∂a(∂+(α)� {β}) ∪ ∂a({α}� ∂+(β))

= ∂a(∂+(α))� ∂+(β) ∪ ∂+(α)� ∂a(∂+(β)) ∪ ∂a(∂+(α))� {β}
∪ ∂+(α)� ∂a(β) ∪ ∂a(α)� ∂+(β) ∪ {α}� ∂a(∂+(β))

⊆ ∂+(α)� ∂+(β) ∪ ∂+(α)� {β} ∪ {α}� ∂+(β).

Now we prove that for all x ∈ Σ+, one has ∂x(α)�{β} ⊆ ∂x(α�β), which
implies ∂+(α)�{β} ⊆ ∂+(α�β). In fact, we have ∂a(α)�{β} ⊆ ∂a(α�β)
and

∂xa(α)� {β} ⊆ ∂a(∂x(α))� {β}
⊆ ∂a(∂x(α)� {β}) ⊆ ∂a(∂x(α� β)) = ∂xa(α� β).

Showing that {α}�∂x(β) ⊆ ∂x(α�β) is analogous. Finally, for x, y ∈ Σ+

we have ∂x(α)�∂y(β) ⊆ ∂y(∂x(α)�{β}) ⊆ ∂y(∂x(α�β)) = ∂xy(α�β) ⊆
∂+(α� β). �

Corollary 7. Given τ ∈ T�, one has ∂+(τ) = π(τ).

We conclude that ∂(τ) corresponds to the set {τ} ∪ π(τ), as is the case for
standard regular expressions. It is well known that the set of partial derivatives
of a regular expression gives rise to an equivalent NFA, called the Antimirov au-
tomaton or partial derivative automaton, that accepts the language determined
by that expression. This remains valid in our extension of the partial derivatives
to regular expressions with shuffle.

Definition 4. Given τ ∈ T�, we define the partial derivative automaton asso-
ciated with τ by

Apd(τ) = 〈∂(τ),Σ, {τ}, δτ , Fτ 〉,

where Fτ = { γ ∈ ∂(τ) | ε(γ) = ε } and δτ (γ, a) = ∂a(γ).

It is easy to see that the following holds.

Proposition 8. For every state γ ∈ ∂(τ), the right language Lγ of γ in A(τ)
is equal to L(γ), the language represented by γ. In particular, the language
accepted by Apd(τ) is exactly L(τ).

Note that for the REs αn considered in examples 1 and 2, Apd(αn) has 2n

states which is exactly the bound presented by Mayer and Stockmeyer [16]. The
case for n = 3 is presented in the following example.

Example 3. The partial derivative automaton for α3 = a� b� c is the follow-
ing.

9

α3 a� c

b� c

a� b

c

b

a

ε

a

b

c

b

c

a

c

a

b

c

b

a

4.1. Recursive Construction of Apd
The set of partial derivatives of a term τ ∈ T� w.r.t all a ∈ Σ can be

efficiently calculated using the function F recursively defined as follows:

F(∅) = F(ε) = ∅
F(a) = {(a, ε)}

F(α?) = F(α)α?

F(α+ β) = F(α) ∪ F(β)
F(αβ) = F(α)β ∪ ε(α)F(β)

F(α� β) = F(α)� β ∪ α� F(β),

where for S, T ⊆ Σ× (T� \ {∅}) and α ∈ T� \ {∅}, S ◦α = { (a, β ◦α) | (a, β) ∈
S }, α ◦ S = { (a, βα ◦ β) | (a, β) ∈ S }, for ◦ ∈ {·,�}, and ∅S = S∅ = ∅.
Clearly, for each a ∈ Σ, ∂a(τ) = {α | (a, α) ∈ F(τ)}. Based on the system
of equations presented in the Section 3 and as also pointed out in the end of
that section, the set of transitions of Apd can be recursively defined using the
following function.

T(∅) = T(ε) = T(a) = ∅, a ∈ Σ

T(α+ β) = T(α) ∪ T(β)

T(α · β) = T(α)β ∪ T(β) ∪ L(α)β × F(β)

T(α?) = T(α)α? ∪ (L(α)× F(α))α?

T(α� β) = T(α)� T(β) ∪ T(α)� {β} ∪ {α}� T(β),

where L(α) = {α′ | α′ ∈ π(α), ε(α′) = ε }1 and the result of the × operation
is seen as a set of triples. The concatenation of a transition (α, a, β) with a
expression γ is defined by (α, a, β)γ = (αγ, a, βγ) and (α, a, β)� (α′, a′, β′) =
{(α�α′, a, β�α′), (α�α′, a′, α�β′)}. Then for S, T ⊆ (T�\{∅})×Σ×(T�\{∅})
and γ ∈ T� \ {∅}, Sγ = {sγ | s ∈ S}, S � T =

⋃
s∈S,t∈T s � t. Finally,

δτ = ({τ} × F(τ)) ∪ T(τ).
It is straightforward to see that |F(α)| ≤ |α|Σ, and |L(α)| ≤ |∂(α)| ≤ 2|α|Σ .

However, it seems hard to estimate a tight upper bound for |T(α)|. Of course,
|δτ | ≤ |F(α)| + |T(α)| ≤ |Σ| 22|α|Σ . For the expressions αn presented in Exam-
ple 1, |F(αn)| = |αn|Σ = n and |δαn | = n2n−1.

1Which can also be defined recursively.

10

5. A Position Automaton

In this section we present another automaton construction, this time also
based on the positions of alphabet symbols (letters) in regular expressions. For
standard regular expressions, the position/Glushkov automaton has as many
states as positions plus one, it is homogeneous, i.e. for every state all incoming
transitions are labelled by the same alphabet symbol, and the partial derivative
automaton is one of its quotients. Our construction will produce an homo-
geneous automaton as well. Also, every state except for the initial one will
correspond to precisely one position in the regular expression, but the reverse
is no longer true. In fact, a construction with such property cannot exist, when
expressions with shuffle are considered, as shown by the following example.

Example 4. Consider the expression τ = a � b with L(τ) = {ab, ba}. In
every homogeneous automaton for τ , there must exist a state s with incoming
transitions labelled with a and right language Ls = {b}, as well as another state
t with incoming transitions labelled with a and right language Lt = {ε}.

Consequently, states of automata obtained by the construction defined in this
section are labelled by pairs (γ, i), where i is a position of a letter in the original
expression and γ ∈ T� describes the right language of the state.

For τ ∈ T�, let τ denote the expression obtained by marking each letter
with its position in τ . The same notation is used to remove the markings, i.e.,
τ = τ . Now, let Pos(τ) = {1, 2, . . . , |τ |Σ} be the set of positions for τ ∈ T�,
and let Pos0(τ) = Pos(τ)∪{0}. An expression where all occurrences of alphabet
symbols are marked will be called a marked expression.

Example 5. For τ = a � a � b, over the alphabet Σ = {a, b}, one has τ =
a1 � a2 � b3 and Pos(τ) = {1, 2, 3}.

Definition 5. Given τ ∈ T�, we define the position automaton associated with
τ by

Apos(τ) = 〈S0
pos(τ),Σ, {(τ , 0)}, δpos, Fpos〉,

where S0
pos(τ) = Spos(τ)∪{(τ , 0)}, Spos(τ) = { (γ, i) | γ ∈ ∂ai(∂(τ)), ai ∈ Στ },

Fpos = { (γ, i) ∈ S0
pos(τ) | ε(γ) = ε } and

δpos((γ, i), a) = { (β, j) | β ∈ ∂aj (γ), a = aj }.

Example 6. For τ from Example 5 Apos(τ) has twelve states (α0, 0), (α1, 1),
(α2, 2), (α3, 3), (b3, 2), (b3, 1), (a2, 3), (a2, 1), (a1, 3), (a1, 2), (ε, 3), (ε, 2), and
(ε, 1), where α0 = a1� a2� b3, α1 = a2� b3, α2 = a1� b3, and α3 = a1� a2.
The automaton is the one depicted below.

11

α0

0
α2

2

α1

1

α3

3

b3
2

a1

2

b3
1
a2

3
a2

1
a1

3

ε

3

ε

1

ε

2

a

a

b

a

b

a

b

a

a

b
b

a
a

a
a

Note that our construction corresponds to the construction of a c-continuation
automaton for standard regular expressions [7], which is known to be isomor-
phic to the position automaton. As in the case for standard expressions, with
the c-continuation automaton we can, given τ ∈ T�, show that Apd(τ) is a

quotient of Apos(τ). For this purpose, we first consider the automaton Apd(τ)
obtained from the partial derivative automaton Apd(τ) by unmarking labels of

transitions. We will show that Apd(τ) is a quotient of Apos(τ) by the right-
invariant equivalence relation ≡1, defined on the set of states in Apos(τ), by
(α, i) ≡1 (β, j) iff α = β.

Proposition 9. Given τ ∈ T�, we have Apos(τ)/≡1
' Apd(τ).

Proof. In order to show that ≡1 is right invariant w.r.t. Apos(τ), consider two
equivalent states (α, i), (α, j) ∈ S0

pos(τ) and (β, l) ∈ δpos((α, i), a), a ∈ Σ. By
Definition 5, we have β ∈ ∂aj (α) and a = aj . Thus, (β, l) ∈ δpos((α, j), a).
Furthermore, ε((α, i)) = ε((α, j)).

Now, recall that τ is the initial state of Apd(τ), while (τ , 0) labels the initial
state in Apos(τ). It is also clear that γ ∈ ∂(τ) if and only if there is at least
one state (γ, i) ∈ S0

pos(τ). Furthermore, by Definition 5, (β, j) ∈ δpos((γ, i), a)
if and only if β ∈ ∂aj (γ) and a = aj . By the definition of Apd we know that
there exists a transition labelled by aj from state γ to state β in Apd(τ) and

thus there exists a transition labelled by a, from state γ to β in Apd(τ). We
conclude that the map φ, that associates to each equivalence class [(α, i)] the
expression α, is an isomorphism between Apos(τ)/≡1

and Apd(τ). �

Example 7. For τ = a� a� b, relation ≡1 induces the partition below on the
set of states of Apos(τ) in Example 6.

{ {(α0, 0)}, {(α1, 1)}, {(α2, 2)}, {(α3, 3)}, {(b3, 2), (b3, 1)},
{(a2, 3), (a2, 1)}, {(a1, 3), (a1, 2)}, {(ε, 3), (ε, 2), (ε, 1)} }.

The corresponding automaton Apd(τ) is represented in the following diagram:

12

α0 α2

α1

α3

b3

a2

a1

ε

a

a

b

a

b

a

b

a

a

b

a

a

In the following we will show that Apd(τ) is a quotient of Apd(τ) and, conse-
quently, also of Apos(τ). We need the following results, which are easily proved
by structural induction.

Lemma 10. Consider a marked expression α, and β ∈ ∂ai(α) for some marked
alphabet symbol ai and a = ai. Then, β ∈ ∂a(α).

Lemma 11. Consider a marked expression α and an unmarked expression β ∈
∂a(α). Then, there is some symbol ai in α with a = ai and a marked expression
β′ ∈ ∂ai(α), such that β′ = β.

Using these results, we will show that Apd(τ) is a quotient of Apd(τ), by

the right-invariant equivalence relation ≡2, defined on the states of Apd(τ) by
α ≡2 β if and only if α = β.

Proposition 12. Given τ ∈ T�, we have Apd(τ)/≡2
' Apd(τ).

Proof. First we show that ≡2 is right invariant. Consider (marked) states α,
β, and α′ in Apd(τ) with α = β, and such that there is a transition from α to α′

labelled by a. This means that there is a symbol ai in α such that ai = a and
α′ ∈ ∂ai(α). It follows from Lemma 10 that α′ ∈ ∂a(α) = ∂a(β). Furthermore,
by Lemma 11, there is β′ ∈ ∂ai(β) such that α′ ≡2 β

′. Also, ε(α) = ε(α).
Now consider the map φ that associates to each equivalence class [α] of ≡2

the unmarked expression α. It is easy to see that φ is an isomorphism between
Apd(τ)/≡2

and Apd(τ). Indeed, the initial states of Apd(τ) and Apd(τ) are,
by definition, respectively τ and τ . It follows from Lemma 10 that for every
marked state γ in Apd(τ), there is exactly one state labelled with γ in Apd(τ).
On the other hand, by Lemma 11, for every (unmarked) state β in Apd(τ) there

exists β′ in Apd(τ), such that β′ = β. We conclude that the set of states of

Apd(τ) corresponds to the set of equivalent classes of ≡2 on Apd(τ). By the
right-invariance of ≡2, we also conclude that if there is a transition from [α] to
[α′] labelled by a ∈ Σ in Apd(τ)/≡2

, then there is a transition by a from α to
α′ in Apd(τ). �

Example 8. For τ = a � a � b, relation ≡2 induces on the set of states of
Apd(τ) the partition

{{α0}, {α1, α2}, {α3}, {b3}, {a1, a2}, {ε}}.

This corresponds precisely to the automaton Apd(τ) below.

13

τ

a� b

a� a

b

a ε

a

b

a

b

a

b

a

Corollary 13. Consider τ ∈ T�, then L(Apos(τ)) = L(τ).

We now give a recursive definition of Spos.

Proposition 14. Given τ ∈ T�, the set Spos(τ) is inductively defined by,

Spos(∅) = Spos(ε) = ∅ Spos(α+ β) = Spos(α) ∪ Spos(β)
Spos(ai) = {(ε, i)} Spos(αβ) = Spos(α)β ∪ Spos(β)
Spos(α

?) = Spos(α)α? Spos(α� β) = Spos(α)�p Spos(β)∪
∪Spos(α)� {β} ∪ {α}� Spos(β),

where, given S, T ⊆ T�×Pos and β ∈ T� \ {∅, ε}, Sβ = { (αβ, i) | (α, i) ∈ S },
S � β = { (α � β, i) | (α, i) ∈ S }, β � S = { (β � α, i) | (α, i) ∈ S },
S �p T =

⋃
(α,i)∈S,(β,j)∈T { (α� β, i), (α� β, j) }, ε� S = S � ε = Sε = S,

and S∅ = ∅S = ∅.

Proof. The proof is by induction on the structure of τ . Here we only present
the case for �. The remaining cases follow directly from the definition of Spos

and Proposition 6. We have,

Spos(α� β) = { (γ, i) | γ ∈ ∂ai(∂(α� β)) }
= { (γ, i) | γ ∈ ∂ai(α� β) ∪ ∂ai(∂

+(α� β)) }
= { (γ, i) | γ ∈ ∂ai(α)� {β} ∪ {α}� ∂ai(β) ∪ ∂ai(∂+(α))� ∂+(β)

∪ ∂+(α)� ∂ai(∂
+(β)) ∪ ∂ai(∂+(α))� {β} ∪ ∂+(α)� ∂ai(β)

∪ ∂ai(α)� ∂+(β) ∪ {α}� ∂ai(∂
+(β)) }

= Spos(α)� {β} ∪ {α}� Spos(β)

∪ { (γ, i) | γ ∈ ∂ai(∂(α))� ∂+(β) ∪ ∂+(α)� ∂ai(∂(β)) }
=Spos(α)� {β} ∪ {α}� Spos(β) ∪ Spos(α)�p Spos(β).

The last equality holds because, on one hand (α′ � β′, i) ∈ Spos(α)�p Spos(β)
if and only if (α′, i) ∈ Spos(α) and (β′, j) ∈ Spos(β) for some marking j, or
(α′, j) ∈ Spos(α) and (β′, i) ∈ Spos(β) for some marking j. On the other hand,
for τ ∈ T�,

⋃
aj∈Στ

∂aj (∂(τ)) = ∂+(τ). �

Finally, we note that for a standard RE the set ∂ai(∂(α)), ai ∈ Σα, has at most
one element [8, 2, 7], while for REs with shuffle it can have more. More precisely,
|∂ai(∂(α))| equals the number of states with label (γ, i) in S0

pos(α).

Example 9. One has |∂a1
(∂(a1 � a2 � b3))| = |{a2 � b3, a2, b3, ε}| = 4.

14

6. Average State Complexity

In this section, we estimate the asymptotic average size of the number of
states in partial derivative automata, which also will induce a estimate on
the number of states of the position automata. This is done by the use of
the standard methods of analytic combinatorics as expounded by Flajolet and
Sedgewick [11], which apply to generating functions A(z) =

∑
n anz

n associ-
ated with combinatorial classes. Given some measure of the objects of a class
A, the coefficient an represents the sum of the values of this measure for all
objects of size n. We will use the notation [zn]A(z) for an. For an introduction
of this approach applied to formal languages, we refer to Broda et al. [5]. In
order to apply this method, it is necessary to have an unambiguous description
of the objects of the combinatorial class, as is the case for the specification of
T�-expressions without ∅ in (2). For the length or size of a T�-expression α
we will consider the number of symbols in α, not counting parentheses. Taking
k = |Σ|, we compute from (2) the generating functions Rk(z) and Lk(z), for
the number of T�-expressions without ∅ and the number of alphabet symbols
in T�-expressions without ∅, respectively. Note that excluding one object, ∅, of
size 1 has no influence on the asymptotic study.

According to the specification in (2) the generating function Rk(z) for the
number of T�-expressions without ∅ satisfies

Rk(z) = z + kz + 3zRk(z)2 + zRk(z),

thus,

Rk(z) =
(1− z)−

√
∆k(z)

6z
, where ∆k(z) = 1− 2z − (11 + 12k)z2.

The radius of convergence of Rk(z) is ρk = −1+2
√

3+3k
11+12k . Now, note that the

number of letters l(α) in an expression α satisfies: l(ε) = 0, in l(a) = 1, for
a ∈ Σ, l(α + β) = l(α) + l(β), etc. From this, we conclude that the generating
function Lk(z) satisfies

Lk(z) = kz + 3zLk(z)Rk(z) + zLk(z),

thus,

Lk(z) =
(−kz)

6zRk(z) + z − 1
=

kz√
∆k(z)

.

Now, let Pk(z) denote the generating function for the size of π(α) for T�-
expressions without ∅. From Definition 2 it follows that, given an expression α,
an upper bound, p(α), for the number of elements2 in the set π(α) satisfies:

p(ε) = 0
p(a) = 1, for a ∈ Σ
p(α?) = p(α)

p(α+ β) = p(α) + p(β)
p(αβ) = p(α) + p(β)

p(α� β) = p(α)p(β) + p(α) + p(β).
(4)

2This upper bound corresponds to the case where all unions in π(α) are disjoint, and where
the identifications α · ε = ε · α = α and α� ε = ε� α = α are not taken into account.

15

From this, we conclude that the generating function Pk(z) satisfies

Pk(z) = kz + 6zPk(z)Rk(z) + zPk(z) + zPk(z)2,

thus

Pk(z) = Qk(z) + Sk(z),

where

Qk(z) =

√
∆k(z)

2z
, Sk(z) = −

√
∆′k(z)

2z
,

and ∆′k(z) = 1−2z− (11+16k)z2. The radii of convergence of Qk(z) and Sk(z)

are respectively ρk (defined above) and ρ′k = −1+2
√

3+4k
11+16k .

6.1. Asymptotic analysis

A generating function f can be seen as a complex analytic function, and
the study of its behaviour around its dominant singularity ρ (in case there is
only one, as it happens with the functions considered here) gives us access to
the asymptotic form of its coefficients. In particular, if f(z) is analytic in some
appropriate neighbourhood of ρ, then one has the following [11, 18, 5]:

1. if f(z) = a− b
√

1− z/ρ+ o
(√

1− z/ρ
)

, with a, b ∈ R, b 6= 0, then

[zn]f(z) ∼ b

2
√
π
ρ−nn−3/2;

2. if f(z) = a√
1−z/ρ

+ o

(
1√

1−z/ρ

)
, with a ∈ R, and a 6= 0, then

[zn]f(z) ∼ a√
π
ρ−nn−1/2.

Using the standard analytic combinatorics methods, as in [5], one can show
that the generating function for the number of T�-expressions of size n, Rk(z),
falls into case 1 above, and

[zn]Rk(z) ∼ (3 + 3k)
1
4

6
√
π

ρ
−n− 1

2

k n−
3
2 . (5)

Similarly, one can show that, for the number of alphabet symbols in all expres-
sion of size n, the corresponding generating function Lk(z) falls into case 2.,
and

[zn]Lk(z) ∼ k

2
√
π(3 + 3k)

1
4

ρ
−n+ 1

2

k n−
1
2 . (6)

16

Consequently, the average number of letters in an expression of size n, which
we denote by avL, is asymptotically given by

avL =
[zn]Lk(z)

[zn]Rk(z)
∼ 3kρk√

3 + 3k
n.

For large values of k, one concludes from this that the number of letters in an
expression is roughly half its size.

For the generating function for the number of states in Apd, Pk(z), one can
show that

[zn]Pk(z) = [zn]Qk(z) + [zn]Sk(z)

∼
−(3 + 3k)

1
4 ρ
−n− 1

2

k + (3 + 4k)
1
4 (ρ′k)−n−

1
2

2
√
π

n−
3
2 ,

and the average size of π(α) for an expression α of size n, denoted by avP , is
asymptotically given by

avP =
[zn]Pk(z)

[zn]Rk(z)
∼ 3

((
3 + 4k

3 + 3k

) 1
4
(
ρk
ρ′k

)n+ 1
2

− 1

)
.

Taking into account Proposition 3, we want to compare the values of log2 avP
and avL. In fact, one has

lim
n,k→∞

log2 avP

avL
= log2

4

3
∼ 0.415.

This means that,

lim
n,k→∞

avP 1/avL =
4

3
.

Therefore, one has the following significant improvement, when compared
with the worst case, for the average case upper bound.

Proposition 15. For large values of k and n an upper bound for the average
number of states of Apd is (4

3 + o (1))|α|Σ .

Since each non-initial state of Apos(α) is labelled by a pair (γ, i), with γ ∈
π(α) and i ∈ Pos(α), one has |Spos(α)| ≤ |α|Σ |π(α)|. This and the previous
result readily imply the following.

Proposition 16. For large values of k and n an upper bound for the average
number of states of Apos is |α|Σ (4

3 + o (1))|α|Σ .

7. Conclusion and Future Work

A construction of the position automaton, based on the standard position
functions First, Last and Follow, would be interesting to obtain. As mentioned

17

above, it is often necessary to create more than one state for each position
in the expression. Thus, the Follow function has to take into account some
context to distinguish states corresponding to the same position. The approach
of Kumar and Verma [15] does this, but the automaton produced is in general
not homogeneous. This means that the states in the constructed automaton
correspond to more than one position in the expression. In fact, it seems that
their construction leads to an automaton somewhere between Apd and Apos.

We implemented the constructions of Apd and Apos for REs with shuffle in
the FAdo system [10], and performed some experimental tests for small values
of n and k. Those experiments over statistically significant samples of uniform
random generated REs with shuffle suggest that the upper bounds obtained in
the last section falls far short of their true value. This is not surprising as
repeated elements can occur in the construction of the sets of states.

In a previous work [3], we identified classes of standard REs that capture a
significant reduction on the size of π(α). In the case of REs with shuffle, that
brings about only a marginal reduction in the number of states, but a drastic
increase in the complexity of the associated generating function. Thus the ex-
pected gain does not seem to justify the subsequent difficult asymptotic study.
So, both for π(α) and Spos(α), improved techniques must be further investi-
gated in order to obtain more accurate estimates. For NFAs another important
complexity measure is the number of transitions. It would be interesting to
extend, to the automata here defined, the work of Nicaud [18] and Broda et
al. [4], although with the equations derived from the definitions in Section 4.1
the resulting task seems quite cumbersome.

Sulzmann and Thiemann [19] extended the notion of Brzozowski derivative
for several variants of the shuffle operator. It would also be interesting to extend
the notion of partial derivative to those shuffle variants, and to carry out a
descriptional complexity study of those constructions.

References

[1] Antimirov, V. M., 1996. Partial derivatives of regular expressions and finite
automaton constructions. Theor. Comput. Sci. 155 (2), 291–319.

[2] Berry, G., Sethi, R., 1986. From regular expressions to deterministic au-
tomata. Theoret. Comput. Sci. 48, 117–126.

[3] Broda, S., Machiavelo, A., Moreira, N., Reis, R., 2011. On the average
state complexity of partial derivative automata. International Journal of
Foundations of Computer Science 22 (7), 1593–1606.

[4] Broda, S., Machiavelo, A., Moreira, N., Reis, R., 2012. On the average
size of Glushkov and partial derivative automata. International Journal of
Foundations of Computer Science 23 (5), 969–984.

[5] Broda, S., Machiavelo, A., Moreira, N., Reis, R., 2014. A hitchhiker’s guide
to descriptional complexity through analytic combinatorics. Theor. Com-
put. Sci. 528, 85–100.

18

[6] Champarnaud, J. M., Ziadi, D., 2001. From Mirkin’s prebases to An-
timirov’s word partial derivatives. Fundam. Inform. 45 (3), 195–205.

[7] Champarnaud, J. M., Ziadi, D., 2002. Canonical derivatives, partial deriva-
tives and finite automaton constructions. Theor. Comput. Sci. 289, 137–
163.

[8] Chen, H., Yu, S., 2012. Derivatives of regular expressions and an applica-
tion. In: Dinneen, M. J., Khoussainov, B., Nies, A. (Eds.), Computation,
Physics and Beyond- WTCS 2012, Revised Selected and Invited Papers.
Vol. 7160 of LNCS. Springer, pp. 343–356.

[9] Estrade, B. D., Perkins, A. L., Harris, J. M., 2006. Explicitly parallel reg-
ular expressions. In: Ni, J., Dongarra, J. (Eds.), 1st IMSCCS. IEEE Com-
puter Society, pp. 402–409.

[10] FAdo, P., Access date:01.10.2014. FAdo: tools for formal languages manip-
ulation. http://fado.dcc.fc.up.pt/.

[11] Flajolet, P., Sedgewick, R., 2008. Analytic Combinatorics. CUP.

[12] Gelade, W., 2010. Succinctness of regular expressions with interleaving,
intersection and counting. Theor. Comput. Sci. 411 (31-33), 2987–2998.

[13] Gruber, H., 2010. On the descriptional and algorithmic complexity of reg-
ular languages. Ph.D. thesis, Justus Liebig University Giessen.

[14] Gruber, H., Holzer, M., 2008. Finite automata, digraph connectivity, and
regular expression size. In: Aceto, L., Damg̊ard, I., Goldberg, L. A.,
Halldórsson, M. M., Ingólfsdóttir, A., Walukiewicz, I. (Eds.), 35th ICALP.
Vol. 5126 of LNCS. Springer, pp. 39–50.

[15] Kumar, A., Verma, A. K., 2014. A novel algorithm for the conversion of
parallel regular expressions to non-deterministic finite automata. Applied
Mathematics & Information Sciences 8, 95–105.

[16] Mayer, A. J., Stockmeyer, L. J., 1994. Word problems-this time with inter-
leaving. Inf. Comput. 115 (2), 293–311.

[17] Mirkin, B. G., 1966. An algorithm for constructing a base in a language of
regular expressions. Engineering Cybernetics 5, 51—57.

[18] Nicaud, C., 2009. On the average size of Glushkov’s automata. In: Dediu,
A. H., Ionescu, A.-M., Mart́ın-Vide, C. (Eds.), Proc. 3rd LATA. Vol. 5457
of LNCS. Springer, pp. 626–637.

[19] Sulzmann, M., Thiemann, P., 2015. Derivatives for regular shuffle expres-
sions. In: Dediu, A. H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (Eds.),
Proc. 9th LATA. Vol. 8977 of LNCS. Springer, pp. 275–286.

19

